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|LFrom the PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR THE ADVANCE-
MENT OF S8CIENCE, VOL. xL, 1891.]

PRINCIPLES OF THE ALGEBRA OF PHYSICS. By Prof. A. MACFARLANE,
University of Texas, Austin, Texas.

[This paper was read before a joint session of Sections A and B on August 21‘.]

La seule manidre de bien traiter les élémens d’une science exacte et rigoureuse, c’est
d’y mettre toute la rigueur et ’exactitude possible.
D’ALEMBERT.

The question as to the possibility of representing areas and solids by means of the
apparent multiplication of the symbols for lines has always appeared to me to be one
of great difficulty in the application of algebra to geometry; nor has the difficulty, I
think, been properly met in works on the subject.

D. F. GREGORY.

Tant que P’algébre et 1a géometrie ont été sépareés, leur progrds ont été lents et leurs
usages bornés, mais lorsque ces deux sciences se sont réunies, elles se sont préteés
des forces mutuelles, et ont marché ensemble d'un pas rapide vers la perfection.

LAGRANGE.

IN the preface to the new edition of the Treatise on Quaternions Professor
Tait says, ‘It is disappointing to find how little progress has recently
beenmade with the development of Quaternions. One cause, which has becn
specially active in France, is that workers at the subject have been more
intent on modifying the notation, or the mode of presentation of the fun-
damental principles, than on extending the applications of the Calculus.”
At the end of the preface he quotes a few words from a letter which he re-
ceived long ago from Hamilton— ¢¢ Could anything be simpler or more sat-
isfactory? Don’t you feel, as well as think, that we are on the right track,
and shall be thanked hereafter? Never mind when.” Ihad the high prive
ilege of studying under Professor Tait, and know well his single-minded
devotion to exact science. 1 have always felt that Quaternions is on the
right track, and that Hamilton and Tait deserve and will receive more and
more as time goes on thanks of the highest order. But at the same time
I am convinced that the notation can be improved ; that the principles re-
quire to be corrected and extended ; that there is a more complete algebra
which unifies Quaternions, Grassmann’s method and Determinants, and
applies to physical quantities in space. The guiding idea in this paper is
generalization. What is sought for is an algebra which will apply directly
to physical quantities, will include and unify the several branches of anal-
ysis, and when specialized will become ordinary algebra. That the time
is opportune for a discussion of this problem is shown by the recent dis-

A. A. A. 8.y VOL. XL. (65)



66 SECTION A.

cussion between Professors Tait and Gibbs In the columns of Nature on
the merits of Quaternions, Vector Analysis, and Grassmann’s method;
and also by the discussion in the same Journal of the meaning of algebraic
symbols in applied mathematics.

A student of physics finds a difficulty in the principle of Quaternions
which makes the square of a vector negative. Hamilton says, Lectures,
page 53, ¢ Every line in tri-dimensional space has its square equal to a neg-
ative number, which is one of the most novel but essential elements of
the whole quaternion theory.” Now, a physicist is accustomed to con-
sider the square of a vector quantity as essentially positive, for example,
the expression §mv®. In that expression § m is positive, and as the
whole is positive, »* must be positive; but v denotes the velocity, which
is a directed quantity. If this is a matter of convention merely, then the
convention in quaternions ought to conform with the established conven-
tion of analysis; if it is a matter of truth, which is true?

The question is part of the wider question—Is it necessary to take, as
is done in quaternions, the scalar part of the product of two vectors neg-
atively? Ifind that nét only can problems, involving products of vectors,
be worked out without the minus, but that the expressions so obtained
are more consistent with those of algebra. Let, for example (fig. 1), A
denote & vector of length a and direction «, and B another vector of
length b and direction 3, their sum is A 4 B, and the square of their sumn
I take to be a® + 2ab cos af 4+ b?, where cosafl denotes the cosine of
the angle between the directions a and 3.

Suppose B to change until its direction is

the same as that of A, the above ex- A+DS

pression becomes at 4 2ab 4 b%, which B
agrees with the expression in algebra. a 2

But the quaternion method makes it
— (a* + 2ab 4 b*). The sum of A and
the opposite of B is A—B; its square 5_g -8

is a* — 2ab cosaf -+ b* which becomes

a®*—2 ab + b*, when A and B have the

same direction, but according to quater- Fia. 1.

nions it is — a® -4 2ad — b*. :

In ordinary algebra there are two kinds of quantity, the arithmetical or
signless quantity, and what is called the algebraic quantity. The former
(fig. 2), can be adequately represented on a straight line produced indefi-
nitely in one direction from a fixed point.
All the additive quantities are laid off end
to end, and from the final point the sub-

Fia. 2. tractive quantities are laid off end to end,
R but in the opposite direction. The final
" 7 point must stop short of the origin, in
Fi1q. 8. order that the result may be possible,

under the supposition that the quantity is signiess. But the algebraic
quantity requires for its representation (fig. 8), a straight line produced
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indefinitely in either direction from the fixed point. It isa directed quan-
tity, which may have one or other of two directions. But though this
quantity has a sign, its square is signless, or essentially positive. Hence
only a positive quantity has a square root, and that root {s ambiguous, on
account of the two directions which the algebraic quantity may have. The
generalization of this for space is that the square of any directed quantity
is essentially positive, and that the square root of a signless quantity is
entirely ambiguoas as regards direction.

There is & want of harmony between the notation of Quaternions and
that of Determinants. Let, as usual,

=zityj+zk, p=2i+y j+ 2k, r=a'i+y'"j+2"k,
then
Safy=—|2z 9y =
2y 2
zll yl! zll
Would it not be simpler, if the scalar of 4, 3, y, which has the same
geometrical meaning as the determinant, had also the same sign? The
inconsistency in sign arises from taking the scalar negatively and from
‘taking the positive order of the vectors in the product to be from right to
left. The positive order ought to be that of the natural order in writing,
namely, from left to right, and from top to bottom. And why is it that
only this determinant appears in quaternions while the whole series ap-
pears in the Ausdehnungslehre?
Another assoclated question is — Why is p*? equal not to Laplace’s

operator but to the negative of it? Glven the definition of p as mean-

ing iz i+ i i+ _d_k, does it follow necessarily that p* =

( a x’+ ap + dz')? I have nowhere seen a reason given for the in-

troduction of the minus, excepting one drawn from the analogy to the
supposed negative square of & vector. If it is neither untrue, nor incon-
sistent, it would certainly be simpler to have

e _ 2 —_— —_—
= da:’+dy’+dz"

In Thomson and Tait’s Natural Philosophy, vol. 1, p. 178, p? is defined
as equal to Laplace’s operator; also in other works, as Lamb’s Hydrody-
namics, and Ibbetson’s Mathematical Theory of Elasticity. In Clerk Max-
well's Electricity and Magnetism, vol. 1, p. 237, it is defined negatively;.
but in a footnote it is stated that the negative sign is employed to make
the expressions consistent with those in which quaternions are employed.
As further examples of this anomaly I may instance dy = — Sdp pu, and
4 p=— 8.

The investigation of this question means the investigation of the funda-



68 SECTION A.

mental rules of quaternions. These we find in the rules for the combina-
tion of the symbols ¢, j, and k, namely :

jk=1 ki=j fje=k
Kj = —1 hk=—j ji=—%k
PT=—1 P=—1 kB=-—1

In the preface to his Lectures Hamilton narrates how, in his search for
the extension to space of the imaginary algebra of the pla.ne, he arrived at
these rules, and how having formu-
lated and partly tested them he felt A
that the new instrument for apply-
ing calculation to geometry had been
attained. How are these rules es- \# -
tablished, not as properties of sym-
bols, but as truths in geometry and

physics? Writers on quaternions </ 4’{ J
{llustrate them by two different
things—the summing of angles in

space, and the rotation of a line z
:about an axis. Let (fig. 4) 1, j, &,
.denote three mutually perpendicular
axes which are usually designated -k
.as the axes of z, y and z. In or- Fie. 4.
-der to distinguish clearly between an axis and a quadrant of rotation about
” ”
T 7T 7
the axis,let ¢ ,j , & denote quadrants of rotation in the positive direc-
tion about the respective axes. The directions of positive rotation are in-
T w
7z
dicated by the arrows. Now in quaternions by ¥ j Is meant (the 7 is

not expressed explicitly) a quadrant of the great circle round j followed
by & quadrant of the great circle round % ; the sum of these is the quadrant
8

z
from k to j, which Is the negative of a quadrant round ¢ or¢ ; or it may
”

b3
be considered as a quadrant round —¢, and therefore denoted by —i .
Hence, supposing the order of the summing to be from right to left,

T w ” LA t 4 - v ”
Tz 2 7T z T 4
Ej=—1, ik =—j, Ji=—F.

-

T T
Again (see fig. 4) by j % is meant a quadrant of the great circle round
% followed by a quadrant of the great circle round j; this is equivalent to
the quadrant from — jto —&, which is a quadrant of the great circle round

LA ” T T -

Tz 7 27T T

¢ and in the positive direction; hence, j ¥ = ¢ and similarly & ¢ = j
TT Iz
andi j =k .
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77 '
Byt ¢ is meant the sum of two quadrants of the great circle round ¢,
T w
7 -
it is equivalent to a semicircle round{; hence i ¢ = ¢ . But as any one
of the semicircles round i (for example, the one from j to — j in the posi-
tive direction), is equivalent to any one of the semicircles joining the same
T w

T 7
points, the axis of ¢ § is not restricted to 7, but may be any axis what-
T w

Tz
ever. Let such indefinite axis be denoted by £;then? ¢ = £™ and this

T T ” ”

T . T 7T
is what is denoted by — 1. Similarly j j =& =—1;andk k& =

&€" = — 1. Thus the minus comes in from the repetition of a quadrantal
versor, and it is itself a versor with an indefinite axis. If the order of the
versors and the order of writing are identifled, the rules are

v w .3 m w " [ "
T z T Tz T T 2 z
Jk =—i kEt =—j 1 §j=—k
T w w v oW " " ow "
Tz 2 2 7 b3 7z 7
kK §=1 Ck =j ji=k

r w T w T ow

z 7 z 7 27
= =—1; j j=5'=‘—1 Ek=8 =—1

If the process of finding the sum of two arcs of great circles is distribu-
tive, then by the application of the above rules, we can find the sum of any
two quadrantal arcs. Let i 4 mj 4 nk denote one axis, and Ui 4+ m/j+n'k

”

z
another; then (% 4+ mj 4+ nk) denotes a quadrant of the great circle
”
z
round the former, and (It 4 m'j 4 n'k) a quadrant of the great circle
round the latter. The sum of the former and the latter in the order named

” ”
z z
is denoted by (Ui 4 mj 4+ nk) Ui+ m/j 4 n'k) . If the rule of distribu-

tion holds, the sum is equal to

(ltr + mj’+ nk?) (mz + m’j=r + n’kr)

-
b4 T
= — W+ mm' 4+ nan'") 4+ (mn! —am’){ 4 (nll— ') j + (Im! — mi)k
and by applying the rule of distribution in the reverse order

"
z

= — (W' + mm! + nn') +{ (mn! — nml) & +(nl! — In") j(Im! —mi)k } 7

The first term has any axis, an angle x, and a multiplier i’ 4+ mm’ + na'.
The second term has an axis

(mn! — nm!') T4 (nl! — In") j4 (Im! —ml") &
V (mn’ — am))*  (al — ") +F (Im! — mi’)®
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an angle 7 and a multiplier

vV (mn’ — am")* 4 (al! — In")* + (Im’ — ml")?

These two terms together denote the arc of a great circle which is the
sum of the two given arcs, its axis being the axis specifled and its angle
sach that — (I’ 4+ mm' 4 nn') is its cosine.

‘We have next to consider the other meaning which is given to the fan-

damental rules : that they express the effect of a rotation on a line. Let
L 4

z
1 j denote the turning by a quadrant round { of a line initially along j;
and here I introduce the % to denote explicitly what is meant by the first
symbol. Hamilton obtains the same elementary rules as before, namely,

L4 L4 L4

z z Z

Jj k=t k i=j ij=k
L4 L4 L4

z z z
k j=—1 i k=—j ji=—k
L4 v -

z z z
ii=—1 ji=-—1 k k=—1

or, to speak more correctly, the first six are obtained, while the remain-
ing three are assumed. A quadrant rotation round j (see fig. +) changes
a line originally along X to a line along %, hence the direction denoted by
-

z
J kis identical with the direction 4. Similarly, for the other two equa-
tions of the first set. A quadrant rotation in the positive direction round
k turns a line originally along j to a line in the direction opposite to 1,
”

z
hence k¥ j=—1. Similarly for the other two equations of the second set.

2
If we keep to the same meaning of the symbols as befpre,t 1 ought to
mean the effect of a quadrant rotation round ¢ upon a line in the direction
”

-

T
of 7; and as that produces no change, we ought to have ¢ i{=14. Similarly
” ”

jgj =4 and k’k =k. It follows that the trne meaning of the rules lies in
the summing of versors or arcs of great
circles, and not in the rotation of aline. o |

This will be seen more clearly when we )
attempt to form the product of a quadran- R
tal rotation round any axis and any line.
Let 1 +mj+ nk denote the axis a (fig. 5),
round which there is a quadrant of rota- R
tlon, and zi + yj + 2k the line R which is
turned. If the distributiverule applies, we
get the result by decomposing the quad-
rant rotation round the given axis Into the F1G. 5%
sum of three component rotations

” ” ”

z T T
i +mj +nk
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and finding their several effects on the several components of the line
xzi4yj+zk. According to the quaternion rules we obtain — (lz 4+ my + nz)
+ (mz—ny) i + (nz —12) j + (ly—mz) k. Now this expression Is not
the expression for the resulting line, or for any line, unless lx+my4-nz =0.
What is the true expression? It i8 (ix -+ my + nz) (li 4+ mj+ nk) which
is the component along the axis,and (mz — ny) ¢ 4+ (nx —12) j +(ly—mz) k
is the expression for the other component, which is perpendicular to the
axis and the initial line. The argument here is, of course, not so much
about the proper expression for the result of the rotation, as about the
meaning of the fundamental rules.

To make the rules which are true for versors applicable to vectors, it is
necessary to identify a vector of unit length with a quadrantal versor
having the same axis. In the new edition of his Klements, p. 46, Prof.
Tait makes the transition from versors to vectors thus * One most im-
portant step remains to be made. We have treated i, j, k simply as quad-
rantal versors, and i, j, k as unit-vectors at right angles to each other, and
coinciding with the axes of rotation of these versors. But if we collate
and compare the equations just proved, we have # =—1, i*=—1,§9;
ij=kandij =K; ji==—k and ji =—Kk. Now the meanings we have
assigned to i, j, k are quite independent of, and not inconsistent with,
those assigned to i, j, K. And it is superfluous to use two sets of charac-
ters when one will suffice. Hence it appears that 1, j, X may be substituted
for i, j, k3 in other words, a unit-vector when employed as a factor may be
considered as,a quadrantal versor whose plane is perpendicular to the vector.
of cofxrse, it follows that every vector can be treated as the product of a
number and a quadrantal versor. This is one of the main elements of the

singular slmplicity of the quaternion calculus.”
”

z
By ¢ is here meant what we have designated by ¢ and byi a unit-vector
along the axis of i. We have already seen one difficulty opposing the
”

identification, namely, taking as a principle that i?i =—1. But waliving
that insuperable objection, there still remains for consideration the case
of the combination of two vectors. This kind of product, in which both
factors are vectors, has in recent times been generally neglected. This
is evident from what is said by Clifford (Mathematical papers, p. 386)
“In every equation we must regard the last symbol in every term as
either a vector or an operation; but all the others must be regarded as
operations.” This view does not explain the product of physical quanti-
ties.
Let xi, yj, 2k denote line-vectors along the axes of i, j, k respectively;
then according to the principles of quaternions
W) (2k) =yzi (2k) (i) = 2zj (=) (W) =ayk
(2k) (yj) =—vyzt (%) (2k) =—2xf (¥) (zi) =—2zyk
@) @) =—2a' () W) =—y* (k) (2k) =—2"
As the distributive principle is to be applied, the meaning of these par-
tial products must be such that the product of any two vectors is obtained
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by taking the products of the several components of the one with the sev-
eral components of the other.

Let yjzk denote or be represented (fig. 6) by the rectangle included be-
tween yj and zk; its magnitude is yz and its orientation is defined by jk.
But in space of three dimensions the aspect or orientation j& may be rep-
resented so far as direction is con-
cerned by the complementary axis 4. zk
Hence we may write yjzk = yzjk = yzi.
Similarly, zkzi = zxki = zxj and i
ziyj = xyij = xzyk. The expression zykj 77_ T
denotes the same area in magnitude
and plane as yzjk, but is taken the op- y J.
posite way round; the complement-
ary axis is —{. In the same sense
th = — jand ji = — k. 8o far, the xi
quaternion rules appear to hold good Fiq. 6.
but even here, a difficulty appears on
closer consideration. We have taken the vectors in the order of writing
and obtain jk = ¢, if, as was pointed out, we take the versors also in the

L i
order of writing we obtainj %k =—i .

The question remains: What consistent meaning must be attached to

zixi and yjyj and zkzk in order that when they are taken along with the
other partial products we may obtain a

, @ complete distributive product? The view

? which I have arrived at is that the ex-
pression x{x{—x%® means the.area of the

pd square which is formed by the projection
? of zi on its8 own direction; and that it is
essentially positlve. Similarly y%®and 2%3
are essentially positive, and the three
terms are to be combined by arithmetical
addition. Individually they have no di-
g x' x rection, whether their sum has or not.
F1a. 7. Hence I take the rules to be & = 4,
=4, and kk=+.
Let R=zi+4yj+2k and R/ =z'i+4y'j+ 2’k be any two line-vectors.
By applying the above rules distributively we obtain:

RR' = (zi + 3 +2k) @iy +2'k)
=2 gy + 22 + V2 — o) § + (e —2') j+ (2’ —p) k.

Let OP and OF be the projections of R and R’ on the plane of 1 and j.
Then from the figure (fig. 7) it is evident that the area of the triangle
OPP =xy —dzy—32'y' —3 (x—2') (V) —y) =4 (zy' —y2')

Thus (xy' — yz') k denotes the magnitude and orientation of the parallel-
ogram formed by the projections of R and R’ on the plane of  and j. Sim-
ilarly (y2/ —2y') ¢ denotes the oriented area formed by the projections of
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R and R’ on the plane of j and %, and (zz' —z2’) j that for the plane of %
and 4. The geometrical sum of these areas is equal in magnitude and
orientation to the area of the parallelogram formed in space by R and R/,
or rather the area formed by R and the component of R' which is perpen-
dicular to R.

The expression xzx’ 4 yy’ 4 22’ is the area formed by R and the projec-
tion of R/ upon R. For (fig. 8) the projection of R' is equal to ON,
which is equal to OL 4+ LM -+ MN, the sum of the projections on R of z'i,
y'jand z'k respectively. Hence the product of R and the projection of R’
is .

r (x’%+v’%+ z'—f;)=mc’+w’+zz'

Hence by the complete product RR’ we mean the product of R and the com-
ponent of R’ which is parallel to R, to-

gether with the product of R and the k R' .
component of R’ which is perpendicular J

to R. This product is distributive, that
is, we get the same result whether we
take the product directly, or take the sev-
eral products of the components of R and
R’ and add them together, the non-di- R
rected products by ordinary addition, the N
directed products by geometrical addition. M

The expression zz! -4 yy' 4 22! is one of 0 R
the fundamental expressions of the Car- z
tesian analysis; the other term Is ex- Fig. 8.
pressed by the square root of the sum of the squares of its components,
namely,

V e = 2y’ ) + (a2’ —az')* + (2 —p2')?

because that analysis does not provide an explicit notation for direction.

What reason do writél's on quaternions give for taking xx’ 4 yy’ 422/
negatively in the case of the product of two vectors? In the passage
quoted above Professor Tait refers to section 9 of his Treatise for the proof
that the square of a unit vectoris —1. There we find : ‘It may be interest-
ing, at this stage, to anticipate so far as to remark thatin the theory of qua-
ternions the analogue of cos6 43/ — 1 8in0 18 cosd + w sin 0, where
w*=—1. Here, however, w is not the algebraic v =T, but is any di-
rected unit-line whatever in space.”

In the above expression @ really means the versor w,. The algebraic
fmaginary 1/ —1 means, as is well known, a turning of 7 what is indef-
inite about it is that the axis is not specified; and it must be supposed
constant, if the rules about the manipulation of }/ — 1 are to hold good.
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The true reason for taking the expression negatively is to satisfy the
rule of association. In the preface to his Lectures, p. 53, Hamilton shows
that if the product

@i+ yi+2k) @i+yi+2k) @i+ y+ k)
is to satisfy the assoclative rule, as well as the distributive, and if the

scalar part already obtained in the multiplication is to be treated as a mere
number, then we must have
izl = — xx! Yyi=—yy 2kz2'k = — 22!

““On this plan every line in tridimensional space has its square equal to
a negative number.”

But what quantity in space possesses such associative and distributive
properties? It is proved to be true of the summing of versors, that is, of
arcs of great circles on a sphere, when the é
portion of the arc designated by the versor P
may be taken anywhere on the great circle
(fig. 9). As any two great circles have a
common line of intersection, the arcs may be
moved along until the second starts from the (/%)
end of the first, as AB and BC. The sum of
AB and BC, denoted by (4B) (BC) is equal A
to AC, the arc of the great circle which joins #
Aand C. A third versor, as DE, will not in
general pass through 4 or C, but it will meet the great circle AC in some
point as D. Shift AC back to FD; then the versor FE is the sum of FD
and DE, and therefore the sum of AB, BC, DE. The associative prop-
erty means, that if BC and DE are first summed and then AB with the
result, the arc of the great circle so obtained will be equal in magnitude
and on the same circle as the arc obtained by the former mode of pro-
cedure. The proof of the theorem is not simple; in Tait’s Elementary
Treatise it 18 accomplished by the help of the fandamental properties of
the curves known as Spherical Conics, discovered only in recent times by
Magnus and Chasles. Doubtless many a one has been discouraged from
the study of quaternions by the abstruse nature of the fundamental prin-
ciples.

It is clear from the figure that the summing of versors cannot be ade-
quately represented by a versor rotating a line at right angles to its axis.
The versor AB followed by the versor BC may rotate a line non-conically
from A to C, but the subsequent versor DE cannot in general operate in
the same way upon the line at C. To do 8o, the great circle of DE must
intersect the great circle of BC in the point C.

As the result of the investigation we conclude,

First, That the product of two vectors or directed magnitudes,

T =pi + gj+rk and S = ui + vj 4 wk, is
T8 =pu+qv+rw+ (qw—rv)i + (ru—pw)j + (pv—qu) k.
Hence that there is a generalized product which includes the product of
real quantities, such geometric products as are sometimes used in proving

Fi1a. 9.
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the propositions of the second book of Euclid, the products of Grass-
mann’s Ausdehnungslehre, determinants, and generally the products of
physical magnitudes. By a physical magnitude I mean a symbol which
represents not only ratio and direction but these combined with the physi-
cal unit. The corresponding generalized algebra forms a large comple-
ment of the algebra of physics.

Second, That the product of two quadrantal versors or geometric ratios

” ”

T
r= (zi+yj +zk)?a.nd r =i+ yi+2'k) is

7
= — (@ ' 2) — § e — 2y Y (=) j+ (v — ) ke }

Hence that there is a generalized product which includes the product of
ratios, and the product of complexes, and which is the special subject of
analytical trigonometry, spherical trigonometry and the method of qua-
ternions.

' z

Third, The effect of a quadrantal rotation (% 4 mj 4+ nk) upon a line
xt 4y + 2kis
@tz +my + nz) (% +mj+ nk) + (mz— ny) i + (nz —12) j+ (ly —mz) k.

The subject of rotation and the effect of rotation on a line may be con-
sidered as belonging to the versor part of the algebra of space. The effect
of a rotation of any angle upon a line is still more complex, and does not
answer to the definition of a product as a distributive function.

Before the time of DesCartes, an algebraic quantity was represented by
a line, the product of two quantities by the rectangle formed by the lines,
the product of a quantity by itself as the square formed by-the line, the
product of three quantities by the right solid formed by the lines, which
when the lines were equal, became the cube. Each term of acubic equa-
tion was interpreted as denoting a solid, and the equation was actually
solved by cutting up a cube. In order to explain higher powers than tie
cube, space of four or any adequate number of dimensions was imagined.
This concrete view of a product corresponds to the vector part of gener-
alized algebra.

The doctrine of DesCartes was that the algebraic symbol did not repre-
sent a concrete magnitude, but a mere number or ratio, expressing the
relation of the magnitude to some unit, Hence that the product of two
quantities is the product of ratios, and instead of being represented by a
rectangle may be represented in the same way as either factor; that the
powers of a quantity are ratios like the quantity itself, and therefore there
is no need of imagining space of more than one dimension. This view of
a product corresponds to the versor part of the generalized algebra.

The theory here advauced will be elaborated and developed in the pages
which follow; but before proceeding to that development, I propose to
consider several other objections which have been or may be made against
the various methods of extending algebra to quantities in space, with the
view of discussing their validity ; and, if they appear to be valid, whether
they are removed by the theory advanced.
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Some mathematicians have objected to the negative character of the
scalar in the product of two vectors. Inthe recent discussion in the col-
umns of Nature (Vol. xri, p. 511), Professor Gibbs says, ¢ When we
come to functions having an analogy to multiplication, the product of the
lengths of two vectors and the cosine of the angle which they include,
from any point of view except that of the quaternionist, seems more sim-
ple than the same quantity taken negatively. Therefore we want a nota-
tion for what is expressed by —Saf rather than Saf in quaternions.”
This agrees with the theory here advanced. But I do not look upon the
product of two vectors as merely having an analogy to muliplication, but
as multiplication itself generalized.

It has been objected that while the scalar product and the vector prod-
uct are each of primary importance, the quaternion proper which is their
sum, is of very secondary importance. Thus, Professor Hyde, in a paper
on the ¢ Calculus of Direction and Position” (4Amer. Journ. of Mauth.,
Vol. vi, p. 8), says, ‘“The combination of these different functions in the
vector renders the product of two vectors which are neither parallel nor
perpendicular to each other necessarily a complex quantity, having a sca-
lar and a vector part corresponding to the real and imaginary parts of the
ordinary complex a 4 b]/ —1, thus making a thing which should be sim-
ple just the opposite. It seems to me that quaternions proper, 7. e., these
complex quantities, are practically of little use. In nearly all the appli-
cations to geometry and mechanics, scalars and vectors are used sepa-
rately.. For the special cases to which the complex a 4+ b|/ —1is put, the
directed quantity is not needed.”

In reply it may be said that the works of Hamilton and Tait make it

abundantly evident that the quaternion ldea is essential to the algebraic
" treatment of spherical trigonometry and of rotations. As regards the
use of the complex a-4b}/—I, it is indefinite, unless restricted to a
plane. It is shown in the development which follows that when the axis
is introduced, many of the known theorems in trigonometry can be greatly
extended, and that the entire meaning of the formulee becomes evident as
truths in geometry, not mere consequences from the conventional use of
symbols.

In the letter to Nature quoted above, Professor Gibbs urges the same
objection. ¢ The question arises whether the quaternionic produact can
claim a prominent and fundamental place in a system of vector analysis.
It certainly does not hold any such place among the fundamental geomet-
rical conceptions as the geometrical sum, the scalar product, or the vec-
tor product. The geometrical sum a + J represents the third side of a
triangle as determined by the sides @ and B. Vaf represents in mag-
nitude the area of the parallelogram determined by the sides @ and £, and
in direction the normal to the plane of the parallelogram. Sy Vaf repre-
sents the volume of the parallelopiped determined by the edges a, 5 and y.
These conceptions are the very foundations of geometry. We may arrive
at the same conclusion from a somewhat narrower but very practical
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point of view. It will hardly be denied that sines and cosines play the
leading parts in trigonometry. Now, the notations Vaf and Suf rep-
resent the sine and cosine of the angle included between a and f com-
bined in each case with certain other simple notions. But the sine and
cosine combined with these auxiliary notions are incomparably more amen-
able to analytical trunsformation than the simple sine and cusine of trig-
onometry, exactly as numerical quantities combined (as in algebra) with
the notion of positive or negative quality are incomparably more amenable
to analytical transformation than the simple numerical quantities of arith-
metic. I do not know of anything which can be urged in favor of the
quaternionic product of two vectors as a fundamental notion in vector anal-
ysis, which does not appear trivial or artificial in comparison with the
above conslderations. The same is true of the quaternionic quotient and
of the quaternion in general.”

It may be observed that Professor Gibbs does not give the geometrical
meaning of Saf but that of SaVfy. The geometrical meaning given to
the latter cannot be transferred to the former. They may have a common
meaning when a, 3, y denote quadrantal versors, but the common meaning
is not so evident when a, 3, y denote vectors. The meaning which I attach
to Vaf is not, strictly speaking, the area of the parallelogram determined
by the sides a and 3, for then from the symmetry of the idea there would
be nothing to deterinine the positive sign; it rather is the area formed by
a and the component of § which is perpendicular to «; and as a comple-
ment we have the area formed by a and the component of 8 which is par-
allel to a. If a and S are both of unit length or, rather, if we consider
their direction apart from their physical magnitude, Vap expresses the
sine and Saf the cosine of the angle between the directions a and §;
and in this case the product af denotes the angle between a and 3. But
it is of the greatest importance that the angle should be treated as a
whole, not merely the sine part separately and the cosine part separately.
Thus, the argument from trigonometry leads to the opposite conclusion
to that at which Professor Gibbs arrives.

It seems to me that the essence of a product is that it is a dlstributive
function of the factors. Thus'in ordinary algebra (¢ 4 b +¢) (a' 4+ d'+¢)
= qa' + bb' 4+ cc! 4 be! 4 b’ + ca' + ac’ 4+ ab’ + ba'. We have nine
partial products, and in my view the product of two quantities, each con-
sisting of three parts, is not complete, unless it contains the nine partial
products ; otherwise, the product is not a generalization of the product of
ordinary algebra. As a consequence of not treating together the two
complementary parts of the prodact of two vectors, Grassmann and his
followers have restricted their attention to associative products and treat
of these only in a detached manner. In treating of the product of a nuin-
ber of vectors, that is a very arbitrary principle which holds that ail the
terms into which two similar directions enter must vanish; but that is
a principlie of the Ausdehnungsiehre and of determinants.
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Are the principles of the method of quaternions consistent with the the-
ory of dimensions which has played so important a part in mathemati-
cal physics since the time of Fourier? Do they remove Gregory’s dif-
ficulty as to how areas and solids can be represented by the apparent mul-
tiplication of lines? Professor Hyde, in the preface to the Directional Cal-
culus, a valuable text-book on Grassmann’s method, states that Grassmann’s
system is founded on and absolutely consistent with the idea of geometric
dimensions, while Hamilton’s is not. We find this objection amplified in
the paper referred to, Am. Jour. Math. ,Vol. vi,p.8. “From thisassump-
tion it follows as above, that ¢j = k and also that {/j = —ij = —%, 1. e.,
the ratio of two quantities is the same thing as their product except as to
sign. To be sure we may say that these are units, and we have the anal-
ogy that 1/1 =1 X 1; baut they, i. e., vectors, are geometric and directed
units, and such a relation appears to me to upset all one’s preconceived
ideas of geometric quantities without any corresponding advantage. If,
in the equation 1/1 =1 X 1, 1 be taken as the unit of length, then the
members of the equation have evidently not the same meaning, 1/1 being
merely & numerical quantity, while 1 X 1 is a unit of area, it being a fun-
damental geometrical conception that the product of a length by a length
is an area, that of a length by an area a volume, while the ratio of two
quantities of the same order as that of a length to a length is a mere num-
ber of the order zero. In quaternions, however, we have the remarkable
result that the product of a length by alength is not merely represented
by, but actually equal to a length perpendicular to the plane of the two.”

This objection is not valid against the method of quaternions as the al-
gebra of versors or directed quotients, that is, geometric ratios; but it is
valid against it as claiming to be the algebra of vectors or physical mag-
nitudes. The primary definition of the quaternion is the quotient, not the
product, of two directed lines. ‘From the purely geometrical point of
view, & quaternion may be regarded as the quotient of two directed lines
in space, or what comes to the same thing as the factor or operator which
 changes one directed line into another,” Ency. Brit., Art. Qualernions.
The latter definition, as we have seen, is not exactly the same thing as
the former; the former is the primary and true definition. The product
of two vectors is derived analytically from the quotient of two vectors;
no geometric meaning is attached to it as a whole, but it is interpreted
as a quaternion. Thus, Hamilton, Elements, p. 303 : ‘¢ We proceed to con-
sider, in the following section some of the general consequences of this
deflnition, or interpretation of a product of two vectors, as being equal to
a certain quotient or quaternion.”

If the product of two vectors is a quaternion, then the definition of a
quaternion as the quotient of two lines is not correct. But this confusion
vanishes when the product of two vectors is perceived to be distinct from
and independent of that of two versors. The directed part of a versor,
or of any number of versors is not a line in the sense of involving the
unit of length; it is of zero dimensions like the ordinary sine of trigo-
nometry. A directed term in the product of vectors may be of one, two,
three or any number of dimensions in length. A quantity having three
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dimensions in length is not necessarily a scalar, nor s it true that a di-
rected quantity 18 necessarily of one dimension in length. The idea of an
axis is different from the idea of a directed line of unit length. I look
upon the symbols i, j, k¥ a8 denoting not a unit-vector, but direction simply,
the idea contained in the word azis. In writing {j = k, we do not equate
a product of lines to a line, but the axis denoted by ij to the axis k. In
space of four dimensions this equation is not true; it depends for its truth
on the tridimensional character of space. In such an expression as i it
is more philosophical and correct to consider the z as embodying the unit,
while 7 denotes simply the axis. I look upon the magnitude as contain-
ing the physical unit, to be arithmetical ratio and unlt combined; and
different vectors have different physical units. A line is a vector which
has length tor unit; a linear velocity involves length directly and time in-
versely ; momentum involves mass and length directly and time inversely.
An axis is not a physical quantity, but merely a direction. It follows
from the theory of vector-algebra here advanced that the reciprocal of a
vector has the same axis as the vector but the reciprocal magnitude. As
the dimensions depend on the magnitude not on the axis, it follows that

, 1, 1 11 .
j=gi=ig=75=k
that is, the axis of the term which involves 7 and j, or of the term which
involves one directly and one reciprocally, or of the term which involves
Loth reciprocally is k.

It appears to me that this same principle of dimensions is not observed
"strictly in Grassmann’s method or in the “Directional Calculus.” We meet
such an equation as p, = p, + ¢ where p, and p,; denote points and ¢ de-
notes a vector. Notwithstanding that a point is of zero dimensions and
e is used to denote a line-voctor, we have a point equated to the sum of a
Point and a line. That € is of one dimension in length is evident, for the
expression e;5, denotes the area of & parallelogram, and &,e65 denotes
the volume of a solid, while ¢& denotes the moment of a force. It ap-
pears that either the equation is heterogeneous, or else p, and p, must be
understood as denoting vectors from some common point; if the latter
view I8 correct, the point-analysis reduces to a vector-analysis. From
the physical point of view it is more correct to treat of a mass-vector than
of a point having weight; for the differential coéfficient with respect to
time of a mass-vector is the momentum, which is itself a mass-vector.
If the latter is of one dimension in length, so is the former. The prod-
uct of a point and a mass is not a physical idea.

Professor Hyde indicates another element in which Grassmann’s method
appears superior to Hamiltow’s. ¢ Now quaternions deal only with the
veetor or line direction and the scalar — for a quaternion is only the sum
of these two; it knows nothing of a vector having a definite position,
which is the complete representation of the space qualities of a force.”
This is the distinction which Clifford emphasized between a vector which
may be anywhere and one which is restricted to a_definite line; to dis-
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tinguish the latter from the former he introduced the word rotor, short
for rotator, the velocity of rotation being a typical localized vector. The
contrast between vector and rotor is of great importance, and it is con-
venient to have a notation which specifies a rotor completely as depend-
ing on two vectors. In the works of Humilton and Tait a force is speci-
fled by two vectors, as a and p, the former denoting the magnitude and
direction of the force, the latter the vector from an origin to the point of
application. That which 1s denoted in quaternions by p is denoted in
Grassmann’s method by p, and it appears that p is equivalent to the vector
from an origin.

The method of Grassmann is applicable, so far as it goes, to space of n
dimensions, while the method of Hamllton appears to be restricted to
space of three dimensions. How is it possible to unify the two and
develop an algebra not only of three dimensional space but of four dimen-
sional space? Professor Hyde, in his preface, says, ‘‘ As the great
generality of Grassmann’s processes —all results being obtained for n-
. dimensional space—has been one of the main hindrances to the general
cultivation of his system, it has been thought best to restrict the discus-
sion to space of two or three dimensions . . . It seems scarcely possible
that any method can ever be devised, comparahle with this, for investi-
gating n-dimensional space.”

On this subject Professor Gibbs says, Nature, Vol. xL1v, p. 82, ¢ Such
a comparison (of Hamilton’s and of Grassmann’s systems) I have endeav-
ored to make, or rather to indicate the basis on which it may be made, so
far as systems of geometrical algebra are concerned. As a contribution
to analysis in general, I suppose that there is no question that Grass-
manu’s system Is of indeflnitely greater extension, having no limitation
to any particular number of dimensions.” Also in Nature, Vol. xvri, p.
512, *“ How much more deeply rooted in the nature of things are the func-
tions Saf and Va3 than any which depend on the definition of a quater-
nion, will appear in a strong light, if we try to extend our formule to
space of four or more dimensions. It will not be claimed that the no-
tions of quaternions will apply to such a space, except indeed in such a
limited and artificial manner as to rob them of their value in a system of
geometrical algebra. But vectors exlst in such a space, and there must he
a vector analysis for such a space.” In reply Professor Tait said, ¢ It is
singular that one of Professor Gibbs’ objections to quaternions should be
precisely what I have always considered (after perfect inartificiality) their
chief merit, viz., that they are uniquely adapted to Euclidian space, and
therefore specially useful in some of the most important branches of
physical science. What have students of physics, as such, to do with
space of more than three dimensions?”

The view which I have arrived at, unifying Hamliton and Grassmann
and developing a more comprehensive algebra is: That i? = 4+ # =+
k* = 4 do not involve the condition of three dimensions, being true for
space of any number, of dimensions, while §j =%k jk=1i ki==j do in-
volve and indeed express the condition of three dimensions. The rules
$ = —ji jk=—kj Kki= —ik are also true generally. Inspace of four
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dimensions ‘'we require four mutually rectangular axes; let the fourth be
denoted by u. Then it is not true that {j == k; but it is true that {jk = u,
Jhu = —i, kut = j, ufj = —*k.

A difficulty has been felt in the apparent heterogeneity of a sum of sca-
lar and vector terms. Hamilton was never quite satisfied, and speculated
on an extraspatial unit. Now, the heterogeneity is not in dimensions, for
all the terms have the same number of dimensions with respect to each
unit involved in the units of the factor-vectors. The theory of axes here
advanced and the extension of algebra to space of four dimensions show
that all the terms are homogeneous in the sense of having an axis, but that
for some terms it may Le any axis; for others, the fourth axis in a space
of four dimensions.

DEFINITIONS AND NOTATION.

I propose to use a notation which shall conform as far as possible with
the notation of algebra, the Cartesian analysis, quaternions, etc., but shall
at the same time embody what I concelve to be the'principles of the alge-
bra of physics. The most logical procedure is to generalize as far as
possible the notation of algebra.

By an arithmetical quantity 18 meant an essentially positive or signless
quantity ; it has no direction or any direction. For example, the mass of
a body, or its kinetic energy.

By a scalar is meant a quantity which has magnitude, and may be posi-
tive or negative, but is destitute of a definite axis; or it is the element of
a physical quantity which is independent of the axis. It is equivalent to
the ordinary algebraic quantity, and is denoted, as usual, by an Italic letter
as a, b, z, X, etc. The work done by or against a force, and the volume
of a geometric figure are examples. These quantities, though both scalar,
differ in dimensions, and they are scalars for different reasons.

By a vector is meant a quantity which has magnitude and an axis. It
requires three numbers to specify it completely. The simplest example is
the displacement of a point, represented by a straight line drawn from its
original to its final position. Qther examples are a linear velocity, an
area in a plane, and a current of fluld. These several quantities differ in
dimensions and in the nature of the physical unit; and there are vectors
which have the same dimensions in length, yet have different kinds of
axes. What they have in common is a want of symmetry in space.

A vector is denoted by a black capital letter as A, its magnitude by
@ and its axis by a. Thus A = aa, B =}, R =rp. Sometimes it is
necessary to introduce a dot to separate the expression for the magnitude
from the expression for the direction; but when the two symbols are
single, as in aa, the dot may be omitted. The difference of type shows
that ¢ denotes the algebraic magnitude and a merely its axis, not another
algebraic magnitude. In Clerk-Maxwell’s Electricity and Magnetism, Ger-
man capitals are used to denote vectors, but these are dificalt to make,
and plain black letters have alreaay been used for the purpose, as by Flem-
ing in his book on Alternate Current Transformers. The simple a and a
are more commodious than Ta and Ua as used in works on quaternions,

2
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and the notation is also more in harmony with the Cartesian analysis.
What is done is merely to introduce 4 to specify the axis in space, leav-
ing the expression for the scalar part of the magnitude the same as before.
In the case of mutually rectangular components, ¢, j and % are used to
denote the axes.

Vector quantities may be classified according to the nature of the
axis. By a line-vector is meant one which has a simple axis of direction,—
a vector in the primary meaning of the word as used by Hamilton. It is
of one dimension in length.

By the pole of two axes is meant the axis which is perpendicular toboth.

The pole of a and S is denoted by a_ﬁ ; the pole of a—ﬁ and y is denoted

by a_ﬁr; that of @ and /97 by aﬁ; and so on. An axis which is perpen-

dicular to @ but.otherwise indefinite, may be denoted by ;. ‘This nota-
tion enables us to express explicitly three mutually rectangular axes. Let

aand S be any two independent axes ; then, @ and a8 and a 3a denote three
mutually rectangular axes. In the works on quaternions, there is no sys-
tematic notation for direction; consequently to specify the axis which is
perpendicular to two given axes, it is necessary to use a special non-syste-
matic symbol.

By a tensor is meant an arithmetical ratio or quantity destitute of di-
mensions and of axis. This is the primary meaning of the word as used
by Hamilton; it is primarily used to denote the magnitude of the quater-
nion quotient defined as a ratio of two lines in space. To conceive a, b,
z, X, etc., as tensors, is to suppose the unit thrown into the symbols 1, j, k.
Tt is certainly not convenient to regard %, j, ¥ as denoting directed physical
units; it is more philosophical, more practical, and more in harmony with
mathematical analysis to regard them as axes, and a, b, z, X, etc., as
magnitudes, not mere tensors.

By a vector-scalar is meant ascalar quantity which has position in space;
for example, the physical quantity which Clerk Maxwell calls a mass-vector ;
it is proportional to the mass and to the vector from an origin to the mass.
Such a quantity may be denoted by A *m , where the Italic letter denotes
the scalar or signless quantity, and A denotes the vector from an origin
to the position of the quantity. This idea corresponds to the weighted
point of the Ausdehnungslehre.

By a rotor is meant a localized vector, or a vector-vector; it has magni-
tade, direction and position; for example, a force or a rotational velocity.
It may be denoted by such a symbol as A * ¥ where A denotes the vector
from an origin to the point of application, and F denotes the vector
guantity.

By a versor is meant an amount of arc of a great circle on the sphere; it
has an axis and an amount of angle. A versor,as a whole, may be denoted by
a small black letter as &, and analytically by a4, where a denotes its axis,

-and A the amount of its angle in circular measure. Thus a’é”r is the imag-
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inary 1/ =1 for the axis a ; while a°~ is equivalent to the trigonometri-
cal 4, provided that in this case a denote any axis. I consider that it is
more convenient, and more in harmony with trigonometry and the law of

indices to consider 5, not 1, as the index of a quadrantal versor.
By a quaternion is meant a geometric ratio; it is an ordinary arithmetical

ratio, or tensor, combined with a versor. It is denoted by aa?, where a
denotes the ratfo and a4 the versor. The ratio and axis may be expressed

synthetically as a vector-ratio A, giving the expression A“ for the qua-
ternion. :

By a dyad is meant a physical ratio, or the rate connecting two vector
quantities, and these may involve different physical units. Let 8 denote
the dependent vector, R the independ-
ent; if the former is directly propor- <) 2 4
tional to the latter, the dependence is
expressed by the rate R—18. Pro- A+
fessor Gibbs in his Vector Analysis
bases the treatment of vectors largely
on the conception of a dyad; and the
word, I believe, i8 due to him. The ¢ A/
dyad is in a certain sense a localized
quaternion; it has an axis and an an-
gle, but the angle is localized, that is, it must start from a specific di-
rection. There is also this difference, that the dyad generally has dimen--
sions in its magnitude, while the quaternion quotient has not.

By a matriz is meant the sum of the rates connecting a vector quantity
with the three independent components of another vector quantity. In
its simplest form it is equivalent to a homogeneous strain or linear-vector:
operator. As it is a sum of dyads, Professor Gibbs calls It a dyadic. The
synthetic symbol used to denote a matrix is a Greek capital letter as @,

Fia. 10.

ADDITION AND SUBTRACTION OF VECTORS.

Addition.—By adding two quantities of the same kind of vector quantity
is meant finding their geometric resultant, or what is called in mechanics.
compounding them. This process is called addition, because when the
vectors have a common axis, the process reduces to ordinary algebraic
addition. Suppose two quantities of a vector A and B tohave & common
point of application O (flg. 10), their resultant or sum is the diagonal of
the parallelogram of which A and B are the sides. The principle of the
parallelogram of forces is thus one of the fundamental principles of the
algebra of physics.

Subtraction. — By subtracting one quantity of a vector from another
quantity is meant finding the quantity which added to the former produces
the latter. Let A (fig. 11) be the quantity to be subtracted, and B the
quantity to be subtracted from; the remainder is the vector from the end
of A to the end of B, the cross-diagonal of the parallelogram formed by
A and B, and taken in the direction from A to B.
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To subtract a quantity of a vector is equivalent to reversing the axis and
then adding. 1In the figure (fig. 11) —A is the opposite of A in direction;
and the diagonal from the corner of the parallelogram formed by — A and
B is equal to the cross-diagonal of the
parallelogram formed by A and B. To
define subtraction as addition after
reversal seems to me less accurate A
than to recognize the two processes of 8-
composition and resolution of vector
quantitles. Let & small minus before
the A denote reversal of axis, while < __ A A
a large minus denotes subtraction,
then we have the theorem or principle Fia. 11
B — A = B +-A. Hence we have the rules — A = 4 —A and
+ A = — —A, which mean respectively : to subtract a quantity is equiv-
alent to adding the opposite quantity; and to add a quantity is equivalent
to subtracting the opposite quantity.

Commutative Rule.—When the point of application of a vector is indefl-
nite, the sum of two quantities of it as A and B is the same, whether they
are applied simultaneously, or A first and then'B, or B first and then A.
Hence the commutative rule injadding and subtracting quantities of a vector

A+B=B+A.

- Associative Rule.—It follows from the commutative property that if a
whird quantity Cis to be compounded, it is immaterial whether the sum of
4A and B be added to C, or A be added to the sum of B and C. Hence
the associative rule in adding and subtracting quantities of a vector

(A+B)+C=A+(B+0)
it follows that the rules for the transformation of equations between quan-
tities of a vector by adding or subtracting equal terms on the two sides
are the same as those in ordinary algebra, where the axis of all the terms
is constant.

Given the magnitude and axis of each of the components; to find the mag-
mitude and -axis of the sum.

Given A = aa, and B=053;
then A 4B = aa 4573
1 b sin a8
___ta"' a+bcosap
=1/a" +b* F 2ab cosaf ‘a a

Here Vv a* + b* F 2ab cos af glves the magnitude of the sum, while the
rest of the expression denotes its axis in terms of the given quantities.

In that expression ¢ g denotes the axis, and tan.-‘% the angle

of the versor which changes a into the direction of the sum.

For the generalized addition which applies to quantities of a scalar sit-
uated at different points or to quantities of a vector applied at different
points, see the end of the paper.
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PRODUCT OF TWO VECTORS.
D(ﬂ‘erent Jorms of the product.—Let
A = a,i + a.j + azk

B =0b,% + b,j + b3k
be any two vector quantitles, not necessarily of the same kind. Their
product according to the rules (p. 72), 18
= (a,8 + @j + azk) (b8 + bej + bsk)
= a, 5,18 + agbedi + asbskk + @bk + asbeki + azd ki + a,bsik
+ aybsij + asbuji;
= a,b;, + asbs + @303 + (azd; — asb,) ¢ + (a3d;, —a,b;3) J
+ (a,0g —ash ) k5
= a,b; + @3b; + a3b; +

and

a; Gz Gg
1 b! bl
i jk
Here the vector part is written in the form of a determinant. In the
Cartesian analysis this vector determinant is imperfectly expressed by
means of the composite determinant
@, Gz Qg
555
Let A and B be given in the form aa and bg respectively; then it is ev-
vident( from p. 72) that
a,b, + agde + a;b; = abcos af;
@, G5 @3 | == absinaf * a8
by bs by
i Jjk
where Zﬁ is used to denote the axis which is perpendicular to « and f.
Hence

and

AB =abcosaP * aa+ absinaf * ;9'

= ab (cosaf + sin af} * af).

Notation for the two parts of the product.—In quaternions the negative of
a,b, + azb; + azd; is called the scalar of AB and is denoted by SAB,
while the other term Is called the vector of AB and is denoted by VAB.
The objection to this notation is the assoclation of the negative sign with
the word scalar, and the want of a convenient notation for the magnitude
of the vector part. As they are not linked to anything in ordinary alge-
bra, they make the connection obscure and the transitiog difficult from or-
dinary algebra to the algebra of space.

I have found it convenient to‘use for this purpose the functional ex-
pressions cos and Sin. They possess all the advantage of a logical gener-
alization; for when abstraction is made of the magnitude of the product
they then have their trigonometrical meaning. They make the formulss
much more self-interpreting. Thus, we write

AB = cosAB + Sin AB,
Sin with a capital denoting the complete vector quantity, while sin de-
notes its magnitude irrespective of axis.
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The product of two vectors is not, in general, commutative.—For

AB = a,b, + a3b; + a3, + | a, a; a,
bl b! bz
tjk
and BA =b|al + bgag +b,aa + bl bg bz
a, Gy G,
ik
= a,b, + azb; + azb; —|a, a; a,
b, bs b,
ijk
Hence, it {8 commutative only if Sin AB = 0, that is if §=a. This
condition is satisfled by the quantities of ordinary algebra, but not by
quantities in & plane.

Square of a vector.—Let B = A,

then A* = a,* 4 a,* + a,* = a*.

The square of a vector has no axis, or, what is probably more correct
to say, it has any axis. To find a vector from its square is an entirely In-
determinate problem, when the vector is in space. If the vector is re-
stricted to one straight line, there still is an ambiguity of forwards or
backwards. Hence the double sign for the square root. Again, since the
square of any vector 1s positive, a negative scalar cannot be the square
of a vector. In the algebra of vectors the square root of a negative sca-
lar is not only imaginary, it is impossible. -

Reciprocal of a vector.—By the reciprocal of a vector {8 meant the vec-
tor which combined as a factor with the original vector produces the
product 41. Since .

AB = ab (cosafl + sinaf * aff)
in order that the product may be 1, b must equal a—! and £ be identical
with . Thus, A~l=a"1a. It follows that '

A= A _aitaytak
a® A’ a " Fa," Fa,0

and that A—1B = 2— (co8 af + 8in af  aff)-

The expression Inside the parenthesis depending on the axes is the same
for AB, A-'B, AB-1, A-1B-1.

In quaternions the reciprocal of a vector has the opposite axis to that
of the vector, but this arises from treating a vector as a quadrantal versor.
The reciprocal, as above defined, corresponds to the inverse of a line in

geometry, when the constant quantity is 1. Curvature, denoted by d;‘?’

" is a directed quantity ; its reciprocal, denoted by (‘2—? _l, is the radius of

curvature; they have the same axis, but reciprocal magnitudes.
The reciprocal, as above defined, is a true generalization of the recip-

rocal of algebra; the axis being no longer constant i{s expressed by a.
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It explains why the rule of signs for a quotient is the same as the rule of
signs for a product. For example, -%b —_ —Ta’ which means that it is im-
material to the result whether the minus sign occurs in the numerator or
the denominator. This view of the generalized reciprocal also explains
the change of signs of the trigonometrical functions in the several quad-
rants.

Generalized trigonometrical functions.—The other trigonometrical fanc-
tions may be defined in terms of the generalized cosine and sine. Thus,

SinAB _ (asby—a3b,)i + (a5h, —a,1b3)j + (a:0:— asd) k
Tan AB =", 2R a,0; + agbg + a3d,

cnsAB  cosAB Sin AB
CotAB= g AB ™~ sin'AB

1 1
secAB = o2 g a,b; + azbs + azb;
1 _ SinAB

Cosec AB =573 = 3in’ AB

While Tan AB denotes both the magnitude and the axis, tan AB may be
used to denote the magnitude apart from the

axis. Whatever the dimensions of A and [=3

of B, Tan AB has its simple trigonometri- A

cal meaning, only it has an axis in space.

For

Tab Sin af

Tan AB=_——_"_
abcos af

= Tan af.

Complementary vector.— By the complemen-
tary vector (fig. 12) of A with respect to B,
Grussmann means the vector which has the
same magnitude as A and is drawn perpendicular to A in the plane of

A and B.
Thus | A =a - afa
The product B|A=cosB |A+SinB|A
= sin AB 4 Cos AB
where sin AB =)/(a,b, — a;5,)" + (850, — 6155)" + (4103 — a;0,)*
and Cos AB == (a,b; + @b, +a,b;) af -

F1a. 12.

PRODUCT OF THREE VECTORS.
Different forms of the product.—Let A = a,{+ a.j + a;k,
B = b,i + bej + b3k, and C == ¢,{ 4 c5j + c3k denote any three vectors,
not necessarily of the same kind; by their product is meant the product
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of the product of A and B with C, according to the rules for vectors.
Thus

ABC = (a,b; + a,be 4 a3b;) (184 5§+ c3k)

+ { (asds —agde)i+ (@sbs — 0,032+ (@105 — b))k } (01 + oo+ 0sk)

== (0,0, 4 asdy +a3b;) (cri+coj+csk)+ ||ae a3 | | as a, l a, G
be by | |bs by | | by bzl
21 Ce Cs
4 J k
+|a, a5 a5
by by by
€, C; C3
The second term may be written
a,az||cics| + |asay||cecyi +lasal €3 €
by bg | [T be b3 | |7 % by b, | ik

If we write A = aa, B=>5f8, C=cy, then
ABC = abc (cos af + sin af - af) r
= abec {coa af *y+sin aP sin afy " afy +sin aﬁma?r}
where cos a—ﬁr denotes the cosine between the a.xlsa_ﬁ andy,and ;ﬁr denotes
the axis perpendicular to af and I
The parts of the product may be expressed more synthetically by means
of the generalized cosine and Sine. Thus
ABQC = cos AB * C + Sin (Sin AB)C + cos (8in AB) C;
where the dot is used as a separatrix, to separate the expression for the

cosine from the vector.

Thus, .
cos AB - C =abccosaf * y = a,b, + agbg + asd;;

Sin (Sin AB) C = abc sin af sin afy * afy
= a,b, — G3b, aabl— alb3 aby;— a,b,

(21 Ce C3

i j k
and cos (Sin AB) C = abc 8in aff cos afy = |61 @z G
1Ye b3
€ Cs €3

Axis of the third term.—The first term of the product has the axis p,

and the second term the axis-perpendicular to :ﬁ and y ; the question
arises whether the axls of the third term is implicitly given as the third

mutual perpendicular, namely, y J?}. It can be shown that it is not so;
the term is a scalar for space of three dimensions, but has an axis in space
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of four dimensjons. If the vectors A, B, C are each of one dimension in
length, each of the terms of the product 18 of three dimenslons in length.
The third term involves the three axes of space symmetrically, hence has
no axes. It is a scalar, but not of the same kind as cos AB. This view
of the term becomes clearer, when the product of three line-vectors in
space of four dimensions is considered.

To express the second term as the difference of two terms similar to the first.
—The second term Sin (Sin AB) C expressed in terms of 1, j, k is

{=(Bsos + bses) a1 + (eas + e300 b, }
+ {— (bses + b161) as + (c335 + €1a1) be }.f

+ {— e + bace) a3 + (101 +00) b3 R
By adding the null term (b,c,a, — c;a,b,){ to the ¢ term, we get
—cos BCa,t + cos CAb,i.

By treating similarly the other two components and adding the results,

we obtain
8Sin (Sin AB) C = —cos BC * A + cosCA *B.

Hence,

ABC =cosAB ' C —cosBC * A 4 cos CA * B + cos (Sin AB) C.

The vector which is the sum of all the vector terms may be called the
total vector. .

The product of three vectors is not indifferent as regards associution.—The
expression ABC, without any parenthesis, means that the assoclation of
the factors begins at the left, while A(BC) denotes that the association
begins at the right. By applying the rules of multiplication we get

A(BC) = AcosBC + Sin A (Sin BC) + cos A (8Sin BC).

On comparing these terms with those of ABC, it will be seen, by a
well-known property of the determinant, that the third terms are equal.
Baut

Sin A (8inBC) = — Sin (SinBC)A =cos CA -B —cosAB - C;

Hence the total vector of A(BC) Is

cosBC+A 4 cosCA*B—cosAB - C,
which is equal in magnitude to the total vector of ABC, but does not
have the same direction. The condition which must obtain for the rule of
association to be applied is
cos AB ° C =,cos BO ' A, .
that is, C and A must have the same direction.
When the three vectors are coplanar, the middle vector and the non-associ-
ated vector may be interchanged.—For then
(AB)C=cosAB*C —cosBC" A 4+ cosCA ' B,
and (AC)B=cosAC-B—cosCB'A +cosBA *C.
Hence,
Ad = a’A = Ad';
(AB)A = (AA)B = a'B;
(AB)A-1=(AA-1)B=B.
But (BA)A—! = (BA1)A and is not = B.
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It is evident (fig. 13) that BA A-1is the vector which is the reflection
of Bin A.

Cyclical products.—The three products of A, B, C obtained by taking
the factors in cyclical order, and 8o changing the mode of association are,

ABC =cosAB - C+ {—coaBC -A+cosCA-B} + cos (SinAB) C,
BCA =cos BC- A + {—coaCA'B +cosAB - c} + cos (Sin BC) A,
CAB—cosCA B + {—coaAB -C + cos BC - A} + cos (Sin CA) B.

The last term has the same value in the three products; it expresses the
volume of the parallelopiped formed by the three vectors and may be de-
noted by vol ABC. The sum of the three products is

ABC +BCA + CAB=cosAB'C +cosBC*A+cosCA-B
+ 8 vol ABC. )

By abstracting the common magnitude abc of the total vectors, the fol-

lowing ratio-vectors are obtained :

cosafl * y —cosfy * a+ cosya* B (¢}

. cosfy *a—cosya - f4cosaf "y ©)

cosya * 3 —cosaP * y+ cosfiy - a R ¢))
sAA™ ,

A P &

o 3
B8 ¢

Fi16. 18, ' Fi1a. 14,

0

In quaternions these expressions are obtained from fa~'y, yfla,
ay~18, but here we are led to them directly by varying the product so as
to get the three modes of association. Let a, §, y (fig. 14) be the ex-
tremities of the axes on the unit-sphere. As the vector (1) has a nega-
tive component along a, it will be on the opposite side of the arc Sy from
a; let a’ be its axis. Similarly 5/ denotes the axis of (2) and 7’ that of
@®-

Since (1) 4 (2) =2 cosaf * y and ) + (8) = 2 cos fy * @ and
(8) + (1) =2 cosya * §; the axes ', §', ¢’ are such that the trlangle a’S'y
has its sides bisected by the triangle afSy.

Notation.—The square of each of the vectors (1), (2), (8) is

cos* afl + cos* By + cos® ya — 2cos af cos fy cosya,
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which is the complement to one of vol* afy. In spherical trigonometry
vol afy is denoted by 2n, which is equal to
2{sinuin (8—a) &in (8— b) 8in (8 — c)}l
and the need of a name for the function has been felt. It has been called
by some the ‘‘sine of the trihedral angle” formed by a, 3, y; by others
the  Staudtian” (Casey, Spherical Trigonometry, p. 22). The notation
(@fr) is used by Lagrange in the Mecanique Analytique; in quaternions it
is denoted by — Safy and the total vector by Vafy.
PRODUCT OF FOUR VECTORS.

Different ways of assoctation.—A product of four vectors may be formed
in five different ways, according to the nature of the association, namely,
((AB) C) D, (A (BC)) D, A ((BC) D), A (B (OD)), (AB) (CD),
of which the first and last are the most important. When no parenthesis

is used, the first form is understood.
The first form of the product.—Let A. B and C be expressed as before
in terms of 4, j, k and let D = d,7 4 dyj + dsk. Then
ABCD = (a,b; + ashe + azd;) (1d;, + cods + ¢5dy) (1)

+||az as| |as a1 | |a; as
ol | |o1 . @
5 4 4 ,
+ (a0, + asds + azd;y) |61 ¢e ¢y
a, dg d (€))
i j ok
+|la:as| |63 a,]|a; as
be b3 | | b3 bl’ by be
¢y Ce C3 “)
de d;| |dzdy| |4, de
J ok ki I it j
+ | a1 ag a3 | (@18 + dpj +‘d3k)
by be b, )
€ Cg C3
The term (2) is equal to
— (bie; + bees + bse3) (014 + @edy + @3ds)
+ (c1a1 + ceas + csa5) (b:1d) + bods + bsds),
and the term (4) is equal to
— (b16y + bacs + byc3) | @) as a3 | 4 (c18;1 + €205 + ¢3a,) | by be bs |-
@, d; dg dy d; dg
iJ k it j k

Let A = aa, B = b3, C = ¢y, D = dJ ; then
ABCD = abcd{ cos afcos 3 + sin afsin afy cos ﬁrd

+ cos afsin y3* 73 + sin af sin aBy sin aBy O - aBy 3
+ sin afcos afy * 6}.
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These five terms are equal in order to (1), (2), (8), (4), (5) respectively.
By expanding the second and fourth terms,

ABCD = abcd{coo aficos yd — cos Sy cos ad + cos ya cos 53
+ cos afsinyd * y8 — cos By sin ad * ad + cos ya sin 53 * 53

+sinafcos afy* 3}
The product may be expressed more synthetically by
ABCD = cos AB cos CD -+ cos (Sin (8in AB) C) D + cosAB SinCD
+ 8in{ Sin (SinAB) C}D + cos (§inAB) C - D.
The symmetrical product. — By the symmetrical product is meant
(AB) (CD). _
Since AB = ab (cos af + sinaf * aB)
and  CD = cd (cos 73 + sin yd * 3)
(AB) (CD) = abcd{coc aBcosyd + cos afsinyd * y8 + cos yd sin af * af

+ sin afd sinyd oos@ﬁ-}-ain af sinyd dn&;r_é . ;/5)7)} '

This differs essentially from the product of two quaternions, for in it
the last two terms are negative. How then can it satisfy the law of the
norms? By considering the five terms to be Independent of one another.

COMPOUND AXES.

By an axis of the first degree is meant the direction of a line; 1t is de-
noted by an elementary symbol such as a.

By an axis of the second degree 18 meant the product of two elementary
axes, denoted in general by af.

Now,

af = cos af 4 sin af * af;

hence, a® = 4 and when # Is perpendicular to a, the axis reduces to aﬁ. .
Also fa = — aff.

By an axis of the third degree is meant the product of three elementary
axes, denoted in general by afy. "We have seen that

afy =cosaf *y —cos fy* a + cosya* ﬁ+ltnaﬁcos<;,-37 . a_ﬁ;,

where a_ﬂr denotes the axis of the third term.

Let y = a; then the axis reduces to afa, that is 3.

Let y = f; then the axis reduces to aff3, which Is equal to

. 2cosaf* f—a.

Hence, If a and f are at right angles, a8 reduces to — a.

If a, S and 7 are mutually rectangular, the general axis afy reduces to
a-ﬁ_r, which therefore is an axis in a space of four dimensions. Insuch a
space, volume has an axis. It is such that

By = fra = 7aF = — 7 m — Py m — i,
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The rule of signs for a determinant of the third order is the rule for the
direction along this axis. In a space of three dimensions when a, 8, y
are mutually re'cta.ngular aTr is the only extraspatial axis, and may be de-
noted in a certain sense by 1; and a_ﬂ is equivalent to the complementary
axis y. Thus, {j = k Introduces the condition of three dimensions.
By an axis of the fourth degree Is meant the product of four elementary
axes; it is denoted in general by afyd, and we have shown that .
aflyd = cos afi cos y3 — cos fy cos ad - cos ya cos 3
+ coaaﬁainrt)'r—a— co8 Py cos ud * ad + cos ya sin 56 * )
+ sin af cos a?r . Wt).
If a, 8 and y are mutually rectangular, the axis reduces to @ s, If
[ — a‘, the axis has the same direction as Er, but the sign remains to be
determined. As in space of three dimensions :é; —aand ;ﬂ;—' =1, the
sign is 4. Hence, afya = E): in general. Let & — f; then since
afy = — fay, it follows that afy f.= — ay. Similarly, afy y = af.
If, in addition & is at right angles to a, 8 and y, we have a new axis
W which s transformed according to the rules for a determinant of

the fourth order, namely, afidy — — fyda = ydafi = — dafiy, etc.

The following table contains the different types of axes for the first four
degrees, with their reduced equivalents. It is supposed that i, j, k, u are
matually rectangular.

DEGREE. TYPE. GENRRAL REDUCED 'SEACE OF THRER
DIMENSIONS.
First. i
8econd. f + 4+
¥ k
Third, [ i
¥ J J
LAl J
W - kN
ik +
Fourth. [ + +
45 L7} k
¥t -4 —k
% + +
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DEGRES TYPE. GENERAL REDUCED %ﬁggﬁ“gg_ﬁgég
DIMENSIONS.
Fourth,

35k gk

7144 —df —_k

117 +

ik Jk i

s - -

4ij -4 —k

ik -tk j

ki Jk [

ki —ik j

kk '] k

Ylheu Non-existent.

These principles suffice to reduce an axis of any degree.
General product of two vectors.—Let
R = za 4 yB + zr + wd + ete.
R =2'a+y'f+ 2y + w'd + etc.;
then
RR' = Jza’ + 5 (2y' + yz') cosaf + % (xy' — yx') sinaf * af.

Thus,

cosRR! = gz + Z(xy' + yx') cosaf

and Sin RR! = X(zy' — yx') sin af * ;ﬁ
In a space of four dimensions a, B, y,  may be independent; and
cos RR/

po expresses the cosine of the angle between the vectors, and
.

’
Sin If'R expresses the directed sine. In a space of three dimensions,
-

T
these expressions still have the same meaning, although only three of the
axes can be independent. In a space of two dimensions the component
areas all have the same direction but may differ in sign. For three com-
ponents,

SinRR' = |2 y z
2! yl 2!
sin fy sinya sin af
where the sines are algebraic quantities, that is, have a common directior
but may be positive or negative. In a space of one dimension

RR' = oz + Z(xy' + ya!)
which agrees with ordiuary algebra. Whatever the space,
R? = 2a? 4 23xy cos afi.
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Product of three vectors in space of four dimensions.—Let
A =a i+ aj+ ask+ au
B =204 bsj+ bk + du
C=cit 4 coj+ c3k +cu. *
Then ABC = Ji3 + Zi%j + Jiji + Ziij + Sijk.
2i% = a,b,6,i + agbycof + asbycsk + aib ooy
2% = (agbs + a3b; + asd,) cii + (asds + aby + a,b1) cof.
+ (@idby + a1b; + ash,) sk + (a:0, + agd: + a30;) c .
Ziji = (ay¢y + ascy + a4c,) bif + (ases + aeq + a16,) byj
+ (aici + @161 + asce) bsk + (@161 + asce +ayc5) bou.
Zifj = — (bacs + byes + becy) a1t — (bacs + becq + bicy) @y
— (beoa + biey + bye:) ask — (bic, + by6s + bs63) a,u.

Tijk = | @y ay @® | ijk + | @ 205 a, | jhu + | a3 a, @, | kui 4| aq a, a; | uff
b, bs by by by b, by by by b, b by
€1 Cg Cg Ce C3 C4 C3 C4 C Ce C; C;
=|a, a Qa3 G, =la;, a; a3 a,l.
b, by by b, b, bg by b,
C; € C3 Cq C C; Cy C,
glu kui uij Gk —ij—=k u
Thas, in a space of three dimensions | @, a; a3 | Is a trueimaginary; its
b, b by
€ Cg C3

axis being the fourth axis in a space of four dimensions.

Product of four vectors in space of four dimensions.—By means of the
types, given above, the complete product may be formed. In space of
three dimensions all the types exist excepting the last. It has commonly
been supposed that the product of four lines is impossible. For inustance,
De Morgan (Double Algebra, p. 107) says that ABCD is unintelligible,
space not having four dimensions; and Gregory, in his paper on the ¢ Ap-
plication of Algebraical Symbols to Geometry,” says, ‘“If we combine
more symbols than three, we find no geometrical interpretation for the re-
sult. In fact, it may be looked on as an impossible geometrical operation;
just a8 1/—1 is an impossible arithmetical one.”

QUATERNIONS.

Definition.—By a quaternion proper is meant an arithmetical ratio com-
bined with an amount of turning. It con-
tains three elements: a ratio, an axis and &
an amount of angle. Let & denote a qua- B
ternion, a its ratlo, a its axis and A the (S

amount of angle ; then g = aa‘. It is called

a quaternion, because a requires two num-
bers to specify it, while @ and A each re-

quires one; in all, four numbers. The «
ratlo of two vectors is a more determinate A
quantity ; it may involve a physical ratio, Fi1a. 15.

and the angle is fixed (fig. 15). If A and B are line-vectors, they deflne
aquaternion, provided they are free to rotate round the axis ;79'.
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Cumponents of a quaternion. — A quaternion may be expressed as the
sum of two components, one of which has an indefinite axis, and the other

the same axis as the‘ quaternion. Consider the quatérnlon aad, If Ais
less than a quadrant
-
aa4 = a (cos A* a® + sin 4 * a?)
If A 18 between one and two quadrants
k.4
aa4 = q (cos A * a* + sin A * o¥)
If A is between two and three quadrants
8x
aad =a (cosAd- a” +sind- a?)
If A is between three and four quadrants
3w
aa? =a (cos A°a® 4 sin 4 * a T)
and so on, for any amount of angle. Here cos 4 and sin 4 are looked

upon as signless ratios. If the number of half revolutions is thrown into
the ratios cos A and sin A, making thein algebraic ratios, then, when A is

less than a revolution
”
aat = a (cos A+sin 4 * a¥)

w
and generally aa®™ ¥4 0 qa®™ (cos A + sin A + ag)
‘When the quaternions are'all In one plane, a is constant. and need not
be expressed. The quaternion takes the form of the complex ratio

a-A=a (cosA+sind-3)
the angle § being expressed by 1/ —I.

If further, the quaternions are restricted to one line, the angle A can
only beOorzn;anda*0=a, a* 7 =—a.

The above equations are homogeneous; a quaternion Is equated to the
sum of two quaternions, the only peculiarity being that the axis of one of
the components may be any axis.

SUM OF TWO QUATERNIONS.

Let & = a a4 and b =b 35 be the two quaternions.

"
Since 8 =a (cosd+sind-a?),
b = b (cos B + #in B- 57),
” ”
8+b=(acosd+bcos B) + (asin A aZ 4 bsinB* %)

= (acosd+bcosB) + (asind*a-+ batnB'ﬁ);

where

r=1/a"+b* + 2ab (cos 4 cos B+ sinA sin B cosa f)
asinA*a+tbsinB*f
= p

_yaco8d + bcos B
and 0 == cos™! —t—-—— .
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”
If a is given in the form ¢, + Ag’ and b in the form b, + B?; then

”
a+b=a,+b + (A+B)?
Here A and B denote vectors of zero dimensions.

It 8= a, + (@i + a0 + a:)F
b = by + (buf + bej + B)F
then &+b=ay,+b,+ {(a+0i+ (@ +bj+ (as + )k }"

This is the addition of complex numbers not confined to one plane.

PRODUCT OF TWO QUATERNIONS.

By the product of two quaternions is meant the product of the tensors
combined with the sum of the versors. The product Is a qdantity of the
same kind as either factor; it is the generalization for space of the prod-
uct of ratios.

Let the two quaternions be

8 = a, + (a8 + agj + a,0)F

m
b =by + (b:i + bs2j +b3k)Z,
then by the rules for versors (p. 75) ‘
8b = agbo — (a:b1 + azbs + a3b5)

”
+ { ao (b8 4 bej + b3k) + by (a1t + asj + azk) }2'
: — (@3b3 — a3bg)i — (a3b, — a1b;3)j — (@,by — azb))k
Let cos ab denote the cosine of the angle of the product multiplied by
the tensors of & and b, and Sin ab the directed sine of the same angle
multiplied in the same manner; then

cos ab = azby — (a,b; 4 azbs + a3b;)

and Sin ab = @y (b, + baj + bsk) + by (a,8 + agj+ azk) — [a;, a; ay
by by b
it J ok

If the factors are expressed more synthetically by
L3 ™
a=a0+A-2v b=bo+Bgv

™
then ab = a,b, — cos AB + (b,A + @¢,B — Sin AB)Z.
Trigonometrical form of the product.—Let

a=ad?, b=0";
then a=a (cosd +sind * %),
b=1> (cos B+ sin B * 7) ;
and ab = ab {cosA cos B —sin A ainBcoaaﬁ}
”
+ ab {cosBsinA‘a-l-cosAainB'ﬁ—dnAsinBstnaﬂ‘;ﬁ}?
3
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Let @ = b = 1; then (fig. 16)
cos a‘ﬁa = ¢08 A cos B — sin A sin B cos af3,
which is the fundamental proposition in spherical trigonometry; it is the
cosine of the sum of the angles. Also

Sina‘ﬂa = cosBsinA-a - cos Asin B-f — sin A sin B sinaf3 * a8

is the expression for the directed sine of the same sum.
Let 3 coincide with a; we get the fundamental propositions of plane

trigonometry, namely,
cos a‘H'B = c08 A cos B — s8in A sin B,

and StnadtE — (cos B sin A + cos A sin B) * a.
When only one plaune is considered, a may be omitted, and the expres-

sions become
co8 (44 B) = cos A cos B— sin A sin B

8in (A B) = cos B sin A + cos A sin B.

Here we have evidence that the consistent order of the factors in a
quaternion is from left to right; for, when particularized for a plane, we
get the established order in plane trigonometry.

Let A=B=3%;

L w

n
then aa!b,‘?z = — ab (cosaf + sinaf ';/_3!
This is the product of two quadrantal quaternions, which in works on
quaternions is identifled with the product of two
vectors, only the sign of the second term is made

positive. N g’

Second power of a quaternion.—By the second

power of a quaternion is meant the product of

the quaternion by itself. From the general prod. R }
uct it follows that aad4 gad = q2424, The yv &
ratio is raised to the second power, the axis a-?

remains the same, the angle is doubled. This
is not a square in the proper sense of the word.

Reciprocal of a quaternion.—The quaternivn b
is the reciprocal of &, ifab = 1. Hence its ratio
must be the reciprocal of the ratio of a, its
axis opposite but its angle equal. Let it be de-
noted by a~!; then Fia. 16.

al=1 {cosA +sind (_a)5§

1 ”w
=2 {coaA—sinAa"’}

The reciprocal of the versor a* is the versor (— az)‘1 ora 4.
Since el ta4=2 cos A,

— L
and at—a A=23inA'a7;
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by taking the second power of the former
a4 +2 4 a M = teos®A

that is c082A + 1 = 2cos*4;

and by taking the second power of the latter
a9 4 a M — _4sintA.

that is c08 24A—1 = —23sin%A.

PRODUCT OF THREE QUATERNIONS.

As the product of two quaternions is a quaternion, the product of that
product with a third quaternion is found by the same rules as before.

Leta—a, +AZ, b=b,+B?, C=c,+C2

”
Now, 8ab =a.b, —co8 AB + (b,A + ¢,B — SinAB)Z;
and by taking the several products of these terms with those of ¢, we ob-
tain .

. abe = a,byco — a, cos BC — b, cos AC — ¢, cos AB +- cos (Sin AB) C
L4
+ fbeco A +coa, B+ aghy,C—cosAB*C —a,SinBC Z
' — by Sin AC — ¢, Sin AB + Sin (Sin AB) C
As this is Itself a quaternion, the former term may be denoted by

cosabe, and the latter by Sin abe. The latter may be written in the more
symmetrical form

boCo A + coao B 4+ a0y C — cosBC - A+ cosCA-B—cosAB :C
— a, Sin BC + b, SinCA — ¢, Sin AB.

Let & = aa4, b=>b38, ¢ =c".
the above expressions become
cos@be = abe [ cos A cos Bcos C— cos Asin Bsin Ccos By
4 — cos Bsin Csin A cosya— cosCsin A sin Ccosaf
-+ sin A sin B sin Csin af3 cos (-A,—'?r
and
Sinabe = abc (cos Bcos Csin A+ a + cos Ccos AsinB* )
+cos AcosBsin C* y
—sin A sin Bsin C (cos By . a —cosya * 8 + cosaf * )
— cos A sin B sin C 8infy * ,Tr
+-cos B 8in C sin A sinya * ya

| — cos C sin A sin B sinaf} < ap

As all the terms are evidently symmetrical with respect to 3, with the
exception of the fifth, it follows that (ab)e = a(be) provided

sinaf ooaa_/?r is equal to sin Sy cos afr;

but this is a known truth. Hence in this species of multiplication the
mode of assoclation of the factors is indifferent.
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When a, b and ¢ are coplanar, a = f = y; and
A+B+C . . N
cosa = co8 A cos B cos C — cos A sin B sin C — cos B sin C'sin A

— co08 C 8in A 8in B,
and

sinaA+B+C’= cos B cos C sin A + cos C cos A sin B + cos A cos B sin C

— sin A sin B sin C,
which are identical with the formute in plane trigonometry.
If further A = B= C,

a4 = cos® A— 3cos Asin® A +{8cos’A sinA—sin’A}ag'

Let A = B=C=7%; then

ﬂ’ﬂ' ” . ;
a?3r% _ sinaf cos afy+ {—-coa[:’r' a+cosya*f —cosaf r}

Finite rotation.—The effect of a finite rotation on a line is in general not
an algebraic product. Let a be the axis and 6 the amount of the rotation,

R a line of length r and axis p. Then (fig. 17)
e

-

o

=r—
opo
Fie. 17.
R =r {cosap a+sinapsin6 * ap + sinap cos 6 * a_pa}

‘The effect of a subsequent rotation ﬂ‘t' is got by applying the same rule
to each of the components of R inits new position.
In the expression for the quaternion a435,C, let a4 = y—C; it will be
found on making the reductions that
y—CﬁBrC = cos B
+ sin B{cos’ C-p—sin*Csinyf . 7By + sin? C cosyf * r}
2sin Ccos O sinyf * yf;
= cos B
+ sinB {cos yB v +2sin C cos Csin y3 * yf } '
+ (cos® C—sin* C) sinyf ° 787
= (2B) 2.
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Thus the effect of y~C ( ) y¢ upon the quaternion 38 isto rotateits
axis by an angle of 2C round y. Hence the effect of a rotation a? upon
any line rpis

Py 6 = 0
ra p=ra 2pZa2,

The effect of a subsequent rotation 3¢ is
6 0 _¢é _o w0 g
Bap=F 7 (a 3pTa®)f
_g 6 x 64
= (F72a77) o7 (%)
for the multiplication may be associated In any manner. Now f 2a 2

¢ o ¢
is the reciprocal of a Z, ﬁ%; hence the axis of the rotation a @ 1is the

o -
same as that of the versor aZ/5% and its angle Is double that of the ver-

8sor.
DE MOIVRE’S THEOREM.

It has been shown that a“aB = a‘4+8; it follows that n being any
number whole or fractional,
()" = ™
Hence by decomposing into component quaternions,

” T n
cos n6 + sin nb * aZ = (cos 0 + sin 0 * a%)

—3
—cos 0 — 9—(;'.;21) cos" " " 0 sin%0 +

”
n—1 - - -3 3 z
+{ncog 0“"0_"("—1.1)2(.”—32')'608“ g sin 0+ }a

The component cos 26 having an indeflnite axis is equal to the sum of
the components which have an indefinite axis and sin n6 which has a defi-
nite axis is equal to the sum of the components having the same definite
axis.

When the value of @ is not restricted to be less than a revolution, let

o® =t

where ¢ is less than a revolution. Then

”
(ao)" — e _ Q. (cos g +sing af")"

The quaternion (aoﬁd’)" may be expanded in a similar manner. For

”
(@’F*)" = (a, + A7)",
where
@y = cos8 0 cos ¢ — sin 0 sin ¢ cos aff
and

A =cospsind a4 cosfsing * §— sin0 sin ¢ sin aff * aff.
But it is not true that
()" ="
for such law of indices assumes that the factors are commutative,
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Expansion of cos™ 0 and sin™ 0 in cosines or sines of multiples of 6.
Since

L

a™ — cos n + sinnf * az

and
—no 7
a ™ — cosnf —sinnd * a°;
4 ”
™ 4 a~™ — 2c0s n0 and a®—a ™ _—2sinnd - a .
Now

(aa + a"’)" - ™ + a—no'_'_ n (a(n-—2)0 +a” (0—2)0) + ete.,
therefore
271 00s™0 — cos nf + n cos (n — 2)0 + ete.
When = is odd,
(ao _ a——o)n — ano — ne __ n (a(n—2)0 _ a—(n— 2)0) + etc.,

therefore
n—1

-
n—1

2
2" sin"0° a = ginnd — nsin(n — 2)0 +
‘When n is even,
(ao _ a-—o)n - arw + a—no —_n (a(n-2)0 + a_(”_z)o)_'_
therefore
" .
2"_1 8in™0 * a2 = cos nd — n cos(n — 2)0 +

QUATERNION EXPONENTIALS.
Expression of a versor as an exponential.

”
The versor a® = cos 6 + sin 6 ¢ az-;
02
but cosf=1—Tg3+T7—
~ - ”
4;2- (O'u.g)‘
=1+ + & 3
95
and 8in0=0—-—-'-§—+.|_5_

therefore sin6 ° ag—ﬂ 47 +(9 a )'+(0 a )“_,_ ;

ﬂ'

therefore a® =140"°a +(o a )a+
z
=eO‘a.
2 5

— . .oz
Similarly « dme—0ra” _efre
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Let n be any even number; then

v [
z P (m)- +(mt)‘ 32 + ete. ;

nw* .
T =1=e" % =140 a —-

(m)' (,.,).
+T7

therefore 1=1—

and 0=-mr-—(m) + ete.

If » is an odd number
=1 (mr)’ +
0=nm— ('I",;)' + etc.

(ﬂ*)‘

— ete.

Legarithm of a quaternion.

" "
The general quaternion is ra® = re’ o7 _ Jogr+0-a¥
Hence log (rd®) = logr+0 - aé.
If the quaternion is givenasa =a+4 b * a’:rr
then log 8 = & log (a® + b*) + tan™" % . a;
Hence ) logl=0 butlog (—1)=mx" ag.

”
The more general formis &= @™ (a4 a%),

and log & = § log (a®* + b*) + (tan“ % + 2"”) * aZ
Quaternion exponential.
Since

o ”
@’ =cos0 4 sinl * a2

m "
a® coao+l¢n0°a2_eco00 sin 0+ a2,

eu
(1 +ecos0 + l2_+) (1+m0 a+""’° . +)
(1+0080+co‘0+) ( —“|n;0 o:n:a_)
+(1+0030+“:’)9+) (siuo—m’o )

z
Let 0=7%; then & =a
1 1
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L]

Let 0=0; then V= e

SCALAR DIFFERENTIATION.

By scalar differentiation is meant differentiation with respect to a vari-
able which has no axis, or the only axis considered; for instance, time,
or length along a curve, or distance along an axis if one axis only is con-
sidered.

Differentiation of a vector.—Consider the radlus-vector ota point, R =rp,
where r denotes the length and p the axis.

The veloclty-vector ls obtained by differ-

entiating rp in the same manner as an ordi-

nary product;

dR
&=t

Here a small Roman d is used to denote
a directed differential. The whole velocity
may be denoted in accordance with the F1a. 18.

fluxional notation by R, the component along the radius vector by r:o and

the component transverse to the radlus-vector by rp' (fig. 18). By dif-
ferentiating each component of the velocity according to the same rule,
we obtain the acceleration-vector

d’R d' d
o = Tptedr d 4, d’p
or ﬁ—rp+2rp+rp

The angular velocity —dT may be analyzed lnto p, where 7‘?— denotes

its ratio magnitude and p its dlrection, which is perpendicnlar to p.
dR dr

Hence T = + r9 —— P
AR m dr dp —
and S =gmpt (2 i ) Ptr g dt G

The direction of the third component # 18 perpendicular to the perpen-
dicular to p; ina plane it is = — p, and then

d’R dr d
7 = ) } 14 + {2 P dt' } P-
The expression for the magnitude of Bis ) 9 and for its axis & s thus
dR _ ds dR

= at s and by applying the rule for dm‘erentlating a vector,

d’R a3 dR 3 dzR

@ =wat (@)
the former component expressing the a.ccelerauon along the tangent, and
the latter that along the radius of curvature.
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Let C=u &+ v %+ w- { where each of the six elements may vary,
then
do __ du dv dw
w=a ftaoatar-e

. ag . dn ., A
tugrto gt 5

If&,7 and { are constant, the second expression vanishes. The sim-
plest case is
R=xi+4y + zk

d
giving R _dz ;4 Wy,

dt
and for the same reason, it t‘ollows that

da:R
a6 T an dt’ + +

Products.—A velocity-vector, or an acceleration-vector is combined the
same as a simple vector. For example,

=@t (GFitaitgk)
__ . dz dy dz
=sgtyv g tegt|n b i

dz dy dz
@ e at
ik
drR _ dr dp
Also Bm——rp(ﬁp+r7‘_)
dr
=ratred,
thus cosR——rg" andStnB%=r’p%‘1
Similarly R“%=+%+ P

a:R a* d
Ao R =rp (47:—»'"*' dr % 4,4 )
dir dr
W+2 Tt'P_dT"-r’p—dﬂ ;

thus cosR 9 =" 7”7 + r* cos (ﬂ at

and ‘ngTn—= or dt L dp +rt Sin (P dt!)

Differentiation of a product of two vectors.—Let B = b and C = cy be
any two vectors; it is required to differentiate their product BC with
Tespect to time or any scalar variable. The rule is to apply the rule of
differentiation (p. 104) to each factor of the product, supposing the other
constant, and preserving the order of the factors. This is a generaliza-
tion of the rule for the ordinary algebraic product. Thus

4 B0 (BC) Cc+ B

( B+b2 )cr+bﬁ GFr+e )

= (0%’-+b%)ﬂr+ b (—;‘%r+ﬁ:—,’
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aB: dd dB
Hence — - —2bW=2M’BT
Let B=ai+4bj+ ck, C = ui+ vj+4 wk;
then BC=au+bw+cw+]a b ¢
u v |,
ik
d4(BOC) da db
and o ='?dT"+ a5 v+—w
du dv dw
togg oG teg
+| o @ d o 41a b e
dat dt dt du dv dw
v w dat dt dt
i j ok i j ok
dB: da db de
Hence ——=2( a— +b—5 +ec—

Differentiation of a product of three vectors.—Let B, C, D be any three
vectors, B and C having elements as before, and D = dd =fi + gj + hk.

Then  4ETD)_ 43 cp4+B-S7 D+BC--

where, not only must the order of the ractors, but also thelr mode of asso-
ciation be preserved.

Let C =38, then 38D _ 5 & p 429D

If farther D = B,'then S2° — o5t 2 g dB

Differentiation of a power of a vector.—It is evident that

g}?—' =2cos(B%)

dBs dB dB
3 = 2 cos (B I)B"‘B,W

are true generalizations of the differentiation which occurs in ordinary al-
gebra, For if the quantity B ha.s a constant axis, as is supposed in that

algebra, 7‘— > becomes 2B 48 dz , and d, becomes 3B! dz - According to the

principles of quaternions a minus sign would be introduced.
It may be shown generally that when = is even,

n n—1
dB = ndb db,

@ at’ -

and

and when % 18 odd,
dB "—2 n—14B
=@n—n> ZFB+YTR

This holds also, when 7 is negative; for instance, n = —1. For by di-
rect differentiation

db

-1 9 —
dB BY\ _ dt 1 dB
P:73 (b'A B+ b dt !

|
&la

=——
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which agrees with the formula. The simplicity of this process may be
compared with that given in Tait’s Treatise on Quaternions, p. 97, where a
vector is treated as a quadrantal versor.

Differentiation of a quaternion.—Let r = r¢o be any quaternion; then

gr _dr o’ prd (9

we have to find how to differentiate the versor ¢’, supposing ¢ to vary
perpendicular to an initial line.

Since
'] L4
¢ =cos0+sin0- ¢Z
a ) a8
a“v =—3sinl zz + {cos0a- ¢+8in0gd%
0+ 7 F
de z da¢?.
=u? +sinb ° 3
Hence

) 04T
F=Fe +r%e T frsing %

By applying the rule found to each of the components ot & 7 We obtain

+
dar { o dr do T
am = dt’ )}¢+ 2dtdt+ dt’}¢
+2 {d, sinl 4 d,cos 0} 7l +rsin0 dta
Since g—‘? —— ¢ where go denotes an axis perpendicular to ¢ ;

as __ a¢ — dfbd«#
am = amoetara?

In the case of polar cosrdinates ¢ is always perpendicular to a constant
axis a; then
— J— - '3‘ d¢
@ = ga and g =—¢ and g =ar
Hence the componeuts for the acceleration fn terms of polar coordinates

dﬂr—r (d,)' —rgint 0 (dd,) }?
dr &8 o+3
+{2d;d¢+rd¢—rsin0wt 0¢9}9’
”
+ {2:—::&; 0 ‘;—‘f+2rwsog:%+rstn0%t}¢;1z‘

MATRICES.

Dyad.—In order to specify a homogeneous strain the conception of the
dyad is required. It specifies the manner in which all lines originally
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parallel to a given direction are changed in magnitude and direction. If
a line A (fig. 19) is changed into B, and all lines having the axis a are
changed homogeneously, such change is expressed by the dyad A—'B,
that is, %aﬁ. Thus, a dyad expresses an arithmetical ratio combined
with a change of axis. If such strain is followed by another specified by
BC =20
the result of the two Is found by taking the product of the dyads which
means maultiplying the ratios and adding the angles. Thus,
b c
(A-'B) (B-1C) = 7 5 (aB) (Br) =5 or-

In ordinary algebra it is indifferent whether a ratio is written a—1b or

ba—l, because no angle is involved. But in specifying a physical ratio,

c
7 |
, . = .|
o
(. A
‘F1G. 19. Fia. 20.

where an angle is involved, it is convenient to choose an order; and the
proper order appears to be that which specifies the order of the change in
the order of writing.

The conjugate dyad is

BA™ = 2 fa;
and the reciprocal dyad is
B-1A = 5 fa,
for
(B-1A) (A-B) = § o (fa) (af) = 1.
If a third change follows specified by
C-'D = £ 1,

then the result of the three is
b c d
(A7B) (B-IC) (C-'D) = 5 5 (aB) (fr) rd).
2 4.
a
The difference between the multiplication of dyads and of quaternions
is that in the former the angles are localized and each succeeding one

starts from the end of the preceding (fig. 20). The multiplication of qua-
ternions is indifferent with respect to association, it follows a fortiori that
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the multiplication of dyads is also indifferent. This means that we get
the same angle ad whether we first take the sum of af and Sy which is
ay and then the sum of ay and yd; or whether we first take the sum of

By and yd which is 40 and then the sum of af and 35. In a product of
three vectors, the two non-associated vec-
tors form a dyad; that is, in (AB)C, the
relation of B to C 18 b¢ fy.

Notation for a matriz.—A homogeneous
strain may be considered as a physical
quantity, and as such denoted by a single
symbol @. It is equal to the sum of three
dyads, one for each independent axis of
space; and is expressed quite generally
by the sum of the dyads for each of three
mutually rectangular axes. In the figure
(fig. 21) the dyad for the axis k is repre-
sented. An axis k receives an lncremenlz i
in its own direction, in the direction of J
and in the direction of k.

Such sum of three dyads is equivalent to the linear-vector operator of
Hamilton, or the matrix of algebra. The notation used by Cayley in his
Memoir on Matrices is )

(—.r, Y, Z) = (al by cl) (z’ Y, Z),'
ag b, ¢,
ag b3 ¢3

F1a. 21.

which represents the coéficients of a linear transformation separated from
the variables, but does not express explicitly the ratfos.
As a sum of three mutually rectangular dyads

?=1DTA+ () B+ (1)1 C;
= (1)1 (a,1 + a.j + a3k)
+ (1)1 (bi 4 bej + byk)
+ (1)~ (¢18) + 2 + ¢3k) ;
= a1 + a,ij + ajik
+ byji + b.jj + bsjk
+ ¢ ki + cokj + c kk.

In the last expression, where the ratios are expressed, not merely indi-
cated, @, means the former a, divided by 1, and therefore is a ratio not
a length; and i denotes the angle between the axis 7 and ¢, which is
nought, while i denotes that between ¢ and j. Hence, in such an expres-
sion as

9 =iA +jB + kC

A, B and C are ratio-vectors.
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Conjugate matriz.—The conjugate of &, denoted by ¢/ is formed by tak-
ing the conjugate of each of the elementary ratios; thus,
@ = a,it + b,7j + ¢, ik
+ a.ii + bajj + cajk
+ aski + bykj + c,kk;
=1 (@t + b j+ ¢ k)
+j (@i + bej + c2k)
+ & (asi + baj + €sk).
Ratio for any axis.—The ratio for any axis p may be denoted by prp’
where r denotes the ratio and p’ the new axis. It is deduced from the
three rectangular ratios in the following manner:

prp’ =p {cos pi (@i + a.j+ ask) + cospj (byi + b.j + bsk)

+ cos pk (¢t + ¢3j + c3k) }
Hence any line Bp becomes
. rRp' = R (co8 pi* A+ cos pj- B +cos pk - C).
Product of line and matriz.—Let
R=uxi+y+ 2k
denote any line; then
R4 =R (iA +jB + kC)
= (xi +yj + zk) (A +jB + kC)
The complete product is the sum of nine partial products of three vec-
tors; the sum of the cos afi * y terms gives the ordinary prodact, while
the sum of the (Sin af) y terms forms a complementary product. Thus,

RO)=zA+yB+2C+ |z y 2
it j ok
ABC

Here we have a product consisting of two parts analogous to the two
parts of the product of two vectors, the former may be denoted by

cos R, the latter by Sin RO,

Product of two matrices.
Let O =1i(a,i+ aj+ ask)
+j (byi+ baj+ bsk)
+ k(i + coj 43k )
and U=1i(d i+ doj+ dsk)
+j(ei+ej+esk)
4k (fri+ S+ fak)
The strain which is the resultant of @ and ¥ appliedin the order named
is found by compounding the elementary ratios; for example

(ayii) (@y1) = aydyii 5 (a1it) (324 ) = e1d, 3.
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Hence
0¥ =i {(ad: + ases + a,1)i + (a1dy + ae, + i) 5
+(@1d, + aves + aufilk }
+5 { (0rditbaey + 0afi)t + (Dids + ety + bafi) 5
+ (bids + e + 0 k }
+x { (c1dy +coey Fcafy )i+ (c1dy + 260 Fcafp ) j
+ (e1ds + sty Foufs )V K }
Hence if ¢ =iA+;ijB+kC,
and ¥ =iA'4+jB' +%xC';
oY = i{coaAA’i+ cos AB'j 4 cos AC'k }
+j{cosBA' i+ cosBB'j+ cos BC'k }

+Ic{cosCA’i + cosCB'j 4 cosCC'k }

Here the procduct of the two strains is formed from the nature of a strain
apart from the effect upon a given line. As the product of three dyads is
assoclative, this product of three strains is also associative.

Complete product of two matrices.—The ordinary product of @ ¥ contains
only twenty-seven terms, the complete product ought to contain eighty-
one. The other fifty-four terms form another term, which is expressed
by

i{ Sin AA'i+ Sin AB'j + Sin AC'k }
+j{ Sin BA'i + Sin BB'j + SinBC'k }
+Ic{ Sin CA'i + Sin CB'j + Sin CC'k }

Here we have a product of four axes in which the association begins in
the middle.

Product of a matrix and its conjugate.—For the conjugate matrix A’ — A,
B'=B,C'=C.

Hence & 9/ _-_-t{ A'i 4 cos ABj+ cos ACk }
+j{ cos ABi + B'j + cos BC k }

+ k{ cos AC1i 4 cosBCj+ C*k }
and the complementary product is
i{ 0i + Sin ABj + SinACk }

+5{ SmBA i+ 0j+ SinBCE }
+%{ SinCA{+ SinCBj+ 0k}
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Reciprocal of @ matriz.—The reciprocal of @ is denoted by o ; it is such

that
O =114+ 1jj + 1 kk.
By solving the equations cos AA' =1, cos BA' = 0, cos CA' = 0;

we find
Sin BO
Al = vol ABC
Hence
o = iSinBO 4 jSinCA + kSinAB
rol ABC

Second power of @ matriz.—If ¥ = @ ; then the second power of the or-
dinary product is

92 = i{ (a,2 Fasb; + a3¢,)i + (a,a; + azbs + a3c5)f
(@105 + asb; + asc3) B}
+3{ @0 by A+ bee)i + (010 +5,7 + )
+ (5185 + by + bsca)k }
+ {101 + exbs + ea6)i + (0102 F e2be + 040,)]
+ (615 + osbs + 6" k }

Components of a matriz.— A matrix may be resolved into the sum of
three components, as
O =ati+ b+ cikk

+4 { @y — ) o+ (o —ag)ki + (as —b1) i3 |
+4 {Gs ot + e+ a) i+ (@ +0)0

of which the first component expresses elongation, the second rotation,
and the third shear.

Invariant functions of a matriz.—

Let @ =i (a,i+ axj+ azk) (1)
5 i b bak) @)
+ & (18 + c2f + c3k) 3

By combining the terms of the three ratios according to the rules of
vector multiplication we obtain
a+ak—asj
— bk + by + byt
¢1j —csit ey
and by addition we obtain the scalar and vector invariants

a; + b+ ¢ + (b3 — €2)i + (61 — a3)i + (a; — b))k
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By combining (1) and (2) we form the ratio for the change of a rectangle
having the axes ¢ and j;

@) {axbx 4 asd; + azd; + (a0 — a.20,)i + a2bs — ajby)jk
+ (asb, — a,b5) ki }
and by combining (2) with (8) and (8) with (1) and adding we obtain a
scalar and two vectors
@by — agb, + byey — byes +c4a, — €10y
(b16; + bece + b3¢s)i 4 (€101 4 c2ae + €3a3)f +(a1b, + agb; + a3by)k;
{ (6185 — €4a,) — (a3h; —a,1b;) }i +{ (aghs — aybe) — (byce — bee,) }j

+ { (bscy — byc3) — (C2a3 — €483) }ki

By combining (1), (2) and (8) together we get the ratio for the change
of arectangular parallelopiped having the axes 1, j, k. The scalar which
is the same for the three modes of association is the determinant
a, ag Gg
b, be b3
C; C C3

In this way the physical meaning is evident of the three scalars which
occur in the cubic equation.

VECTOR DIFFERKNTIATION.

Of a scalar quantity.—Let u denote any scalar quantity, a function of
%, ¥, z, then (dzi)~! duy denotes its growth per unit of distance in the
direction i and (dyj)—! duy the same for the direction j, and (dzk)—! du; the

same for the direction k. The reduced expressions for these rates are

i %' j ;i;. k3%, Thelrsum

expresses the rate of growth ofu in the dlrection of the most rapid growth.
Let v denote that direction and n a distance along it, then

du . du du du
L o) d—y+ki§=“d_u‘

The rate of growth of this quantity per unit of distance in the direction
1 is expressed by

du dan . d
(dz6)~1 d. {-—f-'-;;—‘]-}- lk}
which, when reduced becomes

(da:’ i "*dzdy it za ")
and similarly

: (_du u . d'n
J (d_yda: i+t dyds"‘)

>y du Pu
and k(d?d}i+d7d§"+d7k)‘
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As
i P
drdy ~ dydx
we obtain on multiplying and adding the scalar
dwu , du | diu
i Tt o
Thus,
d . d . d
and u combine the same as if the former were a simple vector, the latter
being a scalar. The single symbol used to denote it is . By treating p
as a quadrantal versor, Hamilton and Tait obtain

Py | du , du
() =— (d—;’+iy—’+$’ .
As p cannot be the axis of a quadrantal version, it is not evident where
the rotation comes in. By the ordinary rules of multiplication we get

Q__ @ d? d?
P =i + W + el
precisely equal to Laplace’s operator.

The change of u for any other direction p is obtained by
d_ded ,dyd  dzd

- wateagtsw

Of a vector quantity.—Let
C = ut+ v + wk
denote any vector quantity; then
F C = (dzi)~! dzC + (dyf)! d,C + (dzk)—! d,C
du dv . dw
=i (Gi+gZi+7k)
. (du dv . , dw
+i(Fi+git+ & k)
du dy w
+k (B i+ 35+ k)
from which scalars and vectors may be formed as on p. 112. By combin-
ing them simply we obtain

po—tiie 4t (-2 i+ (-2 i+ (B-2)k
The scalar

du , dv dw

ztgytas

may be denoted by cos pC, and the vector by SinpC. If

cospC =0,
then C is said to be a solenoidal vector quantity; and if
SinpC =0,

then C is said to be an irrotational vector quantity.
Successive differentiation.—From the principle that

ppw) = o+ on+Tn
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it follows that p (p C) Is not equal to p2C. For
d ]
r(rC) = (il +j ;‘”+k 2) ‘f,';+:j;,+ 2)
d d a dv __d
+z y )+dy d: )+rlz(v u)
dv du d du
+ { dy 717) &z } !
a
+ {3; d—:—'d‘z) da: E;) } Jj
+{z @E—% —1 G @) e
The scalar term vanishes and the term foriis ‘
d d Pu du
@ (E”'*' +dzw) i+ {dxdy dzdz_(a—,;: a?:)} i
d (d d d @
=2z T:"'.T; 3;3)‘ ( “+dy’+1ﬂz)i
Hence
d
p(pC) =2 (dz‘+ayj+ dzk) (dz+dy+ d‘:
— (Gt + o) (w4 v+ k)
The condition for p (pC) being equal to [-*C is p*C = p cos pC. Itis
equal to —p*C if pcospC = 0.

The following is another investigation. As the rules for p are the same
as those for a vector; we form the product

(Gi+gi+ 20 (Eit it Er) (ui+ v+ vk
by finding
28+ Zi (§) + Zi (i) + i @) + Sk
Now
=it i+ oo,
2'(”)—_{(dz'+dy')7+(dy'+%)k+(dz‘ dy’) }
‘2‘(}‘)_(d:cdy+dzdy)"+(dydl+da:dz)k+(dzdz+dydz)i

Zi() = (dzdy dxdz) i+ (dydz +aT)’ + (dzdz + dzdy) k
Hence if we combine all the vectors

P (7C) =— (g5 +ar +ar) (ui+ v+ uwk)

+2(dzi+dy -7+ds k) (d:c +Ty‘+ dz
Examples of vector differentiation.
Let R=rp=2xi+4 yj+ 2k,
then :
MW pr=pve+y@+F=p
(2) pR*=pr=2R
@ pr=wlpr=alp
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This is also true when n is negative, the most important case being

n=—1; t.henV——— P
4) pR=3.
6) pR=p (r*'R)= (prr)R+r'pR =51
(6) When nisodd, pR" = pr" 'R
= (n—1) rw—’ PR+ srn—l =m+2) Pl
(7) p (uC) is not in general = p (Cu)
Forp (uC) = (pu) C+u (pC)
and p (Cu) = (pC) u + C (pu);
but (pu) C is not equal to C (pu), unless C and pu have the same axis

® pr=p(B)=0BLI+R(pI)=2-1-2

(9) p(SinAR)=p(AR) —pcos AR = 2A.

(10) To prove that p (7-}) = 0. Since V% =L,
=25 PG pp=0.

(1) p@PRY=p2R=8"2=6

12) p(p(pR))=5"2-83=380
(18) p*R*=4-5-2"3=120.

GENERALIZED ADDITION.

Signless quantities at different points.— Given a mass m, at A, and m, at
A, ; by adding them is meant add- Q
ing the masses, and finding such a R
position that the mass-vector of the
sum of the masses will be equal to
the sum of the mass-vectors. Let A,_Wl
m times the vector A, be P, and
m, times the vector A; be Q; the
resultant R is the sum of the mass- 0

vectors ; take 8 equal to R divided A.V“. P
by m, + m, (fig. 22). ¥1G. 22.
Hence A,-m, + A, my="0tmle. 4oy,

This is generalized addition; for if we put A; = A,, we get ordinary
addition.

Scalar quantities at different points. — The same principle applies to a
quantity which may be positive or negative; but there is a special case
when the quantities are equal and of opposite sign. Then

cm— e — PA, — mA,
A, 'm—A, e (m—m)
=m (A, —A,)
Their sum is then a moment, as in the case of a magnet.
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Parallel vector quantities at different points.—If the vector quantities have
the same axis, they are added in the same manner as signless quantities;
hence (fig. 28).

A, B, +A, B, =2pfph -, + 008
If they have opposite axes, they are added like scalar quantities. Sup-

pose B, = b, and B; = b; (—§8) ; then
A, B, + A, B =b'—::%gfﬁ' (b1 —by) B
If further b, = b,, then their sum is

= A.)B — AgB = (A.; -— Ag) B.= cos (A.; —AQ)B +S‘n (Al —A;)B.
The latter term is the moment of a couple.

B+8,

¥1G. 28. FIG. 24.

Vector quantities at different points.—The following is the most general
form of the principle that a quantity is not changed by the simultaneous
addition and subtraction of the same quantity (fig. 24).

A.l 'B| '-—_-O'B] —O'Bl +Al 'Bl
=0"- Bl + A]B]
Hence
A, B, +5‘: *B;=0°(B, +B;)+ A,B, + A;B;
=0 (B, + B;) + cos A, B, + cos A;B,
. + Sin AlB[ + Sin A.ng
And generally A+ B=0°YB +4 YSinAB + Ycos AB.
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OXN THE IMAGINARY OF ALGEBRA. By Prof. A. MacrArLAXNE, Unlversity
of Texas, Austin, Texas.
The student, i he rhould hereafter inquire into the assertions of different writers,

who contend for what each of them considers as the explanation of y=  will do well
to substitute the indefinite article.”— DE MORGAN, Double Algebra, p. 9¢.

‘WITH respect to the theory and use of 3/ —1 analysts may be divided
into three classes: first, those who have considered it as undefined and
uninterpreted, and consequently make use of it only in a tentative manner;
second, those who have considered it as undefinable and uninterpretable,
and build upon this supposed fact a special theory of reasoning; third,
those who, viewing it as capable of definitlon, have sought for the defi-
nition in the ideas of geometry.

Of the first class we have an example in the view laid down by the
astronomer Airy (Cambridge Phtlosophical Transactions, vol. x, p. 827).
«1 have not the smallest confidence in any result which is essentlally ob-
tained by the use of imaginary symbols. I am very glad to use them as
conveniently indicating a conclusion which it may afterwards be possible
to obtain by strictly logical methods; but untll these logical methods
ghall have been discovered, I regard the result as requiring further dem-
onstration.” This view admits that conclusions are indicated by methods
which are not strictly logical; that a method which is not strictly logical
can Indicate and always can indicate a conclusion is a paradox which it is
very desirable to explain.

Of the second class we have an examplein the mathematician and logic-
fan, Boole. Instead of conforming analysis to ordinary reasoning, he
endeavors to conform reasoning to analysis by introducing a transcend-
ental species of logic. In his Laws of Thought, p. 88, he lays down the
following ag an axiomatic principle in reasoning: The process of solu-

. tion or demonstration may be conducted throughout in obedience to cer-

tain formal laws of combination of the symbols, without regard to the
question of the interpretability of the intermediate results, provided the
final result be interpretable. Our knowledge of the foregoing principle is
based upon the actual ocourrence of an instance, that instance being the
imaginary of algebra. In support of this view he says: ¢ A single example
of reasoning in which symbols are employed in obedience to laws founded
upon their interpretation, but without any sustained reference to that in-
terpretation, the chainof demonstration conducting us through intermedi-

(8%)
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ate steps which are not interpretable to a final result which is interpretable,
seems not only to establish the validity of the particular application, but
to make known to us the general law manifested therein. No accumulation
of instances can properly add weight to such evidence. The employment of
the uninterpretable symbol }/ 1, in the intermediate processes of trigo-
nometry, furnishes an illustration of what has been said. I apprehend
that there is no mode of explaining that application which does not cov-
ertly assume the very principle in question. But that principle, though .
not, as I conceive, warranted by formal reasoning based upon other
grounds, scems to deserve a place among those axiomatic truths, which
constitute, in some sense, the foundation of the possibility of general
knowledge, and which may properly be regarded as expressions of the
mind's own laws and constitution.”

Inasmuch as the successful use of the undefinedsymbol J/ —1 by analysts
is thus made the basis of a sort of transcendental logic, it is a matter of
interest to investigate whether the intermediate steps in such demonstra-
tions are not uninterpretable but merely uninterpreted. If it can be shown
that some at least of the expressions in which 1/ =1 occurs have a real
geometrical meaning, the argument for a transcendental logic will fail.

The ‘‘principle of the permanence of equivalent forms,” which was
by Peacock made the foundation of the operations and results of algebra,
is scarcely so transcendental, but is certainly a very vague and unsound
principle of generalization. He states it as follows (Symbolical Algebra,
p. 631) : < Whatever algebraical forms are equivalent, when the symbols are
general in form but specific in value, will be equivalent likewise when the sym-
bols are general in value as well as in form. It will follow from this
principle that all the results of arithmetical algebra will be results like-
wise of symbolical algebra, and the discovery of equivalent forms in the
former science possessing the requisite conditions will be not only their
discovery in the latter, but the only authority for their existence; for
there are no definitions of the operations in symbolical algebra by which
such equivalent forms can be detected.”

The principle is applied to indices in the following manner : “‘Observing
that the ludices m and n in the expressions which constitute the equation
a™ X a® = a™1™, though specific in value, are general in form we are
authorized to conclude by the principle of the permanence of equivalent
forms that in symbolical algebra the same expressions continue to be
equivalent to each other for all values of those indices; or, in other words,
that a™ X a® = @™t ™ whatever be the values of m and n.”

The question is: How general may the symbols be made, yet the equa-
tion still retain the same form? This is not & question of nominal defl-
nition and merely symbolical truth, but of real definition and of real
truth; as may be shown by considering the above principle of indices.
For a certain generalized meaning of m and n, Hamilton (Elements of
Quaternions, p. 388) investigates whether or not a™ X a® = a™ 1", and
concludes that it is not true. With him the question is one of material
truth, not of symbolical definition.
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The above principle of generalization may be tested in another way.
If r denote the ordinary algebraic quantity which may be positive or neg-
ative, r- § may represent that quantity when generalized so as to have any
angle 0 with an initial line in & given plane. For this generalized magni-
tude

rgXrlf=r'-0+0;
in words, the length of the product is the product of the lengths, and
the angle of the product is the sum of the angles. Now the principle of.
the permanence of equivalent forms does not help us to generalize this
proposition for space. A plausible hypothesis likely to present itself at
first is : Let ¢ denote the angle between the given plane and a fixed plane, is

(7'0'10) X (rl.olv¢l)___"l.0+0l.¢+¢lg

This is a question not of symbolism, but of truth.

At the time of De Morgan there was no adequate theory of }/—1, as is
evident from the quotation prefixed; nor is there at the present time.

The view at present held about i =}/ —I1 by analysts is thus stated by
Cayley in a paper ‘“On Maultiple Algebra,” printed in the Quarterly Journal
of Mathematics, vol. XXII.

‘We have come to regard @ + bi as an ordinary analytical magnitude,
viz.: In every case an ordinary symbol represents or may represent such
a magnitude, and the magnitude (and as a particular case thereof the
symbol {) is commutable with the extrpordinaries of any system of mul-
tiple algebra; and similarly in analytical geometry without seeking for
any real representation we deal with imaginary points, lines, etc., that is,
with points, lines, etc., depending on parameters of the form a - bi.”

I propose to review critically the different explanations or elements of
explanation which have been contributed, with the hope of finding a theory
which will tend to unify them, and to diminish still further that region of
anglysis where we have mere symbolism without real definition.

The investigation of this subject arose with the celebrated controversy
about the nature of the logarithms of negative numbers; whether they are
real or impossible. Leibnitz maintained that the logarithm of a negative
number is impossible, because if log (—2) is real, so is § log (—2), that
is log'/ 2, which would lead to the supposed absurdity of the logarithm
of an impossible quantity being real. John Bernoulli held that the log-
arithm of a negative number is as real as the logarithm of a positive
number; for the ratio — m : — n does not differ from that of 4 m:
4 n. The former view was afterwards maintained by Euler, the latter
by D’Alembert. Euler claimed to demonstrate that every positive number
has an infinite number of logarithms, of which only one is possible; fur-
ther, that every negative as well as every impossible number has an infi-
nite number of logarithms, which are all impossible. He reasoned from
the values of the n®® root of 4 1 and of — 1, viewing -} as denoting an
even number, and — as denoting an odd number, of half revolutions.
D’Alembert pointed out that the logarithm of a negative number may be
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real. Thus eb = 4} ¢ or —}/¢; but the logarithm of e is 4 ; therefore
the logarithm of —}/¢ as well as of 43/ ¢ is 4.

These opposing views arise from different conceptions of the negative
symbol and of the magnitude treated by algebra. The magnitudes con-
sidered in elementary algebra are, first, a mere number or ratio; secoand,
a magnitude which may have a given direction, or the opposite, and third,
a geometric ratio which combines a number with a certain amount of
change of direction. The logarithm of a ratio is itself a ratio, and is

" unique. If a directed magnitude has a logarithm, it is difficult to see how
the direction of the logarithm, if it has any direction, can be different
from that of the magnitude. It is of number in the sense of a geometric
ratio that Euler’s proposition is true. This conception of number imme-
diately transcends representation by a single straight line; consequently a
part of the ratio generally appears as impossible.

In his Geometrie de Position, Carnot asks the following among other
questions: “If two quantities, of which the one is positive and the other
mnegative, are both real, and do not differ excepting in position, why
.should the root of the one be an imaginary quantity, while that of the

«other 18 real? Why should }/—a not be as real as }/ =4~ a?” In this ques-
tion it 18 assumed that — a and + a denote directed magnitudes, the one
being opposite to’'the other; and if such a quantity has a square root, it is
difficult to understand why the one direction should differ from the other.
But the — a which has the imaginary square roots, while 4 a has real, do
not differ in direction ; they differ in the amount of change of direction.
An 1806, M. Bueé published in the Phtlosophical Transactions a memoiron
Amaginary Quantities, and in it he endeavors to answer some of the ques-
tions raised by Carnot. His main idea is that 4, —, and }/—1 are purely
descriptive signs; that is, signs which indi-
. D cate direction. Suppose three equal lines
N\ AB, AC, AD, drawn from a point 4 (fig. 1),
’ of which AC is opposite to 4B, and AD
perpendicular to BAC; then if the line 4B
is designated by -1, the line AC will be —1,
and the line AD will be J/—1. Thus }/—1
is the sign of perpendicularity. It follows
from this view of }/—1 that it does not in-
7\ dicate a unique direction, the opposite line
AD', or any line in the plane as AD' is also
: °  indicated by }/—1- Bueé admits the conse-
- Fe.l. quence. But it may be asked: If every
perpendicular is represented by 1/ —1, what meaning is left for —j)/—1?
Bueé applies his theory to the interpretation of the solution of a quad-
ratic equation which had been considered by Carnot, namely: To divide a
line AB into two parts such that the product of the segments shall be equal
to half the square of the line.

[
»
@
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YTet AB (fig. 3) be the given line, and suppose K to be the required
point; let AB be denoted by a, and AK by z; then by the given condition ‘

z(a—z) = %‘
and by the ordinary process of solution .
— —

. =5V _T=FEy1g
According to Carnot, the appearance of the imaginary indicates that there
18 no such point as is required between 4 and B, but that it is outside 4B

4

x ¢
A K B.
Q. 8.
<

»
. .
A K B
G
D
Fi1a. 8.

on the line prolonged. If it is supposed to be beyond B on the line pro-
dnced, the equatlon takes the modified form z (# —a) = 4 a?, giving
s=dax V'
Of these two roots he considers
z=4a+V 3-‘:'-
only to be a true solution of the question; while
= 3V
is the solution on the hypothesis that the point is on the line produced, but

on the side of A. Bueé views these answers as the solutions of connected
equations, not of the given equation. His solution is represented (fig. 8)

by drawing two mutual perpendiculars KC and KE to represent }/—1 %‘
and their opposites KD and K@ to represent — }/—13; 0 and D or £ and
@ are the points required. But Bueé does not show how the square of

§+ V=i g 1s to be represented? If the one component of the line is

perpendicular to the other, ought not the square of the sum to be equal to
the sum of the squares? But this does not agree with the principles of

algebra, for
i @+ yV—In'=2—y* +2)/—1ay.
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"This s a dificulty which a theory of mere direction cannot get over.
Led by his theory of perpendicularity, Bueé considers the question: What .
dozs a conic section become, when its ordinates become imaginary? Con-
sider a circle; when z has any value between — @ and 4+ a, then

y =%y a"—2*
But when z is greater than a, or less than — a, let it be denoted by z/, and
the analogue of y by y', then

Y =2y —1y2®—a'.

Bueéadvances the view that the circle in the plane of the paper changes into
an equilateral hyperbola in the plane perpendicular to the plane of the paper;
but he does not prove the suggestion, or test it by application to calculation.
A similar view has been developed by Phillips and Beebe in their ¢‘Graphic -
Algebra.” It appears to me that here we have a fundamental question in

the theory of /' —1. The expression 1/ a®*—2* denotes the ordinate of the

circle, what i8 represented by }/—1 }/2P—a?*, z' being greater than a?
The former is constructed by drawing from the extremity of z a straight
line at right angles to it in
P the given plane, and de-
scribing with centre O a
\J circle of radius a the point *
y [ of intersection P determin-
ing the length of the ordi-
nate, and —}/ a*—2* is equal
and opposite. Now (fig. 4)
12" —4? is equal in length
to the tangent from the ex-
tremity of z'to the circle,
and J/—1 appears to indi-
cate the direction of the
tangent, which varies in inclination to the axis of z, but is determined by
always being perpendicular to the radius at the point of contact. Hence
if 2’ be considered a directed magnitude, the expression
‘ o 4/ VI —a
denotes the radius from O to the one point of contact 7, while
P—y/ 1V F—F
denotes the radius to the other point of contact 7'. This construction
does not necessitate going out of the given plane; and if space be consid-
ered we have a whole complex of ordinates to the sphere, as well as a
complex of tangents to the sphere. The ordinary theory of minus gives
no explanation of the double sign in the case of the tangent. It is truein
the case of the two ordinates, that the one is opposite to the other in direc-
tion, but it is not true of the two tangents. In the case of the sphere the
ordinate may have any direction in a plane perpendicular to z, while the
tangent may have any direction in & cone of which z is the axis. This

other and hitherto unnoticed meaning of 3/ —1 will be developed mare
fully in the investigation which follows (p. 52).

F16. 4.
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The same year, Argand published his *“Essai sur une maniére de repré-
- senter les quantités imaginaires dans les constructions géométriques.” His
method is restricted to a plane (fig. 5). According to his view 4 is a
sign of direction, — of the opposite direction, 1/ 1 of the upward per-
pendicular direction and —}/ —1. of the downward perpendicular direc-
tion. The general quantity a + b}/ —1 is represented by a line OP (fig. 5)
having a and b|/ —1 for rectangular components. The product of two
lines a + b}/ —1 and a’ + b')/—1 18 :
(@ +b V=1) (@' + ' V/=1) = aa’ — bb' + /' —1(ad’' + a'b)
and it too is represented by a line, namely, the line which has aa’—bd’' and
% —1(ad’ + ba") for rectangular components.

A very important advance was made by Frangais, who perceived
that 4, —, }/—1 and —}/—1 did
not denote directions, but rather
amounts of angle. He introduced
the notation aa to denote the gen-
eral line where a denotes its mag-
nitude and a the angle between it
and a fixed initial line. Thus+a '~
is a0, —a i8 ax, |/ —la i8 a;, and -

—V—=laisa_ y Solongasais

supposed to denote the angle speci- - J:l
fying the position of a line, it is
difficult to perceive what is the
meaning of the multiplication or division of two llnes. It was cus-
tomary to look upon the product line as forming a fourth proportional to
the initia! line and the two given lines. But when it is perceived' that the
angle does not refer to a fixed initial line, but to any line in the plane, it
becomes evident that the product of two quantities r, and rlg’ i8 rr'o 4 o',
the ratio of the product being the product of the ratios, and the angle of
the product being the sum, or what appears to be the sum, of the angles.

‘In the investigation of Francais, the symbol /=1, though replaced by
7 in the primary quantity, reappears again in the exponential expression
for a line; he writes

Fi1G. 5.

ae =1l = q,.

He does not appear to have considered the question: Can the 3/ —I in
this index be replaced by ;? It is evident that g cannot be substituted
for it as a simple multiplier; does the index really mean a,,a quantity

z

similar to @.? This question is, I believe, correctly answered by an affirm-
ative. The view which has been commonly taken by analysts is that every-
thing is explained provided @ 4 b 1/ —1 is explained, and provided every

1Note on Plane Algebra, by the anthor. Proc. R. 8. E., 1883, p. 184.
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other function involving 1 —1 can be reduced to the form P 4 @ 1/—1-
But it cannot be proved that this reduction is always possible, unless on
the assuinption that all the imaginaries refer to one plane. For example,

De Morgan, in his Double Algedra, does not interpret directly v =1 or the

more general expression (¢ b}/ —1)P+ ¢ Y=1 put the expression is reduced

to significance by being reduced to the form P 4 @ /' —1. And this is the
current mode in modern analysis of explaining functions of the imaginary.
In a subsequent paper Argand adopted the notation of Frangais for a

line in & plane; but used finstewd of 7 to denote the quadrant, which, as
Francais pointed out, is nos an improvement. 8o imbued was he with the
direction theory of 1/ —1 that he sought to express any direction in space
by means of an imaginary function. He arrived at the view that the third
mutual perpendicular KP (fig. 6) is expressed by 3/ —1"—1, the oppostte
Jine KQ by _‘/:‘lv—_l, and any line KM in the perpendicular plane by
}/ 1%k +y=18%k where 4 denotes the angle between KB and KM.
He remarks that if the above be the cor-

* M rect meaning of 1/ —1V~), then 1t is not
true that every function can be reduced to

J=1 the form p 4 ¢ 1/—1 and he doubts the
B validity of the current demonstration
- + which alms at proving that the function

(@ + b1/ =)™ +nV=1 cap always be ro-

duced to the form p 4 ¢ }/—1. Accord-
=Ju ing to that reduction, as was shown by

Q Euler, 3/ —1"—! —¢~7, and this mean-
ing of the expression was maintained by
Frangais and Servois. The latter, fol-
lowing the analogy of @ + b 3/ —1 for a line in one plane, suggested that
the expression for a line in space had the form
pcosa-+qcosf+ r cosy,

where p, g, r are imaginaries of some sort, but he questioned whether they
are each reducible to the form 4 4+ B }/—1. Inreply to the criticisms
of Francais and Servois, Argand maintained that Euler had not demon-
strated that

F16. 6

V1 —cosz + 1/ "Tsinz
but had defined the meaning of ¢*V—1 by extending the theorem
e¢=1+z+:f'-l+ebc.
It will be shown afterwards that in the equation of Euler, namely
VoIV T—e—7
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there is an assumption that the axes of the two angles are colncident;
and that Argand’s meaning 18 incorrect.

The ideas of Warren in his Treatise on the geemetrical representation of
the square roote of negative guantities, 1828, are essentially the same a8
those of Frangais, but they receive a more complete development.

1t is curious to find, considering the intensely geometrical character of
quaternions, that Hamilton was led by the Kantian ideas of space and time
to start out with the theory that algebra is the science of time, a8 geometry
is the science of space, and that he strove hard to find on that basis a

meaning for the square root of minus one. But having observed the suc-

cess, 8o far as the plane is concerned, of the geometrical theory of Argand,
Frangais and Warren, he adopted a geometrical basis and took up the
problem of extending their method to space. What he sought for was
the product of two directed lines in space, in the sense of a fourth pro-
portional to two given lines and an initial line. He perceived that ome
root of the difficulty which had been experienced lay in regarding the
initial line as real, and the two perpendiculars as expressed by imagina-
ries; and, looking at the symmetry of space, adopted the view that each of
the three axes should be treated as an imaginary. He was thus led to the
principle that if {, j, k¥ denote three mutually rectangular axes, then
Pf'=—1f=—1ki=—I,

and if Ua denote any vector of unit length (Ua)® = —1. Hence follows
the paradoxical conclusion that the square of a directed magnitude is
negative, which is contrary to the principles of analysis. An after devel-
opment of Hamilton’s was to give to ¢, j, ¥ a double meaning, namely : to
signify not only unit vectors, but to signify the axes of quadrantal ver-
sors. Butin the quaternion we have for the first time the clear distinc-
tion between a line and & geometric ratio. In a paper read before this
Association last year I have given reasons for believing that the identifi-
cation of a directed line with a quadrantal quaternion is the principal
cause of the obscurity in the method, and of its want of perfect harmony
with the other methods of analysis.

The imaginary symbol, notwithstanding its apparent banishment from
space, reappears in Hamilton’s works as the cotfficient of an unreal qus-
ternion. He appears to hold that there is a scalar 1/ 1 distinct from
that vector 3/ —1 which can be replaced by 4, §, k. In the recent edition
of Tait’s Treatise on Quaternions, Prof. Cayley contributes an analytical
theory of quaternions, in which the components w, z, y, 2 of a quaternion
are considered in the most general case to have the form a 4 d)/—1
where }/—1 is the imaginary of ordinary algebra. Thus it appears as
if we were landed in an analytic theory of quaternions instead of a qua-
ternionic theory of analysis.

In a work recently pubiished on quaternions ( Theorie der Quaternionen,
by Dr. Molenbroek), the principal novelty is the introduction of the sym-
bol }/ —1 with the meaning attached to it by Bueé, namely : to denote
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perpendicularity. Thus (fig. 7) /=1 @ denotes any vector suchas OP or
0@, which is equal in length to a, and perpendicular to a, and 1/ lis
thus made to mean a quadrantal versor with an indefinite axis; but the
axis is not entirely indefinite, for it must be perpendicular to a. Doubtless
it is convenient to have a notation for any direction from O which is
perpendicular to a; but it does not follow that 1/ 1 denotes it properly.
I have found the following notation convenient :

P Let a, § denote two independent axes, then the

Q axis perpendicular to both may be denoted. by

a_ﬁ. In harmony with this notation @ denotes

any of the perpendiculars to a; but @ may also
0 be used to denote a deflnite perpendicular, when
the conditions make the perpendicular definite.
In a paper read before this Association last
year' I showed that the products of directed
magnitudes may be considered in complete inde-
pendence of the idea of rotation; consequently
Fie. 7. that the method of dealing with such quantities
forms a special branch of the algebra of space, of great importance to
the physicist. The method of dealing with versors forms another distinct
branch; and in the idea of a versor, or more generally of a gcometric
ratio or quaternion we find a true explanation of 1/ —1, and I believe that
the following development will show that it has at least one other geo-
metric meaning.

SPHERICAL TRIGONOMETRY.

-Notatlon for a quaternion.

A quaternion, or geometric ratio, will be denoted synthetically by a,
and analytically by aa4 where a denotes the arithmetical ratio, a the
axis, and A the angle in circular measure. The factor a4 forms the ver-

”
sor or circular sector. Let A become %, then a® is an imaginary made

definite; ,95' is another differing from the former as regards its axis.
According to the notation of Hamilton, a' denotes a quadrantal versor,

whereas, according to the above definition, it denotes a circular sector of

which the arc is unity the radius also being unity. Viewed merely as a

matter of convenience in writing and printing, the notation a4 is prefer-

24
able to a = . For the sake of the extension to hyperbolic sectors, it is found
necessary to consider A as denoting not the circular arc but double the

1Proc. A. A. A. 8., Vol. xL, p. 65.
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area of the sector included by the arc. This notation is capable of gener-
alization, while the other is not.

Meaning of the equation a? =cos A4sin A 'a§

Let OP (fig. 8) be any line of unit length in the plane of a, and let 0@
be the line from O to the extremity of the circular sector of area # en-
closed between OP and the circular arc: then

0Q = OM + MQ
. —cos A+ OP + sin 4 oF - OP
== (cos A +sind- a;) or
=at OP
therefore a4 —cos A+ sin A- a;.
&

o

P
Fia 8.

This equation is true so far as the amount of angle is concerned but not
it may be as regards the whole amount of turning. In this sense cos 4

w
and sin 4 - a7 are the components of a4.
”

To prove that a4 = ¢4o>.

We have ad = cos A + sin A-a;,
and cosdm1—5 4 2_,
and stnA=A—‘;—:+;i:—.

w
By restoring the powers of a2 {p the expression for cos 4 we obtain
4T 467
_ 008A=1+—21—'+T+;
and by a similar restoration in the series for Sin 4
[ 4 A’a:’;

-
snd d =Ad + 5+
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and by adding the two serfes bogether we get

I 3
at =1+Aa +_§'!_ Aa ;
-all’ .
_;. hd
Also (—a)‘=a-‘4-a‘° _..-Ao.!'

37
and a"-l == e“ .
So far as angle Is concerned, irrespective of the whole amount of turn-

ing, we have
a4 = giv—A4,
w L4
It follows that Aa7 is the logarithm of a4; and aZ the logarithm of al,
As the most general expression for minus is a7,

-
log (—1) = (2n+1)x* a7,
-
The general expression for }/—1 I8 a ¥, therefore
L4 L4
logy/—1 == (2nn+7)- a¥ ; and for + it 18 a®, therefore log + == 2nx - a2,

Hence generally  log (aa4) =loga+4 A" a’

In his Geometrie de Position Carnot says, in reference to the celebrated
discussion about the logarithms of negative quantities ‘‘Quoique cette
discussion soit anjourd’hui terminé, il reste ce paradoxe savoir que quoiqu’
on ait log (—2)* = log (2)*, on n’a cependant pas 2 log (—z) = 2 log 2.”

The paradox may be explained as follows: Suppose the complete ex-
pression for z to be za®*, thén that for — z 18 za(3+1)¥; then

- b 4
log 2* = 2 log # + 4nx-a? and log (—z)*=2 log z + (4n+2)x - aZ.

As the latter is twice the logarithm of za("+1*, the supposed paradox
vanishes.

To prove that
a4 3B = cos Acos B— sin A sin Bcos af

" » _r
-+ cos A sin B - fZ 4 cos Bsin A+ aZ — sin A sin B sin af - af?.
”
Since a4 w= cos A+ sin A - a3,

L4
and BB = cos B+ sin B - 5%,
by multiplying the two equations together we obtain

- v v w
a4 BB = cos Acos B+ cos Asin B* % +cos Bsin A- aZ 4 sin Asin B-a% 57,
Now, as was shown in the previous paper (p. 98)

L 4 v -
a2 8% = — cos af} — sin af - afi?;
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q

hence
cos a4 3B = cos A 608 B — sin A sin B cos aff o,
and

”
Sin a“ﬂs = {cocAsinB'ﬁ+cos Bsin A a—sin Asin Bsinafl - &79}’ @.

Equation (1) expresses what is held to be the fundamental theorem of
spherical trigonometry; but the complementary theorem expressed by
(2) is never considered. So far as magnitude is concerned, it may be de-
rived from (1) by the relation cos® ¢ 4 sin® ¢ = 1; but it is not so as regards
the axis. Equation (1) is the generalization of the theorem of plane trig-
onometry

cos (A 4 B) ==cos A cos B — sin A sin B;
while equation (2) is the true generalization of the complementary theorem
8in (4 4 B) = cos A sin B + cos B sin A.

The one theorem may perhaps be derived logically from the other, when
restricted to the plane, but it is not so in space. The two equations form
together what is called the addition theorem in plane trigonometry. Why
do we have addition on the one side of the equation, while we have mul-
tiplication on the other? Because A+ B is the sum of two Indices of an
axis which is not expressed, the complete expression being

ooca“"'x == c08 A cos B — sin A sin B

L4

Stn aTE — (cos A sin B 4 cos B sin A) - a*
Prosthaphaeresis in spherical trigonometry.

The formula for a® =2 1s obtained from that for a4p® vy putting a

minus before the sin B factor. Hence
caga"ﬁ"s = c08 A cos B + sin A sin B cos af, and

” .4 L4
Stna? 8 = —cos Asin B+ 5° +cos Bsin A+ a” +sin Asin Bsin af: ap?
Hence the generalizations for space of

cos (A—B) + cos (A+B) = 2 cos A cos B,

co8 (A—B) — cos (A+B) = 2 sin A sin B,

8in (A+4B) + sin (A—B) == 3 cos B sin A,

8in (A+B) — sin (A—B) = 2 cos A sin B,
are respectively

cos a4 B2 + cos a‘ﬁx = 2 cos A ovs B,

cos ad B8 — cos a? B% = 2 sin A sin B cos af,

”

'Bina‘ﬁB+S£naAﬁ—3—2coaBainA' a2,

L

nSinaA/5"’._,8';";a.“‘9_3==*=2{co.sAainB-ﬁ—cinAc'lnBsinaﬂ'E}r
Let .
a“ﬁB =rc&nd a‘»ﬁ—B-t’D (Ag. 9)
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then ﬁB 4 g4 ﬁB C = ﬁ”

therefore

Also 3

but this does not reduce to

< N

76

F1G. 9.
Hence
&~D C -D C
co8 82 + cos 7 = 2cos {60+} cosLaL;

-D ¢ ~D ¢
cou?n-—oosro= 2sin {apf_T’/_}gma 2"' cos af;

etc.
74 pa?
To prove that a4 = A + BF°,
A’ A?
Since ==1+Aa+ « + 5+
BET
and &l +)

I AT A‘a37
aﬁ -1+Aa + =7 31 —+ 31

4 BEF + ABERE + AL TR 4
+ 2 4R 2 o
Hud
+§ﬂ’+
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” w ” -
x y a2 z AT 2)"
=14 (4¢7 + BFF) 4 A A BN 4 AT BT

w k3
= e4o¥ + 867,
The general term is
- r ¥ "
"l_l { AT g A" B P —DF ﬁf + n(nﬂ— 1) A2 pr (07 g +}
which is formed according to the binomial theorem, only the order of a, 8

must be preserved in each term.

The binomial here is the sum of two logarithms, not a sum of two qua-
ternions. It is not true that

K ” w
4o + BT _ (4 4 BB)T

T FROSS R [CTL .2 )

1 A* 4 B* 42 A Bcos aff (A’+B'+2ABcoaaﬁ)'
=i 21 + 4 -

A*+ B*+4 2 A Bco L4
+{1_ + +3x caaﬂ_'_}(Aa.,.Bﬁ)r
In a similar manner it may be shown that
A.B_C 7 J7 7
a“fr" =1+ 4a? + BT 4 ¢y

L3 ”w T T
+4 {40 + B + 0 + 24843 53 4 2a0ahF wqﬁ,‘?}

w ~ w ”
+ {407+ BET + 09T 43408 §F 1 sareayF 4 amapyd

- " - T Tw

+ 8 AB%? 7 4 84C* u¥y" + 8BC* %, + 64BC afpfrf}

-+ etc.

Wwhere the terms are formed according to the rule of the trinomial theo-
rem, but the order a, 3, 7> must be preserved in each term. And the
multinomial theorem is true, provided the above condition is observed.

CIRCULAR SpiraLs.
Meaning of a;-
§ 4 A® AS
The series e“ =1+ 4 4 21 T 37 + may be viewed as having a loga-
rithmic angle or period 0 or more generally 2nm, so that it is expressed

20w
more fully by e4*° or ¢4* Similarly the logarithmic angle or period of
a4, that is of

"
-
A% =1 4 4d? +
is & or more generally 2nx 4- 7

Atax
21

+

By aﬁ 1s meant ¢4 where the logarithmic angle is w, so that
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A A’a
%=e° =14 4" + —;,—'+-

What is the geometrical meaning of a:? It is a sector of the logarith-

mic spiral which has a for axis, 1 for the angle between the tangent and
the radius vector and A sin w for the angle at the apex.
On account of the new element w the quantity may be named a guénter-

ntor, for when a multiplier is prefixed we have five elements.
”
erouo+Amnn- it

To prove that ag

For a =4 =1 + Aa® +45— +A:,¢, +,

A’coc%w A8 008 3w
+ +

=14 Acosw+ 3T

A dn%w A’ﬂn8w+}

+{Asinw+

Butc“mw"'"‘"” -7_‘Acouo Adsinw: .f

- {1+Acosw+ A’O:,"" +}{I+As¢nw-a’—“"2‘r"+},
.=1+Aooaw+f:—;(cos’w—-'sin’w)+

L4
+{Au‘nw+§-:2ainwcnw+}.a’;
= 1+Acosw+‘;—;coazw+ '

+Asinw+%:ain2w+

T
therefore ¢42™ = 4008w+ Asinw: o3,

To prove that aﬁﬂf,-—c“w+3””~
L4

Since ag - eAcoaw-l-Alinw-n‘

L4
and ﬂg_aBmw-l-Bﬁnw'p’
r '3
AﬁB-erouoe Aa‘nw-areBcoaweBmw-p’
™ L4
cAoouo-l-Bmwc Aﬁnw-¢7+8ﬁn’w~pr
=0(4+B)eouaca¢nwsd a +B 8 ‘

But eAeV+ BEY _ , (dcosw+ deinw: a¥) + (Boosw+ Beinw- M
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L4 -
== g4 008w+ Boosw adﬁaw'-7'+3dnw°p'5.
Because ¢4 9% ¥ gnd ¢B %98 ¥ gre Independent of axis, they can be changed
from the order in which they occur in the sum of indices.
The meaning of @ 35 is the sector of the spiral which joins the begin-

ning of the former with the end of the latter.

Hence when § = a»
w

aA a8=e(4+8)oonoe (A4 B) sinw -a?

= o4+ Ba”
= aA +B
w
which is the addition theorem for the logarithmic spiral, the two compo-
nent sectors being in the same plane.

Exponent of a compound angle.
‘We have

88 1 paatg? 4 D (AT (ER)
where a ﬁB is expanded as ahown above, and (a‘ﬁB )*is double of the
compound angle, (a“ﬁB)' is three times the compound angle and 8o on.
It is to be observed that (a“ﬁB )* 18 not in general equsl to a“ﬁ”.
Let z = A = B =  and let § be identical with @, then we have

za" 21
L3
e =15+ (F) 37—
”
x 7
Bntc" =e"3andlnsalso— Ta ;

k.3
andthuse ™ 2 = a"‘
which is a rational expression for the celebrated equation of Euler
1 2=1
V=i =7

By taking logs we obtain

a"T log (a"') -

that is
T
log (a )- "
L2 -’.
)

To differentiate a4.

w

z v

Since a? =1 —cos AtsinA- a%i
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therefore
d(a‘) - cAa
therefore

- ~ -
a4d(4a%) = (— sin A + cos A - a?)dA + sin Ada - aF
But since

-
- ”
74 (40%) = (— sin A + o8 A" a¥) GA +sin Ada- 37

4 —4_

aa 1,

d(a?) a + ad (a™4) = 0;
therefore

L3 -
add(4a?)a4 4 a4a—4 3(—A4a?) =0;
w w
therefore a“d(Aa’) a4 = d(4a?).
Hence d(4a?) = a" " TdAa4+ sin Ada - G¥a—
w t 4 N w -
=d4-a? 4 da (sin Acos A aZ — sin® A- a? a%)

L4 - =
=dd-a? 4 da (sin Acos A-a% + sin? A - aa?
-

= {dA *a+da (sin Acos A @+ sin’d '7(1}2
To differentiats a4 8%.
a(a’p®) = (aa?) % + a*a (8%),
=a?d (Aa;) 2+ a4p%aq (Bﬁs),

which is not = a43? { d (Aa;) + a(Bs%) }unless B=a.
” -
But aA ﬁB — GAAI-I- BB’
L3 -4 m w
and d(a“ﬂB) = e‘“’ + Be¥ d (467 4 pp?),

provided it be understood that in the final terms the order of a, f be ob-
served. .

L3
To differentiate (4= + B8 iq more simple, because then we have but
one index, not a binomial, and

a{et4e+ Bﬁ);} = (et B”;d{ (4a + Bf)? -

HYPERBOLIC TRIGONOMETRY.
Meaning of the equation

h »
ha? = cosh A + sinh A- 2.
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The expression a“, when no period is expressed, is understood to have
the period 7; in other words the area:- is bounded by a circular arc.

Let ha’ denote the same when the bounding arc is the equilateral hyper-
bola (fig. 10). Then the rectangular components OM and MQ of the hy-

perbolic versor which has the axis a and the area "i are commonly de-
noted by cosh A and sinh A, so that ’

. 1.4
ha? = cosh A + sinh A - a%

(=

P ™M
Fi1a. 10.

The hyperbolic versor hat 18 equivalent to the multiplier cosh 4 to-
”w
gether with the circular versor sinh 4 - a2,

w

T
To prove that hat = heds,
-
We have ‘ha? = cosh A + sinh 4 - a3,
A’ A‘
=145+ +
A? 7
+(4+5+)
This is an essentially different expansion from the circular. It may be

L4 L

AaZ o2 *
denoted by k ¢4*”, and it differs from that for e4*” inhaving o¥ oF _ 1,
-
Similarly ha™4 = cosh A —sinh A - o2,
4
=h a"“"'f.
To compare ha‘ with e‘“'.
e4"" = cosh A + sink A - a",
- -
= cosh A 4 a® sinh A-a%; -

T v
£ % S " x
that is 490" _ cosh A + a¥ sinh 4 - a¥;
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<
therefore cosh A = cos (A4a?),
b4 L3
and a¥ sinh A = sin (447).
Also . ha—4 == cosh A —sinh A - a ,

m o v -
= cos (A4a%) — a? gin (Aa?) - a¥.
To find the value of ha4 hj3B, the analogue of a4p5.

w
We have had = cosh 4 -+ sinh A - a?,

and h3% = cosh B+ sinh B+ f°
w
therefore ha*ng® = cosh A cosh B + cosh A sinh B - 5T
L T ¥
+ cosh B sinh A - aZ 4 sink A sinh B + a3f7%.

w w
The problem is reduced to finding the value of aZ §2. Now for a plane,
in which case a = S, we have

ha* ha® = cosh A cosh B + sinh A sinh B

+< cosh A sinh B - a + cosh B sinh A - a}§
from which it appears that the second term of the cosh for space is
sinh A sinh B cos aS. The term in Sinh must be of the form

z sinh A sinh B sin af3 - aB.
the value of z to be determined by the condition that cosh® — sinh® =1.
Now .
cosh® = cosh® A cosh® B + sinh®* A sinh®* B cos® af8
-+ 2 cosh A cosh B sinh A sinh B cos af8-

and 8inh® = cosh® A sinh® B + cosh® B sinh® A
-+ 2 cosh A cosh B sinh A sinh B cos aff
-+ 2? sinh® A sinh® D sin® af.
and cosh® — 8inh® = cosh® 4 (cosh® B — sinh® B)

— sink? A{cosh’ B — sinh* B (cos® af — 2* sin® af) } ,
which is equal to 1, if 2* = — 1, or z = }/—1.
Hence cosh a*8% = cosh A cosh B + sinh A sinh B cos af (€))
and  Sinh a?8® = {coch Asinh B - f+cosh Bsinh A - a

. — @)
+1/=1 sinh A sink B sin af - aﬁ} .

Equation (1) is the fundamental theorem in hyperbolic non-Euclidian
geometry. Equation (2) gives the complementary theorem, and we pro-
pose to investigate its geometrical meaning. Guided by the analogy to
the circular sectors we conclude that equation (1) suffices to determine the
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amount of hyperbolic sector of the product, while equation (2) serves to
determine the plane of the sector. How can the expression in (2) deter-
mine a plane? Compound (fig. 11) cosh Asink B - B with cosh Bsink A* a
and from the extremity P describe a circle with radius sinh 4 sinh B sin a8
in the plane of OP and the perpendicular a_ﬂ. The positive tangent OT,
drawn from O to the circle has the direction of the perpendicular to the

plane.
This may be readily verified in the case of the product of equal sectors.

A "
Let “=z4y-a?

w
Bl =ty 57
then according to the rule for the product in space

a8 = ot + y* cos aff
+{W(a+ﬂ)+1/—_-ly’:inaﬁ°}173}’

F16. 11, F1a. 13.

Suppose that the straight line PR (fig. 12) joining the extremities of
the arcs is the chord of the product; it is symmetrical with respect to the

axis aﬁ. Then
A
sinh a—g——ll/2y’+2y‘co:aﬂ-;/y—§-l/l + cos aB;
a‘ﬁ‘ 3
therefore cosh —5— = Vi4 !',— (1 4 cos af);

therefore by the rule for the plane, which is known to be true,
cosh a4 =%—' (1 +cosaf) +1 +’—;-'- Q1+ cos af),
=y (1 +cosaf) +1,
=9+ 1+ y* cos af,

= 2% 4 y* cos af.
But this last is the value given above by the rule found for space.
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Prosthaphaeresis in Ryperbolic trigonometry.
We have cosh a“ﬁ” = cosh A cosh B <+ sinh A sinh B cos aﬁ ;
and  Sinh a4pB = {mhAdnkB - B+ cosh Bsinh A -

+1/=1 sink A sink B sin af - a,e}
By putting in — sinh B instead of sink B we get

cosh a4f5 ==.cosh A cosh B — sinh A sink B cos afi;
and  Sinha?fZ=—cosh AsinhB * B+ coshB sinh A - a
—V/—1sinh A sinh B sin af - af.
Therefore cosh a‘ﬁB + cosh a‘ﬁ—B = 2 cosh A cosh B;
cosh 48P — cosn a*f~ —2dMAdntho:aﬁ;
Sinh a*B® + Sinh a?, ﬂ" =32 cosh BsinhA -+ a;
Sinha“ﬂ”—'Sinha“ﬂ-B=2co¢hAainhB'ﬁ
+ 2 /=T sinh A sinh B sin af - of"

'ﬂ' 'l
To prove that ha hﬂB-h 4" + Bp

L3
3 Al 27 Aaa3!
Since hat =1 + Ad® +——+

—3ir b
and WP =14 By B'ﬁh Baf.h+,

. A - 7 A" A'a
ha'Bf” = 1+ da¥ 4 Tl T

+ 56" + 4B ﬁ’+“,.B B+

+ 2115”*' Y “’ﬁ'+

+Z T4
s
=1+(Aa’+BpI)+-(—‘iﬂ’—.-)-

hcAa’ + Bﬁf
The expansion is the same as for the product of ci.rcular sectors, ex-
cepting that we have

a’ﬁ’-coxaﬁ-{-]/:dnaﬁ-'a_/;;

and (as a special case) @ i =1,
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HYPERBOLIC SPIRALS.

To investigate the meaning of ha:: the analogue of af,.

2 3
. oY
We must have ha:=h3 Aoolbv,wAvtnhv ad

A A
= (144 coshw+ 3y cosh*w+ - cosh® w +)
X (1 +A:inhw'a;+ f:%:g{nh’w+‘:;:sinh’w-a; -F)
=1 +Acoahw+‘:+:(coah'w+um'w)+§ {coah’w+3coahwainh’w}+

+{ asinh w + _2coawmhw+ {3mh‘wdnhw+ainh’w}+} -af
=1 +A(coahw+:inhw-a’) + 3T (coahw+atnhw- a’)’+ ﬁ (cosh w +

sinh w - a’})’+
-=1+Acochw+ coah2w+ 8lcoal'»é!w+

+{Aatnhw+ sinh 20+ 37 ainh3w+}

—l A R ey

It follows as in the case of the circular spirals, that

hal BB = he 4a¥ + B8
=°Amhw+3mhwhadunhwhﬁ£ﬁnhw
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By ALEXANDER MACFARLANE, D.Sc., LL.D., University of Texas.

[Read before the New York Mathematical Society, May 7, 1892.]

The fundamental theorem of plane trigonometry expresses the
cosine and the sine of the sum of two angles in terms of the
cosines and sines of the component angles ; namely,

cos (A + B)=c0s A cos B—sin Asin B, 1)
and sin (4 + B) = sin A4 cos B + cos A sin B. (€3]

The complementary theorem gives the cosine and the sine of
the difference of two angles; namely,

cos (A — B)=cos 4 cos B + sin A sin B, (3)
and sin (4 — B) =sin A cos B — cos 4 sin B. “4)

Now the fundamental theorem of spherical trigonometry is,
¢ denoting the angle between the ares A4 and B, and C denoting
the opposite side.

cos C' = cos A cos B + sin A sin B cos c.

A+ B

o o

Fre. 1. Fra. 2.

But suppose that the angle B of Fig. 1 is tilted up, and let ¢
denote the angle by which it has been tilted (Fig. 2), then in a
certain sense the arc of the great circle from the beginning of A4

1
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to the end of B is the sum of the arcs 4 and B. We obtain for
this more general sum the formula

cos (A 4 B) = cos A cos B — sin A sin Bcos ¢,
which is the generalization of (1); and
cos (A — B) = cos A cos B +sin A sin Bcos ¢,

which is the generalization of (3). But in treatises on spherical
trigonometry there is no formula corresponding to (2); the only
place where I have observed such a formula is Hamilton’s
Lectures on Quaternions, p. 537. The supposition appears to be
that (2) is not essentially different from (1), and therefore that
no generalization of it is necessary. No doubt the magnitude of
the sine may be deduced from the cosine by the relation

sin?(A4+ B)=1—cos*(4+ B);

but this is not the generalization of (2).

In order to investigate this question we require a notation for
an angle in space.

Such an angle is fully specified by the axis and the amount of
arc at unit radius; the axis will be denoted by a Greek letter,
such as «, and the amount of arc at unit radius, that is, the
circular measure, by an italic capital,
such as 4. The arc (Fig. 3) may be
rotated round « to any position in the
circle; it does not suppose a fixed
initial line; it is symmetrical with
respect to «. The angle itself is

° properly denoted by «4; for let ® be

another angle, then «fe? = att®, so

/ 4 that « and A4 are truly related as base

to index. According to this view

4 the above theorem in plane trigonom-

Fie. 3. etry relates to the addition of ares,

but to the product of angles. Let « denote the axis of the con-
stant plane, then (1) takes the form

a

cos aa® = cos a**? = cos A cos B —sin 4 sin B,
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and (2) takes the form
sin a4a? = sin a4t® = cos A sin B + cos Bsin 4.

‘We may also view A as denoting twice the area of the circular
sector, the radius being unity; and this view of the notation is
important, for it applies to the equilateral hyperbola, while the
former view does not. :

An angle which is the negative of a given angle has an equal
arc, but the opposite axis; (— «)4is the negative of e The
minus may. be removed from the base and attached to the index;
thus (—a)*=a"4 and a*(—a)?=e*% So long as the axis
remains the same or the opposite, the arcs are combined like
ordinary indices. But suppose that a different axis 8 is intro-
duced, it is evident that then the rule for indices must be general-
ized. The v/ —1 in the ordinary complex quantity denotes an
angle whose arc is a quadrant, but it leaves the axis of the plane
unspecified.

The angle a* is a quaternion with unity for ratio; that is, a
versor. The general quaternion may be denoted by a single
symbol such as &; and if a denote the ratio, « the axis, and A4
the arc at unit distance, then

a = aact.

Any versor can be expressed as the sum of two quaternions which
have arcs differing by a quadrant.

Let the arc A be less than a quadrant. Then
at=cos A« +sind.al

is a complete equivalence. The versor e applied to any line in
its plane leaves the magnitude of the line unchanged, but turns
it round @ by an amount 4. This is equivalent, both as regards
final position and the whole amount of turning, to multiplying the
line by cos 4 and turning it round e by no amount, together with
the effect of multiplying the line by sin A, and turning it round
o by a quadrant.

But the above form of equation provides a complete equiva-
lence for an angle however large,-and also distinguishes between
a positive and negative angle. Thus we have for the quadrants
indicated :
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QUADRANT. ANGLE. COMPONENTS.
first at cos A-a® +sinA-aE
second ot cosAd.a” +sind-. a§
third al cosd-a +sind- u:-;g
fourth wt cos A . a?r +4sind-. az?’g
fifth ot | cosd-a  sind.dt
sixth «t cos.A.adr +sinAd- a”
first negative (—a)* | cosd-(—a)’+sind.(—«) ¥
second negative | (—a«)* | cosd.-(—«)"+sind.(— a)i
ete. ete. ete.

In the above expressions cos 4 and sin 4 are supposed to be
signless ratios. For an arc less than 2= the different quadrants
can be distinguished by making cos A and sin A algebraic quan-
tities, that is, either positive or negative; so that a complete
equivalence for any positive angle less than a whole turn is

at=cos A+4sin 4. a*,
while the complete equivalence for any negative angle less than
a whole turn is

(—a)*=cosA+sind. (—a)*.

But if the angle exceeds a whole turn, then the complete
equivalence requires a factor to express the number of whole
turns. Suppose that r is the number of times which A contains
2, then the complete equivalence is

a*=oa?(cos A+sind. ai).
Similarly, the complete equivalence for any negative angle is
(—a)* = (— &)™ fcos A +sin 4 - (— «) F}.
Suppose A to be less than 2, and m to be an integer, then

a™ =cosmA + sinmA - ok

may be an equivalence only so far as the final position is con-
cerned, not as regards the whole amount of turning.
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5

Suppose that p is the number of times which mA contains 2,

then o™ = a?*"fcos mA + sinmA - a}j.

The root of an incomplete equivalence is ambiguous, while that
of a complete equivalence is unique. Thus, as either p or p —1
or p — 2 is exactly divisible by 3, the cube root of «* is some one

of the three following :

227 ( A 2 A—p2
@3 { cos 3p T +sin 319 "-us},
o {cos‘A (I)S—l) +sinA_(p3_ 12,

aiz_;)"vr{cosA (p ‘,) 1r+sinA——(p—2)21l’.

3 3
But the cube root of the incomplete equivalence
cos A+sinAd- ¥

is any one of the three following:

osA_p2”+sinA—p2"-a§,
3 3
OSA'_(p_1)2”+sinA—(p_1)2"-a§
3 3
cosﬁ_(p3_2)2"+sinA_(p3— 2)27 ¥

a1,

a’}.

In the treatment of angles in space, we commonly take only
the incomplete equivalence, as in most questions a whole turn

counts for nothing.

GENERALIZATION OF THE TRIGONOMETRIO THEOREM.

Product of two angles in
space.

Let a* and 8% denote any
two angles in space, having a /\
common apex O (Fig. 4). \ -

Now ¢4=cos A+sin 4. as,

. 3
and B?=cos B+-sin B. g% Fre. 4.

/"ﬁ

k'
¢
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therefore
o*BE=(cos A +sinAd. u"r) (cosB + sin B - Bi)
=c08.A4 cosB+cos Asin B- ﬁ*-i-cos Bsind-a® +sin Asin B- aiﬂf,

if the distributive rule holds. We propose to investigate the
meaning of these terms on the supposition that the product «48®
means the angle from the beginning of «* to the end of 8% when
these two angles are brought to a common intersection, or any
angle in the same plane having an equal are.

The meaning of the first three terms is evident, but not that

of the fourth. To investigate and express the value of a*ﬁa, we
require a notation for the axis which is per-
&_p? pendicular to « and .

Suppose (Fig. 5) « and B to be in a
horizontal plane, and that we look down
from above; then the arrow indicates the
direction of positive turning, and the corre-
sponding axis is the perpendicular to ¢ and 8

g drawn upwards. Let this axis be denoted
7\ by B, then Ba denotes the axis of negative

rotation; and as it is opposite to «B, we
%  have Ba=—aB. This is the right-handed

system. Place the thumb of the right hand
perpendicular to the outstretched palm, and consider the base of
the thumb as the centre of rotation; then the axis of the rotation
from the forefinger to the small finger is given by the thumb
however the hand be placed.

— The axis of «!g¥ is evidently «B;
a3 let then

\ a*[#:acos aB+bsinuB-Z6§,
\/ where a and b are coefficients to be

Fia. 5.

determined. First, let « and B8 coin-

cide; then daf=ar=—1 ; therefore

ais —1.
A Next let @ and B be at right angles.
N The three axes a, 8, B are now
2 ' mutually rectangular, and the dia-
Fre. & gram (Fig. 6) shows the directions
of positive rotation round the three axes. For if the thumb
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be successively held along the directions of «, B8, and 8, the
successive directions of rotation from the forefinger to the

small finger will be given by the respective arrows. But a’}B}
means a quadrant round « followed by a quadrant round g,
and in the particular case considered (where « and B are at right
angles) it is evident that the result is a quadrant round the oppo-
site of «B; therefore bis — 1.

Hence
a*8% = cos A cos B — sin A4 sin B cos a3
+cos A sin B- 8% 4cos Bsin A o¥ —sin A4 sin Bsin o8- 28%
= cos A cos B — 8in 4 sin B cos af
+ {cos A sin B-B+cos BsinA4-a—sin Asin B sinaﬁ- EB}’.

Now o4B? denoting the angle of the great circle between
the extreme points cos («4B8%)= cos A cos B — sin 4 sin B cos af
expresses the fundamental theorem of spherical trigonometry
(p- 1); while :

Sin a*B? = cos A sin B+ B + cos Bsin A. ¢—sin A sin Bsin af-«B
expresses the generalization for the sine. For the square of the
above quantity is
cos? 4 sin? B + cos® B sin® 4 4 sin? 4 sin? Bsin? ¢f
+ 2 cos A cos Bsin A sin B cos af,
and the square of the cosine is

cos? 4 cos? B+-sin® 4 sin? B cos? a8 — 2cos A cos Bsin A4 sin Beos af,

and the sum of these is 1. Also that the direction of this
directed sine is that of the axis to the great circle passing
through the extreme points may be tested by actual construc-
tion, or by trial of special cases.

By supposing B identical with « we get the theorem for the
plane, namely,

oa*t® = cos A cos B—sin Asin B

+{cosAsinB+cosBsinA}-u§.
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The generalization of the theorem for the difference of two
angles is

a*B-2 = cos A cos B + sin 4 sin B cos ¢f8
+§—cos A sin B- B+cos Bsin 4 - a+sin A sin Bsin a8 - a8} ¥,

which is obtained from the former by changing the sign of each
term in which sin B occurs. '

GENERALIZATION OF DE MOIVRE'S THEOREM.

Product of three angles in space.

Let «*, 8%, y° be any three angles in space, having a common
apex O (Fig. 7); it is required to find
their product when taken in the order of
enumeration. We first find the product
of «* and B%, which is represented by the
arc PQ; and as PQ and RT will not
in general intersect in @, PQ must be
shifted along to SR; the ST, which is
the product of SR and RT, represents
the product of the three angles in the
specified order. By assuming the distrib-
utive law, we get

oAB3%y° = (cos. A+sin 4 - u*) (cos B+sin B - Bi) (cos C+sinC- 7*)
=cos A cos Beos C

+cosAcosBsinC'-y§+cosAcosC’sinA-a§

+ cos Beos Csin B - ’32 + cos Asin Bsin C - Biyi
+ cos Bsin Asin C- ugyg + cos C'sin 4 sin B- u*ﬁ*
+ sin Asin Bsin C- aiﬁgyi.
The sixth and seventh space coefficients are not formed from
the fifth by cyclical permutation ; the order of the factors in the

product must be retained in each of the terms; thus it is a*y*,

not y*a*. These double coefficients are expanded by the rule
already obtained ; namely,

«fB¥ = cos B — sinaf - B,
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The last coefficient is of a new kind, and is expanded as
follows :

Since a¥ 8% = —cos ¢8 —sin B - wB',
2 BE Y = _(cosap +sineB - @)y
=—cosuf- 'y§ + sin af cos eBy + sin «B sinTz.,_éy . W,
where cos ey denotes the cosine between the axes @ and vy, and

«By denotes the axis which is perpendicular to «8 and y.
Now it may be shown* that

sinaﬁsin@y-ﬁ7=005a7'3—00557'“;

hence the last term of the product when expanded is

sin A sin Bsin 0§ —cos ¢ - I +cos ay - BF —cos By - af +cos afy}.
Hence we obtain for the cosine

cos ¢*f%y® = cos A cos B cos C — cos 4 sin Bsin C cos By
— cos Bsin A sin C cos ey — cos C sin 4 sin B cos e

+ sin 4 sin Bsin C'sin af cos aBy;

and for the directed sine

Sin ¢*B%y° =cos A cos BsinC -y + cos AcosCsin B- B
+ cos Bcos C'sin 4 - « — cos A sin Bsin C'sin By - By
— cos Bsin A4 sin C'sinay - wy — cos C'sin 4 sin Bsinag - af

— sin A4 sin Bsin C{cos af - y—cos ay- B + cos By- «}.

By Sin with a capital S is meant the directed sine.

Let « =B =1y; the above formule then become identical with
the formule in plane trigonometry for the cosine and sine of the
sum of three arcs. :

As the above theorem is true for any three angles in space, it
is also true in the special case when the arcs form the sides of a
spherical polygon. It has its most general meaning in the compo-
sition of the finite rotations of a rigid body.

* Principles of the Algebra of Physics, Proceedings A. A. A. 8., Vol. XL., p. 89.
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Product of any number of angles in space. —Let a denote the
cosine component, and & the sine component of an angle in space,
and let a, denote the product formed from any r cosine components,
a, the product formed from any s sine components; then by the
distributive rule,

“Aﬁx)’o e = a, + zan—la + zan—ea& R Eala.,._, + a,.

We have already found the value of aqﬁg the kind of space-
coefficient which occurs in the third term, and by the rule obtained

we have deduced the value of a*ﬁ*y* the kind of space-coefficient
which occurs in the fourth term. The value of the kind of co-
efficient which occurs in the fifth term is deduced from that of
the fourth by another application of the same rule. Thus

X8y TsT — s cosaB-y¥ + cosay- BF — cosBy- a¥ + cos apy} ot
= co8 f3 cos y8 — cos ay cos 38 + cos By cos «d
4 cos a3 siny8. 78T — cos ey sin 88 B8! + cos By sin ab - wd!
+ cos afy- oF,

In a similar manner the space-coefficients for any subsequent
terms may be developed. De Moivre’s theorem is obtained from
the above, by making the n axes coincident, and the » arcs equal.
Then it becomes

a™ =cosnd + sinnA-a*
=an+nan-1a+ﬁn_2—-‘_12an-za'2+'_._l_,naa' -1 +an
b1

where a=cosAd and a=sin 4. .

PRODUQCT OF TWO ANGLES IN SPACE, WHEN EXPRESSED
IN TEREMS OF OBLIQUE COMPONENTS.

We may equate the angle 4 to the sum of two components, the
arcs of which differ by any amount greater than 0 and less than
. Let A contain r whole turns, and let A' denote the remainder ;
then the complete equivalence is expressed by

ot = o?fcos A'- o + sin A' . a*},
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where the components differ by an arc ¥
w, and cos 4' and sin A’ are the oblique w
cosine and sine for the difference of are
w (Fig. 8). In the figure these are de-
noted for shortness by z and y; and 4
they are connected by the relation

T+ y’+2zycosw=1.
The incomplete equivalence is ) Fia. 8.

a

_ =z y-a"
To prove that the dfstributive rule stfll applies, namely that
@+y-e)(@'+y - -p)=az+ay B+ ay- o« +yy' -ep
Since oc‘=a:+y-nz"=a:+ycosw+ysinw-azg
and B":x'+y'-,3‘”=:c’+y'cosw+y’sinw-BE,
a’BP={(z+ ycosw)+ ysinw- aﬁ} §(w'+y’cosw)+y'sinw-ﬁ§§;
therefore, by applying the rule for rectangular components,
a*B® = (x + y cos w) (2' + y' cos w) — yy' sin w cos e
+{(z+ycosw)y'sinw-B+ (2'+y cosw)ysinw - a—yy'sin’zbsin af -EB}*
= ' + zy' cosw + 2'y cos w + yy' (cos? w— sin®w cos «f)
+ [y’ sinw- B+ 'y sinw- e+ yy'§cos w sinw(a+ B) —sin’w sinaf-ap} ]t
=z’ ay - o+ 2y e +yy - ape.

To express the product angle in terms of oblique components of
the same kind with that of the factor-angles.

From the above we see that
a*B? = a2’ + (xy' + yz') cos w + yy' (cos® w — sin® w cos «B)
+ sinw [y - B+2'y - a+yy'{cos w(« + B) — sin wsin af - «B11k.

The axis is the same whether the components are rectangular or
oblique ; the magnitude of the w sine is obtained by dividing the
rectangular sine by sinw; and the w cosine is obtained from the
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rectangular cosine by subtracting the magnitude of the w sine
multiplied by cos w. Hence

a‘Be=zx' + (xy'+ yx') cos w + yy' (cos?w — sin*w cos ¢B) — ¥ cosw
+{zy'- B+ 'y «+ yy'{cosw(a + B) — sinwsin aB - B},
where Y denotes the square root of the square of the vector
(xy'+yy' cosw) - L+ (2'y+yy' cosw ) - a— yy' sinwsinef - «p.
Suppose that B is identical with «. Then
a*t? = zx' + (xy'+ y=') cos w + yy'(cos?’w — sin’w) -
+ sinwizy'+ z'y + 2 yy' cos w} - ot
=zx'+xy-a"+2'y.a”+ yy"- «*
= az' —yy'+ {2y'+ 2'y+ 2 yy' cos w} - a*.

This last result for the plane agrees with the oblique trigonom-
etry of Biehringer and Unverzagt.*

To find the product when the obliquity is different for the two
JSactor-angles.

Let e*=x+y-e*and BE=2'+y' . B;
then it may be shown in the same way as before that
oAB% =xx'+xy'cos w' +2'y cosw+ yy'(eos weos w' —sinwsin w'cos af)
+{zy'sinw'- B+ z'ysinw-. « .
+yy'(coswsinw'- B4cosw' sinw - e—sinw sin w'sinaB - «B} %

from which the components for either kind of oblique axes may
be deduced as before.

‘We have also
@B =zx'+ zy' - B+ 2y - @+ yy' - @B
For the plane this becomes )
wlaf= ot = 2x'+ 2y 0+ 2'y - @+ yy' - @t
Let a = au’, b = bu®;

then ab = abatu?=abar*s,

*Die Lehre von den gewohnlichen und verallgemeinerten Hyperbelfunctionen ;
von Dr. Siegm. Giinther, p. 359.
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The product of ab is obtained by taking the product of the
ratios, leaving the axis the same, and taking the sum of the arcs.
This is the product of Plane Algebra,* and the above result shows
that the distributive rule holds for such product.

GENERALIZATION OF THE EXPONENTIAL THEOREM.

‘We have seen that

cos «*f3% = cos A cos B — sin A sin B cos «f8

and (Sina‘,B")”r=cosBsinA-a’+cos'AsinB- ,8’
—sindsin Bsineg - «B'.
A A A8
Now cosA=1—§—! ﬁ—a_*-’
. _ A3+A5
and :~nnA_A—:ﬁ i

Substitute these series for cos A4, sin A, cos B, and sin B in the
above expressions, multiply out, and group the homogeneous
terms together. It will be found that

cosa‘B"=1—%{A’+2ABcosa/3+B’}
+%{A‘+4A”Bcosa/3+6A"B’+4AB"cosaﬁ+B’§

1 §A*+ 6 A*Bcos af + 15 A*B? + 20 A°B* cos «f + 15 A*B*
6! + 6 AB® cos «f8 + B°
+ ete.,

where the coefficients are those of the binomial theorem, the only
difference being that cos«B occurs in all the odd terms as a
factor.

Similarly, by expanding the terms of the sine, we obtain
(Sina'p?)¥ = 4.4¥ + B. ¥ — ABsinaB - uft
—%{A’-a§+3A’B-B¥+3AB’- &+ B gY

* Note on Plane Algebra by the author. See Appendix, p. 28.



14 THE FUNDAMENTAL THEOREMS OF ANALYSIS

[ {AB + 4°Bsin e prkd

|»-A °*|’-

8. e +54B. 8% +10 428 oF 410 425 . BT
+54B . o" + B . g%
{AB’+——A’B"‘+A’B}sma,B P

+

Cr

C«ll,_.

te.

By adding the two together we get the expansion for «*B%;
namely, :

ABE=1+ Aag + B-B’
;42 + 2 AB(cos uf + sin af 2g%) + BY

[¢]

158 «f +34°B.8% + 34847 + B g%}

; £4¢ + 4 4°B(cos B + sin af- «BY) + 6 4B

+ 4 AB%(cos «B + sinaf- aBg + Bt}
+ ete.

Now by restoring the minus, we find that the terms on the
second line can be thrown into the form

él_'gAz.ar+2AB-a§[35+Bz°/3"f’

and this is equal to

id-d 4+ iy
provided that in forming the two cross-terms the order of the
terms in the binomial is followed, not any supposed order of a
first and second factor.
In a similar manner the terms on the third line can be restored
to
1,

5y 4 -t + B-gFp,

on the understanding that the cube is formed by preserving in
each term the order of the axes as given in the binomial ; that is,

4.3 1 34B.w gt £ 348 . Jp + B PR,
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Hence
e =1+ (4-at +B.gH+ 114 ot B.glpe

+31 {d.<F + B. B*'S-;- [f4.a¥ + B gh

-_-eA.ﬂ.}-{-B.ﬂi‘

Hence, also, loga‘B®=A4- of + B. ,B*.

Let B=0;
then =1+4.4f +-- (A-a¥yr4
= eA"'%,
and logat=4A4- o,

The quaternion is the complex quantity in space, and is ex-
pressed by ae®. Hence

log(aat)=1loga + 4 - “i’

which is the generalization for space of a well-known result for
the plane.

We also see that a#B3” is a true generalization of the product of
algebra, for the logarithm of «*f3” is the sum of the logarithms of
a* and of S%.

This result is different from that whlch is taught in Quater-
nions. At page 386 of his Elements of Quaternions Hamilton
says: “In the present theory of diplanar quaternions we cannot
expect to find that the sum of the logarithms of any two proposed
factors shall be generally equal to the logarithm of the product;
but for the simpler and earlier case of complanar quaternions,
that algebraic property may be considered to exist, with due
modification for multiplicity of value.”

Hamilton was led to the above view by erroneously identifying
a vector with a quadrantal quaternion, and both with a quadrantal
index, or logarithm. We have three essentially different bino-
mials to consider. Let ae and b8 be any two vectors having a
common point of application; their sum is ae + bB, and it means
the geometrical or physical resultant, a vector of the same kind
as either component. Then '

(ae + BB)? = a? 4 b* + 2 ab cos af,
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for the square of any vector is the square of its magnitude. The
sum of two quadrantal quaternions a - «fandb. ,3’ is

a-af +b.85=(aa+88)¥;
the square of which is

—(a® 4 b+ 2 ab cos af).

b

But the sum of two quadrantal indices or logarithms a - ¢ and

b- B’ is not (aa + bﬁ)i; and (aa’ + b,BE)’ is not
— (@ + b+ 2ab cos aB),
but — (a?+ b* + 2 ab cos «B) — 2 ab sin B - ap'.

The sum of two simultaneous vectors is independent of order;
hence the square does not involve the sine term, for it supposes
an order. The sum of two quadrantal indices is a successive
sum ; hence the square involves the sine term.

FURTHER GENERALIZATION OF THE EXPONENTIAL
THEOREM. '

We have found that for an angle in space
ad =e4: J.

The occurrence of the constant ¥ suggests that by generalizing it
we shall get a more general idea of which a* is the % case. Let
the more general idea be denoted by «Z, which means that

‘

at=ed-a"

A3

' 4 40
=1+A-a"’+‘-2-!-a“’+3—!-a +

=1+Acosw+2£:cos2w+§i:cos3w+

§+§sin2w-a}+£sin3w-a§+.

+Asinw -« 31
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To prove that e = et°o*v+4 sinw.of,
For
eAeonv+A|inw-¢§ = eAeonv eA-inw.aE

A? A3
=§{1+Acosw +‘7'-cos’w+§cos3w +1

X {1+ Asinw- a, —gl;sin"’w—gl—:sinsw- a’-l—}

=144 cosw+§;(cos’w—sin2w) +§i's(cos3w—3 cos w sin®w) 4

. 3
+Asinw- a}+;‘:—172 2sinw cosw- a’+§4—‘(3 cos*wsin w—sin®w)- of+
oy A g A
=144« +ﬁ-a"’+§'--a3"+
= e4-a",
Meahing of «i.
Since h = g4 cos wghsin ..,.J’
therefore it is = eAcosugdsing

It involves a versor of axis « and arc 4 sinw, and an ex-
ponential multiplier e4***. Let
the arc 4 sin w be denoted by 6,
then

[
a: =e E"—"a’.

Now this is the equation to
a logarithmic spiral OMP (Fig.
9) in the plane of a, OM be-
ing of unit length, and w being
the constant angle between the
radius-vector and the tangent.

In the case of the circle w =%

(]

and ai = etan§ o0

=eat

As ae? involves one element more than the quaternion a4, it
may be called a quinternion.
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To find the product of two spiral versors e and 8.
Since al= e‘M-'eA'ln-.ci
and ﬂ: = e'co'l'eﬂlhl..ﬂi,

therefore a: Bg — el4+B)cosrpa -lnw.a!-}-llinn.ﬂ,

= eUtBeosmgrinn(s.a¥15.8T)
in?
= eurmeneiltsinuw(d-af +B.g1) + 500 (4054 B.gT 4.

Thus the ratio of the product is the product of the ratios, and
the angle of the product is the product of the angles.

Suppose B to be identical with «, then (Fig. 9)

aAa® = gA+B)coreg(4+8) sinw.a¥ _ aits,
This is the addition theorem for the logarithmie spiral.
To find the product of twco gquinternions of the most generai kind.
Let a=ae; and b = b2, be any two quinternions. Then

ab = aet <t igd tio v pe? cosw, BB sinw,
— qbedcosw, + Beoswypasine, .a T+ Boine,. g¥ ’
The ratio of the product is
abe? oty + B eoswy

and the angle of the product is

ot sinw, BB sin v,

Also ab — abe,c.a"’,+3.ﬂ"a
—ab {14 4wt B fot LAt Bt (A ik By ).

The square term is expanded as follows
(A-a1+ B- )= A%.a®1 42 AB - a:3*: + B?. 8%,
and the cube term as follows
(414 B. %)= A% a1+ 3 A’B- a®*13*1+3 AB*- a*13*:+ B [3°=,

and so on.
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GENERALIZATION OF THE BINOMIAL THEOREM.

By the preceding investigation (p 14) we arrived at the con-
clusion that for the sum of any two quadrantal logarithms the
nth power is given by the formula

{A . a} + B‘B}§”=A" . a"* +nd"'B. a(u—l)?ﬁf
' + %—QA""B’ . a""”iﬁ' + ete.
Doubtless this theorem is true also when = is negative or
fractional.
But we obtain a still more general ferm, by taking the sum of

two logarithms of the most general kind 4¢* and BB“:. Let &
denote Aa*: and b denote BS*s, then

(8+Db) =a*+narb+ 20 =D armry,

the general term being

n n ! an—rbr ;
rl(n—r)!

1 n! n—r}r,(n—r)w,
that 18, ;-!_(T;_—r)!a ba lﬁ"’.

The binomial theorem of algebra applies to the sum of two
algebraic terms, that is, terms of the nature of a cosine compo-
nent; the binomial theorem of trigonometry applies to the case
where one term is a cosine, the other a sine component ; the for-
mer of the two theorems above applies to the case where both
terms are of the nature of the sine; while the latter theorem
includes all the others as particular cases.

GENERALIZATION OF THE MULTINOMIAL THEOREM.

In the expressions obtained (p. 9) for cos ¢*B%y®and (sin 4):‘;8")/")1"tl
insert the series for cos 4, sin 4, etc., and multiply out, collect-
ing the homogeneous terms. The sum of the terms of the first
order is

A.o 4+ B.gE 4+ 0.,k
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The sum of the terms of the second order becomes, when the
minus is restored,

L4+ B fr+Cry +2(4B- o¥g¥+ 40 o5y F 1 BO. g1
- =2l!{2A’-a'+ 234B. oYk}

The order of the axes in the products is the order of the axes
in the trinomial; that is, « is before B and before y, and B is
before y. Hence the terms form

%(A-a’ +B. g 0.y
The sum of the terms of the third order is 51-' of

4.5y . g 0. BT

+3§4°B. arBt + 420 . amyt 4+ BC. By}
+3{AB . o¥pr 4+ A0t oYy + BC? . gEyr
+6 ABCEgEyE.

=34.63Y 1 334°B .« + 3348 . o7 + 6 4BC. «Ip%F;
therefore the sum of these terms is

31—311-03-‘4,3.3%0.-,*;8.

As the same is true for the nth term, we have
aABa,yc': e.«.ug+a.ﬁ}+o.7§.

Thus the multinomial theorem of algebra may be applied to the
sum of a number of quadrantal indices, provided that in all the
terms the order of the axes is preserved ; that is, is made to follow
the order of the indices in the multinomial.

The most general form is where we have a multinomial in
which the indices may have any angle. Let a, b, ¢ be three such
indices, then

(a.+b+c)"=n!2:%:%, where r48+t=n.
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An application of the multinomial theorem.
‘We may apply the multinomial theorem to develop the product
—L‘ BB 6'
By the exponential theorem
,y—cﬁxyc= e-o.y§+n.ﬁi+c.y¥

=1+;—0~y’+3-3*+0~v*;

+2 1=yt + B g+ 0
7 7

+3,g —C-y +B-gE 4 0. I}

+ ete.

Now the first power of the trinomial reduces to B- 8,
the square of the trinomial to 2— { — B'+ 4 BCsin y8- 8},

thecubeto3 {—B°-B—12BC?. B+ 12C*Bcos By -y},

ete.

- 1 1
Hence y~98%y°=1— EB’+ ;—!B‘—

1 1 5
[B-g—5B B+ 5B 8- }
| +2BCsinyB.-y8—2BC*- B+ 2BC%cos By-y +

It is shown in Professor Tait’s Treatise on Quaternions that
v~ %B%y° turns the axis 8 round y by an amount 2 C. The above
development shows that the amount of the angle is unchanged,
for the cosine is unchanged; while the sine term gives the devel-
opment for the new axis in terms of B, C, 8, and y.

+

GENERALIZATION OF THE LOGARITHMIO -THEOREM.

It follows from the above principleé that the logarithmic

theorem
log (1 +x)=x—§+‘§ a:‘+’ ete.,
2 being less than 1, is true when instead of = we insert the gen-

eral quaternion X =z- £ Thus,
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log(1 —x X X _x
gl +X)=x—5+5 -7+

2 pp B

=2 T 4 T, et

= xCos X—%’cos2 X+§0033X-
+{esin X-%’sinzx-g-“gsins X8

= 2(cos X +sin X - ég) - x; (cos X + sin X-f’)’-i-, ete.

It is true even more generally, namely, when we insert the
quinternion X = z - ¢4, provided we**** is less than unity.

Application to prove Gregory’s series.
We have log (a*) =log (cos A +sin 4 - ai).
Suppose that sin A is not greater than cos 4, then

log a* =1logcos A +log(1+tan 4 - aE)

§_tantd . tanaA SE_

=logcos A +tan A .«

tan 4  tan’4

=logcos 4 + == i +
+{1;anA—ta‘n A+ E‘.“L*‘%__;, ok
But | log (et)=A - ek,
therefore . —logeos A= ta!gA _ ta.r;’A +
and A__tanA—t—an—é.q.ta“;A_

Thus we obtain not only Gregory’s series for the are in terms
of the tangent of the arec, but also a complementary series for the
logarithm of the cosine of the are. :
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Application to find log (log (¢4B37%)).
Suppose that B is not greater than A4.

Since log (e*B%)=A - PLI B B§

B -
=A.ag{1+z.a !ﬁ!})
By _ ¥ B -%.%
therefore loglog («*B?)=1log( 4-a* )+ log 1+Z-a B*t.
Now log(A-a})=logA+"2_’.a§

B -3 8\_B -1 1B  _1.%
and log(l-}-z-a B):Z-u A -2 (@ Tt ete,

where o« *Bg =—cos ¢8 + sinaf -a_ﬁi.
Let this angle be denoted by 9,
then log log («4B%) =log 4 + g ot
B o 1B 4o 1B o

It is to be observed that («48%)" is not equal to «™p"# unless
B is identical with @. Twice the angle «*f% is not equal to the
angle a?4B?5,

GENERALIZATION OF HYPERBOLIO TRIGONOMETRY.
The fundamental theorem of hyperbolic trigonometry is
cosh (4 + B) = cosh A4 cosh B+ sinh 4 sinh B

and sinh (A4 + B) = sinh 4 cosh B + cosh 4 sinh B;
L[]

where A now denotes twice the area of the hyperbolic sector, -
not the length of the bounding are.
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Let OM (Fig. 10) be of unit length, and OX and XP the pro-

jections of OP on the principal diameter OM and perpendicular

to that diameter. Then OX repre-

sents cosh 4 and XP represents

sinh 4. But cosh 4 is a ratio,

namely, the ratio of the line OX to

Q the line OM; and sinh 4 is a ratio,

namely, that of the line XP to the

line OM. In the case of the sec-

tor B starting from the diameter

P OP, draw QV parallel to the tan-

gent at P; then OV/OP and

VQ/OP have the same magnitude

M X as the rectangular projections of

Fia. 10. the radius-vector, obtained when

the sector is shifted without change of area to start from the
principal diameter. )

Let hyp a* denote the hyperbolic sector or versor determined
by «, the axis of the plane, and A twice the area enclosed. Then
as in the case of the circular versor we have the equivalence,
which in this case is complete,

hyp «* = cosh 4 +sinh 4 - oF.
Here we equate the hyperbolic versor to the sum of two quater-
nions differing by a right angle.
To find the product of two hyperbolic versors.
Let one hyperbolic versor be
hype*=cosh 4 +4sinh 4. a*,
and the other
hyp B% = cosh B + sinh B. Bg H
then since the distributive rule holds good,
hyp «* hyp 8% = cosh A4 cosh B + cosh 4 sinh B. ,B"I
+cosh Bsinh A - «f + sinh A sinh B. «¥8%.
The meaning of the first three terms is known; it remains to

find the meaning of agﬂi. As the fundamental theorem in plane
hyperbolic trigonometry differs from that for plane circular trigo-
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nometry in the sign of the plane component of the fourth term,
we form the hypothesis that for the equilateral hyperbola

a%,BE = cos @B + sin a8 - @B’
This would give
_ cosh #4B% = cosh A cosh B 4 sinh A4 sinh B cos «j,
and sinh «48% = cosh A sinh B- 8+ cosh Bsinh 4. «
+ sinh 4 sinh Bsin 8- aB.
If we test this expression for sinh «*8” by the relation
sinh?@*B? =1 + cosh?4p®,

we find that the relation is not satisfied. But when vV —1 is
introduced as a coefficient of sinapB, the relation is satisfied.
Hence the fundamental principle in extending hyperbolic trigo-
nometry to space is

a’ﬁ’ =cosafB+V—1sinef- @E.

As a special case we see a” = 1.

Hyperbolic exponentials.
hyp «* = hyp edat
= A L A
=14+4-a +2—!-a +3—!-a3 +
A 4t
BTt

A

5 ).E
sty

AS
+{a+5+
since ar=1.
Also, hyp a* hyp B2 = e4 ca¥ip.p%
=1+(4-of + B-gH+ L (4-af + B.ghy+,
where the terms are expanded as before, only instead of
a},Bi = —(cos ¢ + sin af3 - Jg*)

we have «¥8¥ = cos af ++/ —1sin - aB'.
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We deduce that for hyperbolic versors
e2p% Y = (cos e 4+ V_TsinaB-uB)y}
= cos aB-y¥ + V1 sin ¢ cos zfy — sin af sin 2By~ aBy
= V/—1 sinaBcos uBy+{cos B - y+cos By - e— cos ye- B} 1.
Hence we have the three fundamental principles : '
Jirst, for vectors, af =cosaf + sinaf-aB;
second, for circular versors, a’,B‘y‘ = —cos af3 —sinaf-. a_ﬁi;

third, for hyperbolic versors, agﬁi =cosaf +V —1sinef -a_ﬂf.

GENERALIZATION OF DIFFERENTIATION,

To differentiate a circular versor with respect to a scalar variable
such as time.

If we take the incomplete equivalence

at=cosAd+sind- a},

then d(et)=dA(—sinA 4 cos 4. a’) +sin4-da?
= dde**¥ 4 sin Ade - o,

where « denotes an axis perpendicular to a.

It is worthy of remark that the cosine term is differentiated
with respect to 4 only, and is treated as independent of e.
When «* denotes an angular velocity, 4 is infinitely small, and
from the above we get the angular acceleration
det _ (dA da —} 4
Qe _)aa, 4% ;
a = Va “tha s
that is, an angle whose cosine is 1, and whose directed sine is the
infinitely small quantity :

d4
a

The former term expresses the change of speed, the latter the
change of axis.
The differential of a quaternion involves the additional term

da - at.

(la —

et A%
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To find the differential of a product of angles in space.
Since
a*fB® = cos 4 cos B 4 cos A4 sin B-,B} + cos Bsin 4. a¥
' + sin 4 sin B- a*,B*,
d(e*8%)=dAj —sin A cos B— sin 4 sin B-Bf +cos Becos A4- ot
+cos Asin B. a’ﬁ%,
+ dB§ — cos A sin B+ cosAcosB-,B* —sin Bsin 4. e}
+sin AcosB- a*ﬁ}}

+ dafcos Bsin A-z! 4 sin 4 sin B-E}B*},

+ dB§cos Asin B. B¥ + sin 4 sin B- o138},
=dAc*"¥p®  dBarg™},

+ dafcos Bsin A.a¥ + sin A sin B. 2¥p%},

+ dBjcos A sin B-BY + sin A sin B. «¥g¥},

= — (sin 4 cos B + cos A sin B cos «8)dA

— (cos 4 sin B 4 sin A cos B cos a3)dB

—sin A4 sin Bfcos(de)B + cose(dg)}

+ (—sin. 4 sin BdA4 + cos A cos BdB)-8 1%
+ (—sin Bsin AdB+ cos Becos AdA)-a
— (cos A sin BdA4 + sin A cos BdB)sineB-af |
+ cos A sin B-dB + cos Bsin 4 - de

— sin 4 sin B{sin (de) B8 + sin ¢(dp) } J

We obtain successive approximations by differentiating the
terms of the series

1+ (A-a¥+ B-gh+ L (a-of + BTy
Thus the first approx1mat10n is:

d(e*B?)={d4-«+dB-B+ A-de+ B-dsi¥.
The second approximation adds to the above

—AdA — BAB + (AdB + BdA) -1 g% + ABd(a*p*)
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To find the differential of a power of a quaternion.

Let a" = a"a™,
then d(a")=na~"'a™ + a*nd 4 - g+t
+ a"sinnd (de) L3

Let A be infinitely small, then
d(a") =na" { };a"‘ +dA- s+ + Ade - E*} .

To find the differential of a spiral versor.
d(at) = d(e* et o)
= eA=*vgdtinv (44 cosw — Asinw dw)
et ™ (G Asinw 4 A cosw dw)
+ et gin (A sinw) de - al.
= e4 A ""v (cos w + sin w . a,’t) dA
+ et rgdsine(_ginw 4 cosw - a*)Adw
+ et sin (A4 sinw) da - al
= eAcrvgdsinetwg 4

+ et eo.'at sinw+w+§ Adw

+ e4**sin (Asinw) da - &'

APPENDIX.

—eC——

NOTE ON PLANE ALGEBRA.
Prom the Proceedings of the Royal Society of Edinburgh, 1883, p. 184.

By Plane Algebra I mean what De Morgan called Double
Algebra. While ordinary algebra deals with quantities which are
represented on a straight line, and Quaternions with quantities
which are represented in space, Double Algebra deals with those
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which are represented on a plane. The object of this paper is to
show some applications of this intermediate method.

The quantities considered are conveniently denoted by small
Roman letters, leaving their Tensor component to be denoted by
the corresponding Italic letter, and the Versor component by the
corresponding Greek letter. Thus & denotes a line of length a
and angle «; b a line of length b, and angle 8. Quantities of this .
kind are related to those of ordinary algebra as genus and species,
and the laws of operation for the former are very easily general-
ized from those for the latter.

Expansions can be obtained by altering the order of the opera-
tions performed; for example, first by applying the Binomial
Theorem, and then resolving; and second, by resolving and then
applying the Binomial Theorem.

For example —

_1__—_1(1_9)4:1;4.%4.1_):.'.
a—b a a a a® &

IS

cos (— a) +a2,cos (8 —2¢) +g-:cos (2B—3a)+

(1 . b . b .
+z{as1n(— "‘)+z;zsm('3_2“)"'“—351“(2'8—3“)"'}'
Again,

1 1
a—b acose—bcosB+i(asine—>bsingf)

_ 1 {1_iasina—bsinﬁ
" acos «—bcos B acos a—b cos 8

ofasin @ —bsin B\ ,/asin & — b sin B\3 }
+l(acos a—>b cosB) ’ (acos a—bcosﬁ) +
Hence, by equating the components along the initial axis,
1 {1_ asin ¢—b sin B)’_l_ asin «—b cosﬂ)‘_}
acos & —bcos acosa—bcosf3 acos a—b cos 8

1 b b
=a{cosa+$cos La— B)+¢§cos (Ba—2p8)+.
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Another identity is obtained by equating the components along
the perpendicular axis.

By treating (1 + a)! in a similar manner we get

1.3

5.4 cos 2 e + - 7.1, 6a’cos3a¢—
i 2 1.3.5 [/ asina \, |
=1 }{1 asin ) l
(A+acosa) i1+ (T cosa) “2.4.6.8\1 +cose) TV
and
%asina—ﬁa’sitﬂu+21A36a”'sin3u—

—(1+acosa)}{ asine 1.3 a sin a 3_}_}.
21+acosa 2-4-6\1+acosa

An expansion for log {a® + b* 4 2ab cos 0}* is derived as
follows:

log (a +b) =loga + ]og(l + 2)

Now loga =loga+tloga,

and log (1 +b) 2_ %(2) +§<_E)a_
= séos B—e) —%(Eb)zcos 2(B—a)+

+ z{ sin (8 — @) --<-) sin2 (8—a) + } 1.
Also,

1 =1 24 p24.9 — o}, pan-128in€+bsing
og {a+b}= og[(a +b*+2abcos(B—a))?-tan acosatBoosp

aasine 4 bsin B
acosa+bcospB

%log(a’+ b*+2abcos (B — a))+ttan
Equate the components along the initial axis, and put 8 — e =26.

The direct logical power of the method is illustrated by the
mode in which it deduces the expressions for the accleration along
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-and perpendicular to the radius vector for a point moving in any
plane curve from the expression for the velocity.

Given r=7r- ]
then % =dr-641irdd-6.

Apply that principle again;

%:d’ro0+idrd0-0+idrd0-0+ird’0- 6+ r(d6) - 0

= (& — r(d9)?) - 6 + i(2 drd6 + rd’0) - 6.
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ON THE DEFINITIONS OF THE TRIGONO-
METRIC FUNCTIONS.

[READ BEFORE THE MATHEMATICAL CONGRESS AT CHICAGO, AUGUST 22, 1893.]

IN a paper on ¢ The Principles of the Algebra of Physics” 1
introduced a trigonometric notation for the partial products of
two vectors, writing

: AB = cos AB 4 Sin AB,

where cos AB denotes the positive scalar product, and Sin AB the
directed vector product. To denote the magnitude of the vector
product I used the notation sin AB without a capital : it is not
the exact equivalent of the tensor, because the magnitude may be
positive or negative. With the additional device of using the
Greek letters «, B, y, etc., to denote axes, it is' possible to dis-
pense with the peculiar symbols introduced into analysis by
Hamilton, namely, S, V, T, U, K, I; and the space-analysis
then assumes to a large extent the more familiar features of
the ordinary analysis. The notation raises the question of the
relation of space-analysis to trigonometry. If cos and sin are
correct appellations of the products mentioned, are there prod-
ucts of two vectors which are correctly designated by tan, sec,
cotan, cosec ? At p. 87 of the Principles I give a brief answer to
this question; but a complete answer called for a more thorough
investigation than I had then time to make.

This trigonometrical notation has been briefly discussed by Mr.
Heaviside (The Electrician, Dec. 9, 1892). He takes the position
that vector algebra is far more simple and fundamental than
trigonometry, and that it is a mistake to base vectorial notation
upon that of a special application thereof of a more complicated
nature. I believe that this paper will show that trigonometry
is not an application of space-analysis, but an element of it; and
that the ideas of this element are of the greatest importance in
developing the higher elements of the analysis.

1
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The notation has also been discussed by Professor Alfred Lodge
(Nature, Nov. 3, 1892). He takes the following view: ¢“The
particular symbol used to denote a scalar or a vector product is
a matter of secondary importance, but is a matter which must
sooner or later be settled if vector algebra is to come into general
use. Lord Kelvin is of opinion that a function-symbol should be
written with not less than three letters, and Professor Macfar-
lane’s notation obeys that law, and is, moreover, easy to work
with; but is incomplete, being applicable to products of two vec-
tors only.” .

I consider that the notation is a matter not of secondary, bu
of paramount importance. If the notation is arbitrary, it gives
us no help in the further development of analysis; if on the
other hand it is systematic and logically connected with the
existing notation of analysis, it points the way to more general
principles and results. I believe that this paper will show that
my notation is systematic and logical.

It is not true that the notation is applicable to products of
only two vectors. In the Principles I have shown that the com-
plete product of three vectors consists of three partial produects,
and that of four consists of five partial products: these several
products are specified by means of the cos and Sin notation.
The additional principle introduced is that in space of three
dimensions the aspect of an area can be specified by the axis
which it wants; hence that the complete product of an area-
vector and a line-vector consists of two partial products which
may be denominated the cos of the area and line, and the Sin
of the area and line.

In this paper I propose first to review critically the historical
definitions of the trigonometric terms, and the definitions, trian-
gular, circylar, or hyperbolic, given in the best modern treatises
at my command ; then to devise a logical system of definitions
which will apply to space-analysis and that modern trigonometry
which, as Professor Greenhill * shows, includes the properties
both of circular and hyperbolic functions, and will be able to
bring within the same domain the properties of the elliptic, gen-
eral hyperbolic, and other functions. In this paper attention is
mostly given to trigonometry in a plane; in a paper on The Prin-

* Differential and Integral Calculus, p. 61.
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ciples of Elliptic and Hyperbolic Analysis I consider trigonometry
in space.

The ancient method of defining the trigonometric terms is
described by De Morgan at p. 18 of his « Trigonometry and Double
Algebra.” A straight line OP of constant length (Fig. 1) revolves
round O from a starting position OA4; the arc AP traced out by
the extremity of the revolving radius represents the angle AOP.
From P draw a line PM perpendicular to O4; from A4 draw a
line AT at right angles to 04, and terminating in OP produced;
draw OB at right angles to O4 and equal to 04, and from B
draw BV at right angles to OB and terminating in the line of

E
B vV,
N 5 T
4 ) M A D
B’
Fia. 1.

OP. The line PM is called the sine of the arc AP, the line OM
is called the cosine, the line AM the versed-sine, the line AT the
tangent, the line OT the secant, the line BV the cotangent, and the
line OV the cosecant.

Here the terms sine, cosine, versed-sine, etc., are applied to
certain lines drawn in and about a sector of a circle. These
lines are commonly called the trigonometric lines; but inasmuch
as they have reference to a circular sector and not to a triangle in
general, they are more properly denominated circular lines. The
trigonometric lines proper may be defined independently of the
circle or any other curve.

‘We also remark that for the purposes of the higher analysis
the circular lines must be defined with the utmost exactness;
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difference of sense is not immaterial, still less is difference of
direction. The sine-line is MP not PM, still less A4S drawn
from A perpendicular to OP. According to the account given
by Dr. Hobson * of the ancient method, the tangent-line is not
AT, but PD drawn a tangent to the circle at P, and terminated
in the line of OA. Thus there are four logically distinet ways
of defining the tangent line: jirst, it may mean the line drawn
from A at right angles to OA; second, the line drawn from A4
a tangent to the circle at A; third, the line drawn from P at
right angles to OP; fourth, the line drawn from P so as to touch
the circle at P. The first definition agrees with the most ancient
conceptions of the tangent; namely, the umbra wersa of Abiy’l
Wafa,t and the xaferos of Copernicus;} the fourth view is taken
by Professor Greenhill.§ These four lines may be all unequal
and differently directed when another curve such as the logarith-
mic spiral is substituted for the circle. It is necessary then to
devise a separate notation for each.

In the same way there are four logically distinct definitions of
the secant-line. It may mean, first, OT cut off by the perpendic-
ular from A4 ; second, OT cut off by the tangent at A4; third, OD
cut off by the perpendicular from P; fourth, OD cut off by the
tangent at P. The first conception agrees with the $rorewovaa of
Copernicus,|| while the fourth answers to the etymological con-
ception of the tangent.

It is instructive to remember that the primary conception of
the sine was the half of the chord of the double arc, and that
it was long before the conception of the cosine was developed
beyond that of the sine of the complementary are.

The circular ratios are thus defined by De Morgan.M Let 6
denote the anglec AOP (Fig. 1) ; then

P oM AM AT

sin0=](')LP, cosO:W, vers § = OF tan0=m,
sec0=%§, cotantﬂ:lg—g, cosec =g_g.

* Treatise on Plane Trigonometry, p. 16.

t Cantor’s Vorlesungen tiber Geschichte der Mathematik, Vol. 1., p. 642.
t Ibid., Vol. IL, p. 433. § Differential and Integral Calculus, p. 29.
|| Cantor's Geschichte, Vol. IL., p. 433. T Double Algebra, p. 19.
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Here three different radii 04, OP, OB are introduced, but no
reason is given why in a particular case one should be preferred
to either of the others. Why should the secant be defined with
respect to 04 while the cosine is defined with respect to OP?
Is it a matter of indifference which radius is taken? It may be
as regards mere numerical ratios, but it is not so as regards geo-
metric ratios. Accuracy of definition is essential to the higher
development of trigonometry.

In consequence of defining some of the ratios with respect to
the revolving line OP (Fig. 1) instead of the initial line 04, a
difficulty in the signs is introduced; to wit, OP is always posi-
tive, even when coincident with OA' or OB', which are held to be
negative. This view in my judgment partakes of the nature of a
paradox. De Morgan attempts to dissolve it by the following
explanation (Double Algebra, p. 8): —

“When the revolving line comes into the position 04!, is it
negative? I answer, no: OA' as a projection is considered as
part of a line which makes an angle 0° with the starting-line;
and on a line so described is negative. But OA'as a position of
the line of revolution is part of a line which makes 180° with the
starting-line ; and thus considered it is positive. The same con-
siderations apply to the other axis. A line may be considered as
making with itself an angle of 0° or an angle of 180°; whatever
signs its parts have in the first case they have the opposite ones
in the second.”

Now the terms positive and negative, symbolized by + and —
respectively, are essentially relative; they in their simplest
application compare one line with another. If the line com-
pared has the same direction as the line of reference, it is posi-
tive with respect to that line; if it has the opposite direction,
it is negative with respect to that line. The line OA' is negative
with respect to 04, and it is equally true that OP when coin-
cident with OA'is negative with respect to O4. The line OB'
is negative with respect to OB, and OP when coincident with
OB' is negative with respect to OB. There is no meaning in
saying that OP is always positive. The fact is that we cannot
dispense with the idea of an initial line as a basis of reference,
and I propose to show in the development which follows that
the ratios are properly defined with respect to this initial line.
The radius which should appear in eath of the definitions is the
radius OA.
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The modern method seeks to define the trigonometric ratios
independently of the circle merely by means of two intersecting
lines. In elementary works this is
C/ first done under the limitation that
the lines intersect at an acute angle.
P For instance, Todhunter proceeds
thus (Plane Trigonometry, p. 14): —
“Let BOC (Fig. 2) be any angle;
take any point in either of the con-
taining straight lines, and from it
draw a perpendicular to the other
¥ B straight line; let P be the point in
Fa. 2. the straight line OC, and PM per-
pendicular to OB. We shall use the
letter A to denote the angle BOC. Then

PY, that is %, is called the sine of the angle 4;
o that is FPE:_:!E’ is called the cosine of the angle A;
%, that is Ew, is called the tangent of the angle 4;
%%, that is PWG%’ is called the cotangent of the angle 4;
. _%,f that is %‘E, is called the secant of the angle 4;
OF, that is p%, is called the cosecant of the angle A.

If the cosine of A be subtracted from unity, the remainder is
called the versed-sine of A. If the sine of A be subtracted from
unity, the remainder is called the coversed-sine of A.” Equiva-
lent definitions are given by Levett and Davison* and by Hobson.}

The definitions quoted are accurate only so far as arithmetical
magnitude is concerned ; they take no account of sense or direc-
tion. For exact purposes it is not indifferent whether the per-

* Plane Trigonometry, p. 4. t Plane Trigonometry, p. 16.
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pendicular be drawn from OB or from 0C, and whether the sine
PM _ MP

be defined as OP or 0P In consequence of dropping out the

idea of an initial line it is necessary to compare OM and MP
with OP, which does not coincide with the axis on which the
projection is made. The cotangent so defined answers to the old
conception of the umbra, the tangent to that of the umbra versa,
and the secant to that of the hypotenuse of Copernicus. A diffi-
culty is encountered with the wersed-sine; for it is not defined
geometrically like the others, as the ratio of two lines; it is
defined analytically. Why this breakdown in the scheme of
definitions ? But the above definitions are not comprehensive
enough even for the simple case where the lines meet at an
obtuse angle, because then the trlangle POM encloses not the
angle BOC, but its supplement.

The definitions are extended by dropping the idea of a nght-
angled triangle, and substituting the idea of projection. Thus
Levett and Davison, following De Morgan, say (p. 93): —

Y, Y
4 4
x P
v N M X
0 M = o -
N P
Fia. 3. Fia. 4.

“Let a line rotate about O (Figs. 3 and 4) from OX through
any positive or negative angle a to the position 0A4; let OY be
a line making an angle % in the positive sense with OX; and let
04, OX, 0Y be the positive senses of the lines 04, OX, OY.
Let a length OP, of any magnitude and of either sense, be meas-
ured along 04; and let OM, ON be the projections of OP on
OX, OY respectively. The ratio OM: OP is called the cosine of
the angle @, ON: OP the sine of a, ON: OM the tangent of «,
OP: OM the secant of e, OP: ON the cosecant of &, and OM: ON
the cotangent of «. These ratios are called the Circular Functions
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of the angle «.” The following is added in small print: “Two
other ratios are occasionally used, and are defined as follows: If
the length OP be equal in magnitude to OX, and positive in
sense, and if O0Y = OX, the ratio MX: OP is called the wversine
of @, and NY: OP the coversine of «.”

The above mode of defining assumes that a line may be posi-
tive in itself, whereas there are reasons for believing that posi-
tive and negative have their primary meaning in the comparison
of two lines. Again, in order to define the versine, the two inter-
secting lines are given up, and conditions are imposed equivalent
to introducing the circle; for OP is made of constant length, and
is supposed to be always positive.

Mr. Carr in his Synopsis of Pure Mathematics defines the sine,
cosine, and tangent geometrically; but the secant, cosecant, and
cotangent as the respective reciprocals of these. It is surely
more logical to define each function geometrically and indepen-
dently, and afterwards prove what relations exist between them.

From the definitions examined we may conclude that under the
one name of trigonometric ratios are comprised two species: the
geometric, or rather triangular, and the circular proper. The
triangular ratios are defined independently of the circle, and
they include some of the circular ratios as special cases.

Further light on this subject may be obtained by considering
those functions analogous to the circular which depend on the
equilateral hyperbola, or ex-circle. The convenient terms “ex-cir-
cle” and ¢ ex-circular” have been introduced by Mr. Hayward for
the phrases “equilateral hyperbola” and “equilateral hyperbolic,”
commonly called “hyperbolic” ( Vector Aigebra and Trigonometry,
p- 128). The following method of defining these ratios is adopted
by Messrs. Levett and Davison (Plane Trigonometry, P- 258) : —

“Let a point move along the curve (Fig. 5) from the vertex A
-of one branch of a rectangular hyperbola, whose centre is O and
semi-axis equal to a, to the position P; let 4 be the area of the

hyperbolic sector AQOP, and let u=%‘g; that is, let » be the

measure of the sector AOP, the unit of measurement being the
square whose diagonal is the semi-axis. .

“Take OY, a line making an angle of 90° in the positive sense
with the transverse axis 04X, and let-OM, ON be the projec-
tions of OP on OX, OY respectively; then the ratio



DEFINITIONS OF THE TRIGONOMETRIC FUNCTIONS. 9

OM : OA is called the hyperbolic cosine of u,
ON : OA the hyperbolic sine of u,

ON : OM the hyperbolic tangent of u,

OA : OM the hyperbolic secant of u,

0OA : ON the hyperbolic cosecant of u,

OM : ON the hyperbolic cotangent of u.”

‘We observe that here the ratios are not defined with respect to
the radius-vector OP, but with respect to OA the initial line; to

Y
) /V/
N LA
E ]
0 D/ Al M P
E
Fi1a 5.

define them with respect to OP would be an error. Wherefore,
we conclude that it is the analogue of 04, not the analogue of
OP, which should be introduced into the definitions of the circu-
lar ratios. We also observe that the hyperbolic argument is not
the ratio of the arc to the initial radius, but the ratio of twice the
area of the sector to the square on the initial radius; hence
the true analytical argument for the circular ratios is not the
ratio of the arc to the radius, but the ratios of twice the area of
the sector to the square on the radius. This leads us to the idea
that the trigonometric ratios may be ratios of areas as well as
ratios of lines.
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Dr. Giinther,* following M. Laisant,{ gives the definitions of
the circular lines which appear to furnish mést readily the defini-
tions of the analogous ex-circular lines. Let APB (Fig. 1) be a
circle of unit radius, and let « denote double the area of the sec-
tor AOP; draw PM perpendicular to 04, and PN to OB; draw
AT a tangent to the circle from A terminating in OP produced,
and BV a tangent to the circle at B also terminating in OP pro-
duced ; draw a tangent to the circle at P cutting the axis of 04
in D, and that of OB in E. Then the line PM or ON represents
sin u, the line OM or NP cosu; AT represents tanu, and BV
cotanu; while OD, not OT, represents sec v, and OE, not OV,
cosecu. The six ratios are represented by lines along the axes of
projection,—three along the axis of abscissz, and three along the
axis of ordinates; none have the direction of the radius-vector.
The definition of the tangent takes the second view, while that of
the secant takes the fourth view of it mentioned at page 4 above.

The analogous lines are defined in the following manner: Let
APB (Fig. 5) be an equilateral hyperbola of unit semi-diameter,
and let u denote double the area of the sector AOP; draw PM
perpendicular to 04, and PN to OB; draw AT a tangent to the
hyperbola at A terminating in OP, and BV a tangent to the con-
jugate hyperbola at B also terminating in OP; draw a tangent
to the hyperbola at P cutting the axis of OA in D, and that of
OB in E. Then the line MP represents sinh v, OM cosh u, AT
tanh u, BV coth u, OD sech u, and OFE cosechu. The analogous
ratios are represented by the analogous lines. We observe that
AT and BV might have been defined as drawn at right angles to
0OA and OB respectively, that is, according to the first view of
the tangent; but that OD corresponds to the fourth view of the
secant, and to it only. Why is it that analysts find it easier to
deal with lines which have the directions of the axes than with
lines having any other direction such as that of the radius-vector,
or of the true tangent? Because the former involve scalar prod-
ucts only, while the latter involve vector products.

M. Laisant, in his admirable Essai, extends his definitions of
the trigonometric lines to the ellipse and general hyperbola.}

* Die Lehre von den gewdhnlichen und verallgemeinerten Hyperbelfunc-
tionen, p. 92. t Essai sur les fonctions hyperboliques.
1 Essai sur les fonctions hyperboliques, p. 269.
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- Let APB' (Fig. 13) be an ellipse of such size that the product
of its two semi-axes 04 and OB' is unity. By » is meant twice
the area of the sector AQP; elliptic cosu is represented by OM,
elliptic sinu by MP, elliptic secu by OD, elliptic tanu by AT,
elliptic cotanu by B'V, and elliptic cosecu by OE. Here the
denominator of the ratio » is the product of the two semi-axes.

Many analysts hold that the circular functions might be
defined by purely algebraic ideas. For instance, De Morgan
(Double Algebra, p. 34): “I said that we should soon make it
very evident that a purely algebraical basis might have been made
for trigonometry. If we had chosen to call the preceding func-
tions of z, namely,

1 —§+; z_g'l‘y z+§+9
by the names of cosine, sine, and tangent of z (and their recipro-
cals secant, cosecant, and cotangent), we might have investigated
the properties of these series, and we should at last have arrived
at all our preceding formule of connection; but with much more
difficulty.”

Again, Dr. Hobson (Plane Trigonometry, p. 279) : “It is possi-
ble to give purely analytical definitions of the circular functions,
and to deduce from these definitions their fundamental analyti-
cal properties, so that the calculus of circular functions can be
placed upon a basis independent of all geometrical considerations;
these definitions will include the circular functions of a complex
quantity. We can define the cosine and sine of z by means of
the equations

cosz=}{e* + e},

: 1 -
smz=-2-i§e"—e “1,

where e’ denotes the series 1 2 +§+, etc. In other words, we

define cosz as the sumn of the series 1 _;-"f—!_’ and sinz as
the sum of the series z — ;-&--fi'— We n:iay regard this then
! 5!
as the generalized definition of the cosine and sine -functions,
and it includes the case of a complex argument, which was not

included in the earlier geometric definitions.”
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A definition which has only an algebraic basis is, in my
opinion, of the species which logicians call nominal; while one
which has a geometrical basis is of the species called real. It
may be doubted whether nominal definitions are of much scien-
tific value. The primary geometric idea which is the basis of the
primary trigonometric function can also be generalized, and in
more ways than one; how can the analyst secure a correspond-
ence between his arbitrarily generalized definition and the more
general ideas which develop from the primary geometrical idea?
In the present paper and in a paper on ¢ The Principles of Ellip-
tic and Hyperbolic Analysis” 1 show that there are several geo-
metrically real generalizations of the circular functions, and that
the algebraic series for the simple functions generalize in ways
that would never be deduced by taking the elementary series as
the general definitions.

I now proceed to consider how the several species of trigono-
metric functions — the triangular, the circular, and the ex-circu-
lar,—may be defined in harmony with one another. The method
adopted is afterwards shown to be applicable to the logarithmic
spiral, ellipse and general hyperbola, and to a mixed curve com-
posed partly of a circle, partly of an ex-circle; further, in the
paper on  The Principles of Elliptic and Hyperbolic Analysis,” it
is applied to ellipsoidal and hyperboloidal trigonometry.

THE TRIANGULAR FUNCTIONS.

Let 04 and OP represent (Fig. 6) any two finite straight
lines, or vectors, meeting at the point O. A triangle is formed

v
B 174
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by joining 4 and P. From P draw PM at right angles to 04,
and PQ at right angles to OP; from A draw AT at right angles
to OA4, and AS at right angles to OP.

First: we consider OM and MP the orthogonal pm]ectlons of
OPon OA. In a certain sense

OP= OM + MP;

to wit, in the ordinary sense of a vector equation. By prefixing
OA to each term, we derive an area equation

(04) (0P)=(04) (0M) +(04) (MP).

What is the meaning of this area equation ? It is that the par-
allelogram (OA)(OP) is equivalent to the product (0A4)(OM)
together with the rectangle formed by 04 and MP. This, in my
opinion, is the fundamental principle of vector analysis (Princi-
ples of the Algebra of Physics, p. 72).

Let the vector OA4 be denoted by the black letter A, and the
vector OP by the black letter R; let the rectangular co-ordinates
of A be a,* b, ¢, and those of R be z, y, 2, so that

A=ai+bj+ck and R=uaxi+ yj + 2k.
Then the analytical product of the two vectors is
AR = (at + b + ck) («i + yj + 2k)
=ax + by + ¢z + (bz — cy)jk + (cx — az)ki 4 (ay — bx)ij,

and of the two partial products into which the complete product
breaks up, the former, ax + by + cz, expresses (04)(OM), while
the latter,

(bz — cy)jk + (cx — az) ki + (ay — bx)j,

expresses. (0A) (MP).

It appears to me that the former partial product is correctly
denoted by the expression cos AR, and the latter by the comple-
mentary expression Sin AR. The latter function is written with

#* The letter @ is in some places used to denote the magnitude of OA
according to the usage of analysis; the context shows clearly whether it is
the whole magnitude or the magnitude of the i-component which is meant.
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a capital because it has an aspect or axis; it is not a simple area,
but a directed area. The equation
(04) (0P)=(04) (0M) +(04) (MP)
is then written
AR =cos AR + Sin AR.

The notation sin AR serves for the magnitude of the sine prod-
uct apart from its aspect or axis; it is the equivalent of the
unwieldy Cartesian expression '

V(bz — ¢ey)? + (cx — uz)? + (ay — bx)*

While (OA4) (MP) will be used to denote Sin AR; the notation
OA x MP will be used to denote sin AR.

The function Sin AR cannot be expressed in rectangular co-
ordinates without introducing symbols for the axes; hence it
cannot be treated by the Cartesian analysis except mdlrectly

Corresponding to the line equation

OP=0M+ MP
there is the scalar equation
(OP):*=(0OM)* + (iIP)?;
and corresponding to the area equation
AR =cos AR + Sin AR
there is the scalar equation
A’R? = (cos AR)* + (Sin AR)?,
which, expanded in Cartesians, becomes
(@ + 0 +¢) (2" + 5 + 2% = (az + by + c2)* + (bz — cy)* .
+ (cx — az)* + (ay — bx)*.

Tf we take the vector which is the reciprocal of A, we get

1 1

—R_ —

A OM+ OAMP
O,M 1 1 yp

=047 04
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When the order of the factors in a quotient is immaterial as in
the cosine term, the quotient may be written in the ordinary way;
when the order of the factors is essential as in the Sine term, the.
order will be indicated by introducing the reciprocal before or
after according to the manner in which it enters. Hence by
introducing OA in both numerator and denominator,

1p_ LA)(OM)_,_(OA)(MP)
A (04)* (04)?
=AR
=5

R oM _ (OA)(OM)_a.x+by+cz cos AR
04~ (04)* @4+ A’

Hence cos—

-1 ; (04) (MP)
and Sm R OAMP (04)?
_ (bz—ey)jk + (cx — az) ki + (ay — bx)ij
- a4+ 4+
SlIl AR,
==

Here no relation is imposed connecting A and R; their extremi-
ties are not restricted to lying on a circle or any other curve.
Thus the functions are triangular or trigonometric in the primary
sense of the word. We are introduced to the consideration of
trigonometric areas as well as trigonometric lines and trigono-
metric ratios.

Second : we consider the lines OT and T'4 obtained by draw-
ing AT at right angles to OA. As a line-vector equation we have

0A= 0T+ TA,
and from it we derive the area-vector equation
(04) (04)=(04) (0T) +(04)(T4),
or (04)*=(04)(0OT)—(0A4)(AT).

The latter equation means that the square of OA isin a certain
sense equal to the difference between the parallelogram formed
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by OA4 and OT and the rectangle formed by OA4 and A7. In
form it is merely a transformation of the area equation con-
sidered above (p. 13).

Let (OA)(OT) be denoted by Sec AR and (04)(AT) by
Tan AR, then the above equation is written

A*= Sec AR — Tan AR.

Both functions are written with a capital, because each involves
an aspect or axis.
After dividing by A? we obtain

1—Sec AR _ Tan AR
A A?

—SeclR—Tanl
_SecAR TanAR.

Corresponding to the line equation we have the scalar equation
(04)*=(0T)* —(AT)},

and corresponding to the area equation we have the scalar

equations
A*=(8ec AR)? — (Tan AR)?,

d 1=(sec1RY—(Tan1RY
an _(ecx )_( an 1 )

To find the expressions for these trigonometrical functions in
terms of rectangular co-ordinates, we proceed as follows. Since

_o4
or=920p
and AT = %MP;

therefore

(04) = g—‘;-{(OA) (OP)— g%(OA) (MP)

(04)*

_(04)" | (04
(04)(OP) (OM)(OA)

~ (0M)(04)

A? A? .
08 ARAR " cos ARSm AR.

(04) (M P);

that is, A’=
C
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A!
Hence Sec AR = wos AR AR

cos A
=mag—ig"_;_c;(ai+bj+ck)(zi+yj+zk),
d  TanAR=—"_sinAR
an AN = s AR
I ke 2 PR s o
—am+by+cz§(bz cy)jk + (cx — az)ki + (ay — bx)ij}.
Hence Sec 1R = —AR__ (2 +bj + ck) (zi +yj + ck)
A cos AR az+by+cz

and  Tan 1R = SinAR_ (bz—cy)jk+ (cx — az)ki+(ay—+ba)ij
A cos AR ax+ by + cz

The function sec AR is obtained from Sec AR by substituting
the appropriate square roots of (ai + bj + ck)? and (i + yj + 2k)*
Similarly, the function tan AR is obtained from Tan AR by sub-
stituting the appropriate square root of (Sin AR)% By sec AR is
meant the magnitude of Sec AR, and by tan AR the magnitude of
Tan AR.

Third: we consider the lines 0Q and QP obtained by drawing
PQ at right angles to OP. We have the line-vector equation

OP=0Q+ QP

with the corresponding scalar equation
(OP)*=(0Q)*—(Q@P)*
From the former we derive the area-vector equation
‘ (04) (OP)=(04)(0Q)+(04)(QP),

which means that the parallelogram OA4, OP is in a certain sense
equivalent to the product of the two codirectional lines 04 and
0Q together with the parallelogram 04, @P. The two parallelo-
grams are on the same base and between the same parallels, but
the angle of the latter exceeds the angle of the former by a quad-
rant. For the sake of clearness it is absolutely necessary to
devise a distinctive notation for the products in question. As
the line PQ is drawn from OP in the same manner as A7 from
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0A, the line OQ partakes of the nature of the Sec line OT, and
the line QP partakes of the nature of the Tan line A7. By
changing the initial consonants from light to heavy, we obtain a
notation which is suggestive and easily remembered, and will
serve at least for the purpose of this investigation.

Let, then, (04)(GQ) be denoted by zec AR, and (04) (QP)
by Dan AR; the above equation is then written

AR =zec AR + Dan AR.

AR _zec AR , Dan AR
As A L TR
therefore % R ='zec—}‘ R+ Dan% R.

The corresponding scalar equations are

AR = (zec AR)? — (Dan AR)?,

' R? 1.\ 1)

and F=(ZGCZR) —(Dan;R) .

To find the expressions for these functions in terms of rec-
tangular co-ordinates, we proceed as follows:

Since 0Q =£OLJ;I)’ and QP =2 ﬂ’ V=1 0P, where V=1 OP

denotes that the line OP is turned thxough a posmve quadrant in
the given plane; we deduce that

(04) (OP)= M+MP(OA)(\/ iop)

= (04)*(OP)*  (04)(MP)
(04)(OM) " (04)(OM)
A’R? | sin AR

cos AR + cos AR

(04) (V=1 0P),

therefore AR= AvV=1R.

Hence zec AR = (& + ¥+ ) (@ +9°+2°)
ax + by + cz

’

and Dan AR =

V(bz—cy)’+ (cx—az)’+ (ay—ba ),
ax + by + cz

(ai+4-bj+ck)V —1(xi+yj+2k).
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Similarly zeclR= LY 2
: A ax + by + ¢z

while Dan -1.R is obtained by dividing DanAR by a?+4 5+,
and dan AR=

V(b2 — cy)*+ (cx — az)*+ (ay — b2)*Va’ + B + SV + i + 22
ax + by + cz

Thus zec AR is the reciprocal of cos AR, not with respect to

unity, but with respect to A’R?; while zec—i— R is the reciprocal of
2
R ith t to —-
cos R with respect to —

Fourth : we consider the lines OS and SA obtained by drawing
AS perpeundicular to OP.
‘We have the line-vector equation

04 =08+ SA4,
and from it we derive the area-vector equation
(0A4):=(04)(08)+(04)(S4)
=(04)(08)—(04) (48).

This equation means that the square of OA is equal to the
difference between the parallelograms 04, OS and 04, AS. As
the lines O8 and A4S have a certain analogy to the lines OM and
MP, let the products be denominated by Gos and Zin, the initial

consonants of the functions being changed from light to heavy.
The above equation is then written

A% = Gos AR — Zin AR.

. 04 (OM)(04) P_cosAR
Since 0S8 = 0Q OP = o0P (1) R’ OP

(OAXMP) sinAR_/—
and A48= QQP Copy v ToP=S \/_' 10P,

the above equatlon becomes

Ag_cosReRAR smARA\/ iR.
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Hence GosAR=218Y + % (4; 4 4i 4 ok (i + yj + 7K),

Zry+7
vVai+b+¢
Ve +yt+ 2

The versed-sine product is obtained by considering AP the
third side of the triangle. Because

AP= A0+ OP,
therefore (04)(AP)=(04)(40)+(04)(0OP)
=—(04)*+ (04)(OP).

Hence  cos(04)(AP)=— (0A)?+ cos(04)(OP),
and Sin(0A4) (4P)=Sin (04) (OP).

It is the new product cos(04)(AP) which is properly called
vers AR; so that
vers AR = — A2+ cos AR
=(04)(4M).

cos AR
A2

Similarly vers % =—1+

_A4AM
T 04

According to this definition the versine is negative when the
point M falls to the left of 4; for O4 and AM then have oppo-
site directions. In circular trigonometry it is commonly stated
that the versine is always positive; it is more correct to say
that in the case of the circular functions the versine is always
negative. . :

Finally, we have to consider the definitions of the comple-
mentary functions. By the complementary-vector of A with
respect to R is meant the vector OB (Fig. 6), which is equal
and perpendicular to A in the plane of A and R, and drawn to
the side of A on which R is (Principles of the Algebra of Physics,
p- 87). Let it be denoted by A, the horizontal bar denoting
“perpendicular to.” When all the lines lie in a common plane,
this notation is definite. Grassmann uses a vertical bar prefixed
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to the vector it refers to, as IA. The horizontal bar is preferable,
because in space it must be attached to a pair of vectors, and
the horizontal form allows this to be done conveniently. The
complementary vector is expressed in terms of A and R by the

equation
A = Sin(Sin AR)A
T sinAR

where Sin(Sin AR) A = { (cx — az)c — (ay — bx)b}i
+ {(ay — bz)a — (bz —cy)clj
+§{(bz—cy)b— (cm — az)aik.

By the complementary function is meant the function which is
obtained when A is substituted for A in the original function.
Draw PN perpendicular to OB, and PU to OP; BV perpendicular
to OB,and BWto OP. The prefix co- may be used to denote the
complementary function. The geometrical definitions then are

co-cos AR =(OB) (ON), co-Sin AR = (OB) (NP),
co-Sec AR = (0OB) (0V), co-Tan AR = (OB) (BYV),
‘co-zec AR =(0B)(0U), co-Dan AR = (OB) (UP),
co-Gos AR=(0B)(OW), co-Zin AR=(OB) (BW).

It may be shown that co-cos AR = sin AR. Also co-Sin AR may

e _cos AR
be denoted by Cos AR; it is equal to Sin A RSm AR.

The several trigonometric areas are exhibited synoptically in
the following table. It is evident that Hamilton’s S and ¥V are
entirely inadequate to express the various scalar and vector func-
tions of the product of two vectors.
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TRIGONOMETRIC AREAS.

FUNCTION. g:;’;f:;': ANALYTICAL DEFINITION.
AR (04)(0P) (ai + bj + ck) (xi + yj + 2k)
cos AR (04) (OM) axr + by +cz
Sin AR (0A) (MP) | (bz — cy)jk + (cx — az)ki + (ay — bx)ij
sin AR 04 x MP |V (bz—cy)® + (cz — az)*® + (ay — bx)?
Sec AR (04)(0T) CO:ZRAR
secAR | 0A x OT A VAR
Tan AR | (04)(AT) OSA;R Sin AR
tan AR | 04 x AT -OSA—:Rsin AR
AR?
zec AR (04)(0Q) vos AR
DanAR | (04)(QP) s ARAVZIR
danAR | 04 x QP 2:)‘; :2 VR
GosAR | (04)(08) c°SR‘}RAR
gosAR | 04 x 08 s IR VAR
ZinAR | (04)(48) s AR Av=1R
ZinAR | 04 x AS AR VR
vers AR (04)(4AM) — A?+ cos AR
co-cos AR | (OB)(ON) sin AR
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TRIGONOMETRIC AREAS (Continued).
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(OB) (BN)

FUNCTION. GeoMETRIC ANALYTICAL DEFINITION.
i DEFINITION.

. ‘ . cos AR ..
co-Sin AR | (OB)(NP) ~n AR Sin AR = Cos AR.
co-sin AR | OB x NP cos AR

A =
co-Sec AR | (OB)(OV) m—AR
2 .
cosec AR | OB x OV sin‘\W\/A*R2
) A2
co-Tan AR | (OB)(BYV) “n AR Cos AR
cotan AR | OB x BV A*cs%i—}g
2
cozec AR | (OB)(OU) R
cos AR+ ,—
co-Dan AR | (OB) (UP) <o AR AV—1R
co-dan AR |OB x UP :?: :g VAIR?
sin AR ¢

co-Gos AR | (OB)(OW) Re AR
cogos AR | OBx OW sin AR VAR?

. cos AR +
co-Zin AR | (OB)(BW) o AV=IR
cozinAR | OB x BW cos AR /7oR
co-vers AR — A*4sinAR h
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THE CIRCULAR FUNCTIONS.

In the case of the circular functions the variable vector R is
always of the same length as the initial vector A; in other words,
OP is limited by the condition that its extremity must lie on a
circle of radius OA (Fig. 7). There is a definite area enclosed

N~

T
N
S
W
O/G ¥ 4 Q¢ D
H
F1G. 7.

between 04, OP and the arc AP; and the triangular functions can
be expressed as functions of this area. Let A4 denote the area of
the sector AOP, s the length of the arc AP, and a the magnitude
of OA; then -2-a—:-1=§- Let this quantity be denoted by u; it is
the circular measure of the angle AOP, and is more properly
regarded as the ratio of twice the area of the sector AOP to the
square on OA than as the ratio of the arc AP to the line 0A4.

The following table shows that the circular ratio is deduced
from the corresponding trigonometric area by dividing by A% and
introducing ‘the special relation that

(cos AR)? 4 (Sin AR)?= A4,

or R?= A2
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In addition to the triangular lines there are the curve lines or
circular lines proper; namely, the tangent, the secant, the nor-
mal, etc. By the tangent is meant the line DP drawn from a
point in OA4 so as to touch the curve at P, and by the secant is
meant the line OD cut off. By the normal is meant the line GP
which starts from the line 04, and is at right angles to the
tangent at P, while OG is the complementary line. Let these
functions be denoted by Tnt, Sct, Nor, respectively.

Since DP= DM+ MP, )
(04) (DP) = (04) (DM) + (04) (MP)
= (04) (DM) + Sin AR.

(i)
But, generally, pM =sin (sin) 04,

which, for the special case of the circle, becomes

DM=— sin’uOA’
cosu

therefore  (0A)(DP)=— i:)‘; 2';)’ +Sin AR.

Again,  (0A4)(0D)=(04)(OM)+(04)(MD)
=cos AR + (04) (MD),
which, for the case of the circle, becomes
3 2
(04) (OD) = cos AR + %l
AR?
cos AR
A{
cos’AR
For the normal we have the general relation
GP=GM+ MP,
therefore (04)(GP)=(04)(GM)+(0A4)(MP)
=(04)(GM)+ Sin AR

— _ qip d(sin) . .
sin d(cos) (04)* 4 Sin AR.
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Hence for the special case of the circle

(04) (GP)=cos AR + Sin AR

= AR;
hence G'P is identical with OP.
Finally, O0G=O0M+ MG,

(04)(0@)=(04)(0M) +(04) (MG)
_ . d(sin) 2
=cos AR + smd(cos) (04)3,
therefore for the special case of the circle
(0A4) (OG) = cos AR — cos AR
=0.

The ratios are defined by taking the ratio of the corresponding
area to A?; thus
OD A?

sctu= "—=-———=1zecu
04 cos AR ¢t

Tntu = Ol—ADP= - -g%:)—:'—:%z Snk;«R =Danu,
tntu:%:if}tﬁ?:tmu:dwu,
Noru=—61—jGP=':—§,
noru=%)= ,

oG
anonuy=——=0.
04
Answering to each curve-ratio there is a complementary curve-
ratio. In Fig. 7T EP is the co-tangent line, and HP represents

the co-normal line. For the circle, E coincides With U. Then

OE 1 EP
cosctu=—=, co-Tntu= ﬁszP’ co-tnt u = =08

OB’

' 1 ) HP
co-Nor « = —O—BHP, CO-NOT U = OB
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CIRCULAR RATIOS.
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FuxcrioN. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.
o -011—1 oP %
cosu g—j{ cos:VA R
Sinu _(;_A MP Sir;’A R
sinu g s1nA;A R
Sec u OLA or cog i R
2
secu %’ Eééﬁ
Tan u 0-171 AT (sxi): :RR
tan u ‘-;—31, %g
2
oo g% o AR
Danu oap i,s“‘ARA\/ 1R
dan» %5 %
Gos o208 oS AR AR
o | O cos AR
Zinu .OleS AR AVTIR
zinu %‘% smA;AR
vers u fg%l —14 c'osA{R
st o Y
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CIRCULAR RATIOS (Continued).

FuxcTION. I GEeOMETRIC DEFINITION. ANALYTICAL DEFINITION.

m | 1 (Sin AR)?
Tnt -~ DP = "
e ! 04 A’cos AR
tnt « DP Sin AB
04 cos AR
1 AR
N — GP ==
ore 04 A
nor % ar 1
0OA .
€0-COS u oN sin AR
OB A?
. 1 Cos AR
Sin —
co-dSin u OB NP At
co-sinu NP cos AR
OB :
1 AR
co-Sec — )
“ 08°7 sin AR
co-sec u ov _A
OB sin AR
co-Tan u 1 Cos AR
OB BY sin AR
co-tan u BY cos AR
OB sin AR
co-zec u ou A’
OB sin AR _
co-Dan u 1 up cos AR AV—1R
OB sin AR
co-dan u ur cos AR
OB sin AR _
co-Gos u 1 sin AR AR
OB ow A A
cO-gos u ow sin AR
OB A? -
co-Zinu 1 aw cos AR AV —-1R
OB B A?
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CIRCULAR RATIOS (Continued).

FouNcTION. | GEOMETRIC DEFINITION, ANALYTICAL DEFINITION,

co-zin u % COSA ;\R
2

co-sctu g_‘;‘; ﬁé
co-Tntu 51§ EP _ (‘S(:; :«:\’%_ + CosA :\R
co-tut u %1; i cos ful:
co-Nor u -OI—B HP ‘ %
co-noru {)I_g 1

As a test of the accuracy of these definitions, let us consider

how they apply to the proof of the
addition theorem for two circular sec-
tors having a common plane. Let AOP

Q

and POQ be the successive coplanar P

sectors (Fig. 8); PMand QK are drawn R
perpendicular to 04, QN is drawn per-
pendicular to OP, and from the point
N so determined NL is drawn perpen-
dicular to 04, and NR perpendicular

to QK. By definition,

and cos(u+v)=

om
o4’

cosv:gl!,

orP

COS U =

oK
o4’

0 K L A4

sinu= ﬂ,v

04

inw=2¢
sm'v_OP,

KQ

sin(u +v)=—¥.

04
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Now cos(u+ v)= gﬁ'
_OL +LK
T04” o4

and OL = g%OM on account of the similarity of the triangles

LON and MOP, uP
and LK=NR=" OP QN,
on account of the similarity of the triangles MOP and RQN, and
the negative nature of NR with respect to 04;
ON OM , MP QN

therefore cos(u +v)= =0P 04 + = OF Od

__OM ON_MP NQ

04 OP 04 OP

= COS % COS ¥ — Sin u sin v.
In a similar manner

sin(u 4+ v)= gg
_LN_ RQ
04 04

_ONMP_NQOM
04 OP OP 04
_MPON_OM NQ
04 OP 04 OP

= sin % cosv -+ Cos u sinv.

THE EXCIthULAR FUNCTIONS.

In this case the bounding line AP (Fig. 9) is part of a rectan-
gular hyperbola or excircle, having OA for principal axis. Let
s denote the length of the arc AP, a the length of 04, and 4
the area of AOP; the analogue of the circular » is no longer
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%, but it still is —A All the triangular ideas and all the curve

1deas which apply to the circle apply also to the excircle, and
they are expressed by analogous functions of ». These functions
are appropriately denominated by the same names, while for dis-

U

o]

<)

F16. 9.

tinction the qualification “ hyperbolic ” is introduced. The abbre-

viations for the functions are distinguished by an appended .
The analytical definition is obtained by dividing the corre-

sponding area function by A% and adding the condition that

(cos AR)? — (Sin AR)? = A*
(
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In the case of the excircle

_ iy @(cosh)
DM = sinh d(sinh) o4

cosh u

=gSin AR)?

acos AR

Consequently, (0A4)(DP)= -(%‘;—’:‘22 + Sin AR,

= — (8in AR)?
and (04)(0D)=rcos AR os AR
A4
~ cos AR

Again, for the excircle

_ _ ainh@(sinh)
GM= smhd(cosh) 04

=—coshu 04

—_C0s AR,

= b
consequently, (0OA)(GP)=—cos AR + Sin AR.
Hence GP is the reflection of OP with respect to MP,
and (04) (0G)=2cos AR.

When the radius-vector is subject to the hyperbolic condition,
the several lines drawn according to their definitions are all
different from one another; from which we see the necessity for
these exact definitions.
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EXCIRCULAR RATIOS.
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FoNcTION. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.
™ 0%4 oP :_l;\’
cosh » g_‘;[ co: »:\R.
Sinhu 6121 MP Six:‘ AR
sinh % _J(')%’ smA;l\R
Sech OLA or i 2co:';T\R
sech u g_i' g |
| 0at
e | gz oml
zech ’l'l, _g% | cosRAR_
pune | gior t % 4v_TR
i RE

e |8 ik e
Gosh u OLA 0S8 % AR
goshu % C\f;SA. f;
Zinhu & AS i:’_S’B AV=1R

i in AR
zinhu g_i T/W
vershu _‘g_f: —14 COSA 2AR

2

scth u gg éﬁ
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EXCIRCULAR RATIOS (Continued).

FuxcTtioN. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.
: 1 (SinAR)? | Sin AR
Tnth u 0OA bp A%?cos AR A?
DP sin AR VA'R?
th = ~=
tnthu 04 ! cosAR A®
1 cos AR , Sin AR
h — -
Norh % o GP m +
¢P VAR
h z= yan
norh u 04 &
co-cosh u ox sin AR
OB A?
. 1 Cos AR
co-Sinh — AR
inh u OB NP A2
co-sinh u P cos AR
OB A?
1 AR
Sech =
coechul  o8%7 SnAR
co-sech u ov VAR
OB sin AR
1 Cos AR
Tanh =
co-tamiin OB BY sin AR
co-tanh u BV cos AR
OB sin AR
co-zech u ou —= R*
OB sin AR
1 cos AR AV—1R
Danh —UP
cobamil o7 sin AR
co-danh u _Ul’ cos AR \/A""R2
OB sin AR A?
1 sin AR %
co-Gosh =
% 0B ow AR? AR
co-gosh u ow sin AR
OB VAR .
: 1 cos AR -+
Zinh — cos AR —
co-Zinh u OBBW AR AV—=1R
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EXCIRCULAR RATIOS (Continued).

FuxncrioN. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.
co-zinh u BW . cos__A__R
OB VAR
co-vershu g—g _ -1+ sinAﬁR
2
co-scth u % _ sinAAR
co-Tnth u 511_3 EP _ (stl 1:\;%’ + Co:; :\R
co-tnth u Fé_g cos 2 2 \/fz’ﬁ’
co-Norh OLB HP - SinA?R + _C_OST’IA_E
ARE
co-norh f)i}l; 1/__:_2&

Consider now the proof of the addition theorem for two suc-
cessive excircular sectors, of which the former starts from the
principal axis. Let AOPand POQ be two such sectors (Fig. 10);

Fia. 10.

the lines PM and QK are drawn perpendicular to OA as before,
but QN must now be drawn parallel to the tangent at P; NR is
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drawn perpendicular to QK as before. Let u denote the ratio to
a? of twice the area of AOP, and v that of POQ. By definition,

coshu = %3{ and sinhu= MP

o4

By cosh v is meant the ratio -g%r, when the sector v is moved

back so as to start from OA, the area being retained constant;
and by sinhv is meant the ratio g—g under the same conditions.

Now it may be shown that whatever the position of P, these
ratios are constant, provided the area of the sector is constant in
magnitude ; hence,

coshv:g_l! sinhfv=-N—.

-~ OP’ op
By the property of the tangent to the curve, the triangles MOP
and RQXN are similar as before, but now NR is positive with
respect to O4. With that modification, the same proof applies
as before, giving

OK _OM ON , MP NQ.

— =4 ——

0OA 04 OP " 04 oP’

that is,  cosh(u + v) = cosh  cosh v 4- sinh % sinh v,

and KQ_ MP ON_ 0M NQ.

04~ 04 OP " 04 OP’

that is, sinh (v + v) = sinh u cosh v + cosh u sinh ».

THE LOGARITHMIC FUNCTIONS.

The circle is a special case of the logarithmie spiral, and conse-
quently each circular ratio is a special case of what may be
called the logarithmic ratio. To understand this generalization it
is necessary to observe (Fundamental Theorems of Analysis gen-
eralized for Space, p. 16), that in the case of the circle, u is not
a simple scalar, but the index of an exponential expression ¥, in
which « denotes the axis of the plane of the circle. In plane
analysis, the « is apt to drop out of sight; but in space analysis
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it must be introduced explicitly, in order to distinguish one plane

from another. The exponential expression «* is equal to e"“*,

and the generalization is obtained by making the angle % any .
angle w. Then

enav — ot cos w+usinw. ai.

Now usinw expresses the ratio to the square of 04 of twice
the area of the circular sector AOP, corresponding to the loga-
rithmic sector AOP (Fig. 11); while evcos» denotes the manner
in which the radius is lengthened.

H
B\ , V/
N
'T

SP
: w
0 4 DM Q G
E

Fia. 11.

The lines PM, PQ, AT, AS, PD, PG, which refer to the axis
of 0OA, are drawn as before; so also the complementary lines
which refer to the axis of OB. The geometric definitions of
the ratios are the same as before; the analytical definitions are
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obtained by taking the ratios of the trigonometric areas to A’
and introducing the special condition,

(cos AR)? + (Sin AR)? = A* g2ucosw;

or, RZ= A?e2ucosw,
Thus, co8 u, W= (0)—1];[ = co;’:—R;
. 1 Sin AR
Sinwy, w=2 MP =_%2__,
. MP sin AR
S1n %, w = -O—A = T
ete., ete., ete.

The series for cosu, w is
u? ut
1+ ucosw+ 2—'cos2w + gcosd}w + ete.,

and that for sinwu, w is

w

u sinw +'2! sin 2w +;—;sin3w + ete.

The values of the secant and tangent areas are deduced as
before, by finding the value of DM. Now

DM = (sinu, w) d(cosu, w) 04,

d(sinu, w)

the differentiation being with respect to »; but the ratio of the
differentials does not simplify as it does in the special case of
the circle. :

Similarly, GM=— (sinu, w) g(g ::)r; Z, z; OA.

From the areas the ratios are deduced by dividing by A%
When the logarithmic ratios are defined in the manner de-
scribed, the addition theorem remains true. Let u, w denote the
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initial ratio 0—1-0P (Fig. 12), and v, w the subsequent ratio
LOQ As in the case of the circle, draw QN perpendicular to

oP
N

’

1] A M K L
Fra. 12.

OP; PM, QK, NL perpendlcular to 04; and NR perpendicular
to QK. By definition,

cosuy'w—O—A.’ sinu,w=%::,
N .
and cos v, w = g_P’ sinv, w = g_g

Now, just as in the special case of the circle, the triangles
LON and MOP are similar, and the triangles NQR and POM
are similar. Hence, as before,

OK _OMON _MP NQ

OQ 0OA~ 04 OP 04 oFP

sl og KQ_MPON , OM NQ,
and sin ,499=04=04 0P 04 0P

But the versor of 1 0Q is a*®*vq*"r%, that is, a®*+"*"¥ and
its ratio is OF 04 that is, etveosw,  Hence = 0Q=u+v w
; 04 oP ’ : 04 - ’
Therefore,
COS % + v, W = CO8 U, W CO8V, W — 8inu, w sinw, w

and sin % 4 v, w = sin u, W COS v, W + CO8 U, W Sin v, w.
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THE BLLIPTIC RATIOS.

Let the bounding line be an ellipse of which OA4 is the semi-
major axis. The ellipse may be regarded as the orthogonal
projection of a circle of radius OA4 upon a plane which passes
through OA4 and makes an angle A with the plane of the circle.
Let cos A be denoted by k. All lines in the circle parallel to 04
remain unaltered in the projection, while all lines perpendicular

to OA are diminished by the ratio cosA. Let A4 denote the area

of a sector AOP of the ellipse, and as before let u = %-

The «trigonometric and the curve lines (Fig. 13) are drawn
_according to the same definitions as before; the geometric defi-

U

N\ v,

Fig. 13.

nitions of the ratios are the same as before. The analytical
definitions of the ratios are obtained by taking the ratio of the
correspouding area to A% and introducing the special condition

that
1 2
(cos AR)*+ S@HA& = A%
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oM _cos AR

Thus cos u,

o4 T A
1 Sin AR
Sinwy, k= 04 MP= A
. MP_ sin AR
sinu, k= 4= AT’
ete., ete., ete.

The series for the elliptic cosine is obtained by the principle
that cosu, k= cos;:f, and the series for the elliptic sine by the

principle that sinu, k=k sin%-

It is found, by application of the principle stated at p. 25, that

sin?¥
DM=——"04,
COS —
and GM =K cos %04
Hence  (0A)(OD)= _A_
os AR’

__1 (sinAR)* 4.
(04)(DP)= B cos AR +8in AR,

(04) (GP)=1K%cos AR + Sin AR,
(04)(0@)= (1 — &%) cos AR,

and from thege the secant, tangent, normal, and the anonymous
ratio are derived by dividing by A2

A question arises whether the complementary ratios should be
defined with respect to OB, Fig. 13, which is equal to 04, or
with respect to OB/, the semi-minor axis. I consider that they
ought to be defined with respect to OB; the corresponding func-
tions for OB’ can be deduced from them by dividing by k.
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In order .to obtain the complenientary curve ratios it is neces-

sary to find NE and HN.

Now

therefore

therefore

and

Again,

therefore

therefore

and

NE=—cosds£ OB
d cos

dg 2 sin%)
=—cos% OB
d(cos ;—:)

kcos? ¥
COSs %

- %
sin -
k

OB

(0B) (%) =& scizsAARR)’

e K (cos AR)?
(OB) (OE) =sin AR + on AR

A
" sin AR’

___k'(cos AR)?
(OB) (EP)= sin AR + Cos AR.

HN=— cosdi?s- OB
d sin

1. u
(0B) (HN)=§ika£
(OB)(HP)= ﬁ’-’%éﬁ +Cos AR,

1—%
K

(OB)(OH)=—sin AR
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BLLIPTIC RATIOS.
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FuNcTioN. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.
ot 6171 op %

cosu, k g_i'l[ cox; ;AR
Sinw, k 6154 MP Sir; ;AR
sinw, k %" s_i%lj
Seeu, b bl_A or cogiR
secu, k %i_' ;‘fgﬁ:
R o i
e | g2 |
zeow, © %?i co:" ;R
mar | e | mpAe
Gosu, k 0%4 08 % AT\I;
gosu, k % i‘;;%;
Zinw, k (—)IZAS sinRéR A\/;Tl R
zinu, k i;% s\/in A?—F':l
versu, k ‘3_1; 14 gos;\ ;&R
sctu, k& %? _ :: -
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ELLIPTIC RATIOS (Continued).

Funcrioy. |GEOMETRIC DEFINITION.|  ANALYTICAL DEFINITION.
s | g | g
tntu, k g_i’ 21:;22 \/sin“ARkj-Azc‘ cos? AR
Noru, k ?)171 GP K* cos ARA-"— Sin AR
norw, k g_j’ V&' cos® A§’+ Sinf AR
co-cos u, k _g_llg sinA ?R
co-Sinw, k& .61§ NP COZ sAR
co-sinw, k 1(:7_11; COSA /:R
co-Secu, k 611_2 ov mf‘:R
co-secu, k _gg :iixA;FI:
co-Tanu, k O_I-B BV (:i(: :g
co-tanu, k _g_g :;): 22
co-zecu, k %g ﬁ
co-Danw, k OLB vpP _(83_;); :2 K\/;—:l R
co-Gos u, k % ow s_i];;_ﬁﬂ K_Al:_
co-gos u, k %_g’ S\i/“T_;;
co-Zinu, k 6173 BW cos:? AR A\/;l R
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ELLIPTIC RATIOS (Continued).

45

FuxcrtioN. | GEOMETRIC DEFINITION. ANALYTICAL DEFINITION.

co-zinu, k BW cosﬂ?_

OB VRA
co-sctu, k 3§ sif i’R
co-Tntu, & O—B EP _K A(f;i AARIT\?’ CszA f.R
co-tntu, k g—g A?'(: A?R Vk* cos’ AR+sin? AR
co-Noru, k -(_)I-J-BHP %_*_ Cos;:\R
co-noru, k % VKt cos? 22 I-:\;;l- sin’ AR
anon u, k “3_5 _ smAI’\R 1 k”kz

‘When the elliptic ratios are so defined it is not difficult to obtain
the generalized addition theorem. Let AOP and POQ (Flg 14)

be two successive elliptic sectors of
which the former starts from the prin-
cipal axis. Draw QN parallel to the
tangent at P; and PM, QK, NL per-
pendicular to @4, and NR perpendic-
ular to QK. Let u denote the ratio
of twice the area of the sector AOP
to the square on 04, and v that of
twice the area of the sector POQ to
the square on 0A; it follows that

Q

(0] K L M
Fia. 14.

A

u <+ v is the ratio of twice the area of the sector A0Q to the

square on 04. By definition

M . P

oS u, k=% smu,k=-oj,

OK . KQ

d z= . = .
an cos % + v, =OA sinu+4wv, k oA
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ON

Now . cosw, k —cosk oP

because the lines ON and OP have the same direction and there-
fore the same ratio as the corresponding lines in the circle. But
as NQ and OP have different directions, and are in general lines
which do not coincide with the principal axes, the relation of

their ratio to smk is more complex. It will be found by exam-

ination of the projection that

. gl
NQ k k__. v
opP

For the sake of brevity let the radical be denoted by ¢q. The
triangle NQR is no longer similar to the triangle POM; instead
of the relation

NR MP

NQ OP

we have the relation

NE__MPgq
NQ OP k
Now cosu+v,k—g§f
_OL LK
04 04

_OM ON_MPNQgq
TOP 0A  OP 04k

_OM ON_MP NQg

" 04 OP 04 OPk

sinw, ksinwv, k

=cosu, kcosv, k — =



DEFINITIONS OF THE TRIGONOMETRIC FUNCTIONS. 47

Again, sinu+v,k={;—g
LN, RQ
T 047 04

_ON MP_ OM NQ,
=04 0P 04 OP"

_MP ON _OM NQ,

04 opt 04 op™

=sinu, kcos v, k + cos u, ksinv, k.

By sinw, k& is meant the ratio of NQ to OP when the sector is
shifted back without change of area so as to start from the prin-
cipal axis.

THE HYPERBOLIC RATIOS.

Let the bounding line be an hyperbola of which OA is the
semi-major axis. The hyperbola may be regarded as the orthog-
onal projection of an excircle of radius O4 upon a plane which
passes through O4 and makes an angle A with the plane of the
circle. As before, let cosA be denoted by k. Let A4 denote the

area of a sector of the hyperbola, and let v = 20%4

The triangular and the curve lines are drawn according to the
same definitions as before; the geometric definitions of the sev-
eral functions of « and % are the same as before. The analytical
definitions of the ratios are obtained by taking the ratio of the
corresponding area to A% and introducing the special condition

that
g 3 )2
(008 AR)2 - Sln’;R = A
. ) OM __cos AR
Thus coshu, k= A= A

ete., ete., ete.
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THE COMPLEX RATIOS.

Our method of definition applies also to the complex ratios.
Let AOQ (Fig. 15) be a complex sector made up of a circular

Q
R—p
0 K MLA
Fia. 15.

sector AOP and an excircular sector POQ. Draw QN per-
pendicular to OP, and PM, QK, NL perpendicular to 04, also
NR perpendicular to QK. Let u» denote the ratio of twice the
area of AOP to the square on 04, and v that of twice the area
of POQ to the square of OP. To distinguish the form of the
area let ¢ be prefixed to v; then u 4 iv denotes the ratio of twice
the area of the complex sector A0Q to the square of O4. By
definition

_OoM . _MP
cosu_—OA, smu_—OA,

. ON .. NQ

cos w_-———o P sin w...—o P

. _OK .o Q
cosu+w_-——0A, sSInu+ = ——A

Now as in the case of the circle

OK_OM ON_MP NQ

0A 0OA OP 04 oP
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therefore COS % + 1v = COS % €08 v — Sin % sin tw
= c0s % cosh v — sin  sinh ».

Similarly KQ_ MP ON , OM NQ

04~ 04 OP' 04 OP
=sinu cos #w + cos u sin v '
= sinu cosh » 4 cos wsinh .

The function cosiv is obtained from cos v by supposing.
i=vV—1; and sinév from sinv by the same process, only the
vV —1 common to all the terms must be removed.

From the symmetry of the formule it is evident that the
order of circular-excircular or excircular-circular is indifferent.



——
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A

THE PRINCIPLES OF ELLIPTIC AND
HYPERBOLIC ANALYSIS.

[ABSTRACT READ BEFORE THE MATHEMATICAL CONGRESS AT CHICAGO,
AvucusT 24, 1893.%]

IN several papers recently published, entitled ¢ Principles of
the Algebra of Physics,” “ The Imaginary of Algebra,” and ¢ The
Fundamental Theorems of Analysis generalized for Space,” I have
considered the principles of vector analysis; and also the princi-
ples of versor analysis, the versor being circular, logarithmic, or
equilateral-hyperbolic. In the present paper, I propose to con-
sider the versor part of space analysis more fully, and to extend
the investigation to elliptic and hyperbolic versors. The order
of the investigation is as follows: The fundamental theorem of
trigonometry is investigated for the sphere, the ellipsoid of. revo-
lution, and the general ellipsoid ; then for the equilateral hyper-
boloid of two sheets, the equilateral hyperboloid of one sheet,
and the general hyperboloid. Subsequently, the principles arrived
at are applied to find the complete form of other theorems in
spherical trigonometry, and to deduce the generalized theorems
for the ellipsoid and the hyperboloid. At the end, the analogues
of the rotation theorem are deduced.

FUNDAMENTAL THEOREM FOR THE SPHERE.

Let a* and B” denote any two spherical versors; their planes
will intersect in the axis which is perpendicular to « and B, and

* Jan. 8, 1894. I have rewritten and extended the original paper so as to
include the trigonometry of the general ellipsoid and hyperboloid. At the
time of reading the paper, I had discovered how to make this extension, but
had not had time to work it out.

1
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which we denote by «8. Let OPA (Fig. 1) represent «4, and
0AQ represent 8%; then OPQ, the third side of the spherical tri-
angle, represents the product «*g%.

To prove that
«*B% = cos A cos B — sin A4 sin B cos a3
+§cos Bsin A+ a+cos Asin B- 8 —sin 4 sin BsinaB - 28} .

The first part of this proposition, namely, that
cos a43% = cos A cos B — sin A4 sin B cos af3,

is equivalent to the well-known fundamental theorem of Spherical
Trigonometry ; the only difference is,

R that «f denotes, not the angle included
Q by the sides, but the angle between

the planes; or, to speak more accu-

rately, the angle between the axes a

0 A andB. It is more difficult to prove the
complementary proposition, namely,
that '

P Sin eB%=cos Bsin A-a+cos AsinB-f
Fra. 1. — sin A sin Bsinef - «f,

for it is necessary to prove, not only that the magnitude of the
right-hand member is equal to V1 — cos?a*B%, but also that its
direction coincides with the axis normal to the plane of OPQ.
At page 7 of ¢ Fundamental Theorems,” I have proved the above
statement as regards the magnitude, but I was then unable to
give a general proof as regards the axis. Now, however, I am
able to supply a general proof, and it will be found of the highest
importance in the further development of the analysis.

In Fig. 1, OP is the initial line of a4, and OQ the terminal line
of 8%; let OR be drawn equal to

cos Bsin A« + cos 4 sin B. 8 — sin 4 sin BsineB-af;

it is required to prove that OR is perpendicular to OP and to
0Q.
Now, 0P=a“5zi?=(cosA—sinA-a’)~&7§

=cos A-af —sin - aB.
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Similarly, 0Q=S*aB = (cos B+ sin B-g¥).upB
=cos B-ap + sin B- ¥ aB.

By o 4B is meant the axis which is perpendicular to « and g,
after it is rotated by a quadrant round «. In Fig. 2, let 04 and
OB represent « and 8, any two axes
drawn from O, then ag is drawn from
O upwards, normal to the plane of the
paper. Hence af @8 is OL, which is
of unit length, and drawn in the plane 0 N
of the paper, perpendicular to & Tt
is required to find the components of
OL along « and 8. Draw LN par-
allel to B, and LM parallel to a.

Now OM or NL is —ﬁ B, and
ON is ——slf-‘é -a; hence, Fra. 2

B

a@___cosaﬂ'u_ 1 .B.

sin af sinef

Similarly, 6= — 67 fa—— 202854 L.

Consequently, the three lines expressed in terms of the axes o,
B, and «p, are

OR= cosBsinA -a+ cosAsinB.B —sin Asin BsineB-aB;

=—sin 4% L ging 1 . B ;
OP = smAsinaﬁ a+8mAsina,8 B+cosAd-af;

— ain RCOSAB. 5
@ smBsinaﬁ B+ cos B-apf.

— 1 1
0Q = sin BsinaB

Hence cos(OR)(OP)
= —cos Bsin’4 (M ———EE)

sineB sinaf

—cosAsinAsinB(co,s—“B 1
sinef sin aﬂ
=0.

Similarly, it may be shown that cos(OR)(0Q)=0; hence OR
has the direction of the normal to the plane of OPQ.

——+38 naﬁ)
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To find the general expression for a spherical versor, when refer-
ence 8 made to a principal axis.

Let OA represent the principal axis (Fig. 3), and let it be
denoted by a«. Any versor OPA, which passes through the prin-
cipal axis, may be denoted by %, where 8 denotes a unit axis
perpendicular to « Similarly, 0AQ, another versor passing
through the principal axis, may be denoted by y*, where y denotes
a unit axis perpendicular to @. The product versor OP@Q is circu-
lar, but it will not, in general, pass through OA4; let it be denoted
by ¢%. Now

E=py
= cos % c08 v — 8in u sin v cos By
+ {cosvsinu.B + cosusinv.y — sinusinvsinﬁy»ﬂ_y}!.

We observe that the directed sine may be broken up into
two components, namely, coswvsinu-B + cosusinv.y, which is
perpendicular to the principal axis, and —sinwusinvsinBy- By,
which has the direction of the
negative of the principal axis, for
By =

Draw OS to represent the first
component cosvsinu-8, OT to
represent the second component
cosusinv-y, and OU to represent
the third component — cosu cosv
sinBy-«. Draw OV, the resultant
of the first two, and OR, the re-
sultant of all three. The plane
of 04 and OV passes through
OR, which is normal to the plane
OP@Q; hence these planes cut at right angles in a line OX; and
the angle between OA4 and OX is equal to that between OV and
OR, for OV is perpendicular to 04, and OR to OX. Let ¢
denote the angle AOX, then

V/cos™ sin’u 4 cos’u sin®v 4 2 cos w cos v sinu sinv cos By

cos ¢ = - -
V1— (cosu cosv — sinu sinwv cos By)?
and
sin ¢ = $in  sin v sin By ‘

V1— (cosucosv — sinu sinw cos By)?
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Figure 4 represents a section through the plane of 04 and OV.
Let XM be drawn from X perpendicular to O4; it is equal in
magnitude to sin ¢; and OM is equal in
magnitude to cos ¢. R 14 X

Hence the axis ¢ has the form

cosp-e—sin¢ - a,

where e denotes a unit axis perpendicular U gm. . M A
toa. And

¢ =cos @+ sinf(cos ¢-e— sin qs-a)*

is determined by the equations,

cos § = cos u cos v — sin u sin v cos By, 1)
8in @ sin ¢ = sin u sin v sin By, 2)
sinfcos¢-e=cosvsinu-B+cosusinv.y. 3)

The unit axis e may be expressed in terms of two axes 8 and v,
which are at right angles to one another and to «, and the angle
which e makes with 8. Hence the more general expression for
any spherical versor is

¢4 =cosf + sinffcosp(cosy - B+ siny-y) — sind»a}*.
We observe that the line OX is the principal axis of the
product versor POQ.

To find the product of two spherical versors of the general form
given above.

The two factor versors may be expressed by
& =cosu+ sinu(cos¢oﬁ—sin¢-a)},
and 7°=co8 v + sinv (cos ¢'- y — sin ¢'- @) *,

where B and y denote any unit axes perpendicular to a. The
product has the form

{"=cos w + sin w(cos ¢'"- y — sin ¢"- a)!.
Since &y = cos u cos v — sinu sin v cos &

+ {cosvsinu -§ + cosusinv.n —sinwu sin'vsinér,-g}i,
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and c08 £ = cos ¢ cos ¢' cos By + sin ¢ sin ¢/,
and Sinéy = cos ¢ cos ¢'sin By By
— (cos ¢ sin @' B + cos ¢'sin ¢ - ay),
therefore cosw = cos u cosv
—s8in « sin v(cos ¢ cos ¢' cos By+sin ¢ sin ¢'), (1)
sinw sin ¢" = cos u sin v 8in ¢'+ cos v sin u sin ¢
+ sin u sin v cos ¢ cos ¢' sin By, (2)
sinw cos @' - e = cosu sin v cos ¢'-y + cosvsinucos ¢ -8
+ sinu sinv(cos ¢ sing'- Be+cos ¢'sin ¢ ay). (3)
From equation (1) we obtain w, then from (2) we obtain ¢", and
finally from (3) we obtain e

When the factor versors are restricted to one plane, the axes
coincide; that is, p=¢. The above formula then becomes

£+% = cos @ cos §'— sin @ sin §'

+ (cos@sin @'+ cos 8'sinb) {cos - B — sin¢-a}§,
which is the fundamental theorem for trigonometry in any
plane.

When the axes are coplanar with the initial line, we have y
identical with 8, but ¢', in general, different from ¢. The theo-
rem then becomes

&% =cos 0 cos§'— sinfsinf’ cos(¢'— ¢)-

+ { (cos 8sin 6’ cos ¢'+cos §' sinfcos )-8

+ sin@siné'sin(¢'— ¢)- Ba '

— (cos @siné' sin¢'+ cos§' sinfcos ¢)- a}*.

If, in addition, the middle term of the sine vanishes, the axis

of the product will also be in the same plane with the other axes
and the initial line.

To prove that the sum of the squares of the three components of
the product of two general spherical versors is unity.

For shortness, let z=cosf, y=sinfcos¢, z=sinfsing;
2! =cos@, y'=sinf@' cos¢', z' =sinfd'sin¢’. Then
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cost" = (zz'— yy' cos By — 22')?
=a'2'? + y*y'? cos®By + 2%'* — 2 xx'yy’ cos By — 2 xx'z2’
+ 2yy'z’ cos By,
(sin6” cos " )= {ay' -y + @'y - B+ v2' - for — 2y yi}?
= o%'? + 2'%* + 2" 22+ 2 22'yy’ cos By+2wyy’z' cos yBa
— 2y2'z'y’ cos By — 2y2y'?' cos Ba- Yo
(sin@'"sin ¢")? = {x2'+ «'z + yy' sin By}?
=a%"" + 2%2'* + y’y'* sin’ By + 2xx'22' 4+ 2 xyy'2' sin By
+ 22'yy'z sin By.
The sum of the square terms is (2 + y* + 2%) (22 + y'? 4 2'%),
that is, 1; and the sum of the product terms reduces to

2yy'z2' (cos By — cos Ba - ya) + 2ayy'z'(cos y B + sin By)
— 2yz'2'y' (cos Bya — sin By).

Now, B and y both being perpendicular to e, cos By = cos Ba- ya,
and sinBy = — cosyBa=cosBya. Hence the sum of the product
terms vanishes.

FUNDAMENTAL THEOREM FOR THE ELLIPSOID
OF REVOLUTION.

Imagine a circle APB (Fig. 5) to be projected on the plane
of AQB, by means of lines drawn from the points of the
circle, perpendicular to the plane,

as PQ from P; the projection L

of the circle is an ellipse, hav-

ing the initial line for semi-major Q

axis. Let A denote the axis of B 4

the circle, and B that of the o
plane; all lines perpendicular to
the initial line are in the pro-
jected figure, diminished by the
ratio cosAB, while all lines parallel
to the initial line remain unal-
tered. Any area A in the circle will be changed into 4 cosAB
in the ellipse; and this is true whatever the form of the area.
For shortness, cos A will be denoted by k.

Fia. 5.
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The projecting lines, instead of being drawn perpendicular to
the plane of projection, may be drawn perpendicular to the plane
of the circle; the ratio of projection then becomes secAB, which
may likewise be denoted by %, but k is then always greater than
unity. The figure obtained is an ellipse, having the initial line
for semi-minor axis. By the revolution of the former ellipse
round the initial line we obtain a prolate ellipsoid ; by the revo-
lution of the latter, an oblate ellipsoid.

THE FuNpDAMENTAL EQuATION OF ELLIPTIC TRIGONOMETRY.

The elliptic versor is expressed by 6% OP (Fig. 6), and
1 op_OM, 1
04%"=0at0a™"

The problem is, to find the correct analytical expressions for
these three terms. If by » we denote the ratio of twice the area
of the sector AOP to the square on

B 0A, then,
P %’:cos% and Jg—j=ksin%-
0 3f ]4 Hence, if 8 denote a unit axis nor-

mal to the plane of the ellipse, the
equation may be written

Fia. 6. (¥8)* = cosZ +sin 7 *B)E.

But we observe that it is much simpler to define u as the ratio of
twice the area of AOP to the rectangle formed by OA4 and OB,
the semi-axes; for then we have

(kB)* = cosu + sinu- (kB)¥.

We attach the k& to the axis rather than to the ratio, because in
forming a product of versors it does not enter as an ordinary
multiplier. When the elliptic sector does not start from the
principal axis, the element » must still be taken as the ratio of
twice the area of the sector to the rectangle formed by the axes.
The index § is due to the rectangular nature of the components;
it expresses the circular versor between OA and MP. When
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oblique components are used, the index is then w, the angle of
the obliquity. This is proved in Fundamental Theorems, page 10.

To find the product of two elliptic versors which are in one plane
passing through the principal axis.

Let the two versors be represented by 0QA and OAP (Fig. 6);
then their product is represented by OQP. Let 8 denote a unit
axis normal to the plane; the former versor may be denoted by
(kB)*, and the latter by (%B)". Then

(%B)*(kB)* = fcosu + sinu-(kB) ¥} jeosv + sin v- (kB) ¥}
= c0S% COSV+COS% 8inw - (k,B)*+cosv sinu - (kﬁ)E
+ sinu sinw. (kﬂ)*(kﬂ) L

Now (kB)*(kB)* = (kB)***
= cos(u +v) + sin(u + 'v)-(kB)}
= cosu cos v — sinu sinv
+ (cosu sinw + coswvsinu)-(kB) ¥

Hence (k8)¥(k8)¥ = g==—1. From this we infer that k is
such a multiplier that it does not affect the terms of the cosine.

To find the product of two elliptic versors which intersect in the
principal axis of the ellipsoid of revolution.

1 1 .
Let — —_— Fig. ;
et OP 0OA and 04 0Q (Fig. 7) represent the two versors;

their axes are 8 and y, respectively, each being perpendicular to
«, the direction of the principal

axis 0A4. Let u denote the ratio z

of twice the area of OPA to the Q
rectangle formed by the semi-axes g A
of its ellipse, and v the ratio of

twice the area of 0AQ to the rec- N—")

A
tangle formed by the semi-axes of 0
its ellipse. The versors are denoted
by (kB)* and (ky)'. Now

(kB)* = cosu+sinu - (kB) *,

and (ky)® = cosv+sinv-(ky) E,
therefore (%B3)*(ky)® = cosu cosv + cose sinu - (kB3) f

+ cosu sinv - (ky) ¥ + sinu sinv - (kB) ¥ (ky) L3

Fie. 7.
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Hence .
€08 w=C08 % coSv—sinu sin v(cos ¢ cos ¢' cos By+sin¢ sin ¢'), (1)

sinwsin¢” = cosusinvsing' + cosvsinusing
+ sinu sinv cos ¢ cos ¢’ sin By, )

sinw sin¢"-e=cosu sinv cos ¢'-y 4 cosv sinu cos ¢ -8
+sin usinv(cos ¢ sing'- B +cosd' sing-ay). (3)

FUNDAMENTAL THEOREM FOR THE GENERAL
ELLIPSOID.

To find the product of two ellipsoidal versors whose axes have the
same directions as the minor axes of the ellipsoid.

In the general ellipsoid there are three principal axes mutually
rectangular; in Fig. 9 they are represented by 04, OB, 0C. We
shall suppose the greatest semi-axis to be taken as the initial line,

but either of the others might be chosen.

¢ P Let unit axes along 04, OB, and OC be

B denoted by e, B, v, respectively; let k' de-

note the ratio of OB to 04, and % that of

e OC to OA. A versor POA in the plane

0 COA is expressed by (%B)*, while a versor

Fia. 9. 4 40Q in the plane of AOB is expressed by

(%'y)’; w denoting the ratio of twice POA

to the rectangle CO4, and v that of twice 40Q to the rectangle
AOB.

Now (kB)*(k'y)’=jcosu + sinu- (kﬁ)*} §cosd + sinv- (k'y)} %
= Cco8u Co8 v + Cosv sinw -(kﬁ)*
+ cosusinv-(k'y) k +sinu sinv. (kB) ¥ (k'y) i

The fourth term, as it involves two axes which are at right
angles, can contribute nothing to the cosine; the cosine is
coswucosv. The second and third terms contribute %cosvsinu-f
+ k' cosu sinwv-y to the directed Sine; while the fourth con-
tributes either — kk'sinu sinv.« or — sinu sinv-ea.

It may be shown, in the same manner as before (page 2), that

kcosvsinu-B+ k'cosusinv.y —kk'sinusinv.e
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is perpendicular to both OP and 0@, hence has the direction of
the normal to their plane; and, by the principle stated at page
13, it is seen that

kcosvsinu.-B+k'cosusinv-y— Sinusinv.e

is the axis conjugate to the plane of POQ.

Let a plane pass through the principal axis and the perpen-
dicular component kcosvsinu.f8+ k'cosusinv.y; as it passes
through the normal to the plane POQ it must cut that plane at
right angles, and OX, the line of intersection, is the principal -
axis of the ellipse PQ. Let ¢ denote the elliptic ratio of 40X,
and y the angle between 8 and cosvsinu -8+ cosu sinv-y, and w
the ratio of twice the elliptic versor PO@Q to the rectangle of the
semi-axes of its ellipse; then the product versor takes the form

¢°=cosw + sinwfcos p(k cosy -8B+ k'simp--y)—sian»-a;}.

For . COS W = COS ¥ CO8 V), 1)
sinw sin ¢ = sin u sin v, 2)

sinw cos ¢ cos Y = cos v sinw, 3)

8inw cos ¢ sin Y = cosu sinv. 4)

To find the product of two ellipsoidal versors of the above form.
Let the one versor be ¢, where

¢=cosp(kcosy-B+k'siny.y)—sing-«,
and let the other be 7°, where

n=cos¢'(kcosy'-B+ k'siny'-y) —sing¢'- a;
it is required to show that £*p° has the form {*, where

{=cos¢"(kcosy"-B+Kk'siny.y)—sing".a.
Since §*y” = cosu cosv — sinu sinv coséy

+§coswsinu- ¢ 4 cosusinv-y—sinu sinv Sin &y} ¥,

the problem reduces to finding cos &y and Sinéy. By & is meant
the elliptic angle between the elliptic axes £ and »; the ratio of
the sector &y to the rectangle of its ellipse is the same as the
ratio of the sector of the primitives of £ and y to 1. Hence the
cosine is obtained by supposing % and %' to be one, and the Sine is
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obtained by the same method, and then reducing by % the compo-
nent having the axis 8, and by k' the component having the
axisy. We obtain

cos &y = cos ¢ cos ¢' cos (¢ — ') + sin ¢ sin ¢,
and Sinéyp=cos¢ cos¢' sin(y —¢')- @
+ k'(cos ¢ cosy 8in¢'— cos ' cosy’ sin¢)-y
— k(cos¢ siny singp'— cos ¢’ siny' sing)- B:
Hence cosw
=cos u cos v —sinu sin v {cos ¢ cos ¢'cos (y —y') +sin $sin '}, (1)
sinw cos ¢' cosy"
= cosu 8inv cos ¢' cosy'+cosv sinu cos ¢ cosy
+ sinu sinv(cos ¢ sin y sin ¢' —cos¢' siny' sin ¢), (2)
sinwcos ¢' siny"
=cos u 8inv cos ¢' 8iny' + cosv sinu cos ¢ siny
— sinu 8inv(cos ¢ cosy sin ¢' —cos ¢'cos y'sin ¢),(3)

sinwsing' = cosu 8inv sin ¢' 4 cos v sinu sin ¢

— sinu sinv cos ¢ cos ¢' sin (¢ — ). 4)

The elliptic axis is given in magnitude and direction by

_ Sinégy The locus ‘of these axes is an ellipsoid derived
V1 —cos¥*y

from the original ellipsoid by interchanging the ratios ¥ and %'.

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF TWO SHEETS.

In order to distinguish readily the equilateral from the general
hyperbola, it is desirable to have a single term for the equilateral
hyperbola. The term excircle, with the corresponding adjective
excircular, have been introduced by Mr. Hayward, in his “ Algebra
of Coplanar Vectors.” These terms are brief and suggestive, for
the equilateral hyperbola is the analogue of the circle. If we
consider the sphere, we find that its hyperbolic analogue consists
of three sheets. Two of these are similar, the one being merely
the negative of the other with respect to the centre, and are
classed together as the equilateral hyperboloid of two sheets; the
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third is called the equilateral hyperboloid of one sheet. For
brevity we propose to call these the exsphere of two sheets, and the
exsphere of one sheet, the two together being called the exsphere.
In treating of the exsphere of two sheets, we shall generally
consider the positive sheet.

To find the expression for an exspherical versor, the plane of which
passes through the principal axis.

Let OA (Fig. 10) be the principal axis of an equilateral hyper-
boloid of two sheets, QAP a section through 04, AOP the sector
of a versor in that plane, and PM
perpendicular to OA4. The versoris

denoted by & OP, or (0A4)(OP),
if OA is of unit length. Now

1 ,p 1
oM, 1
=04 toa™"

The problem is to find the proper
analytical expression for this equa-
tion. Let B denote a unit axis
normal to the plane of QAP, and
u the ratio of twice the area of the
sector AOP to the square of 04,
or rather to the area of the rec-
tangle 40B, and let ¢ denote vV —1. The above equation, if the
starting line is indifferent, is expressed by

Fic. 10.

B = cosiu + sin iu - ,B*
= coshu + isinhu. g¥.

‘We observe that coshu=g—ﬁ[ , and sinhu=g , and that ,8*
expresses the circular versor between OA4 and MP. What is the
geometrical meaning of the ¢? It expresses the fact that coshu

and sinh u are related, not by the condition
cosh?u + sinh®*u =1,

but by the condition cosh?u — sinh?u =1.
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With this notation, we can deduce readily from any spherical
theorem the corresponding exspherical theorem.

A plausible hypothesis is that the ¢ before sinh » may be con-
sidered as an index ¥ to be given to the axis 8, making

B* = coshu + sinhu-8~7;

.

but this would leave out entirely the axis of the plane, for the
equation would reduce to

B* = coshu — sinh u.

The quantity here denoted by i is the scalar v/ —1, while the
tndex § expresses the vector vV —1.

The series for e*is wholly scalar; but the series for ¢e-B%
breaks up into a scalar and a vector part.

In specifying an exspherical versor, it is necessary to give not
only the ratio and the perpendicular axis of the plane, but also
the principal axis of the versor. This is the reason why the
spherical versor has to be treated with reference to a principal
axis, in order to obtain theorems which can be translated into
theorems for the exspherical versor.

To find the product of two coplanar exspherical versors, when the
common plane passes through the principal awis.

Suppose the versors shifted without change of area until the
line of meeting coincides with the principal axis. Let Q04
(Fig. 10) be denoted by p*, and AOP by B*, expressions which
are independent of the shifting. Then

B* = coshu + i sinhwu ',Bg,
B = coshv + i sinhw -BE ;
therefore B*B* = (coshu + isinhu. BE) (coshv + sinhw. B*)
= coshu coshv+7(cosh » sinhv+coshv sinhw) . ff§
+ *sinhu sinh v . B7;
but ¢*=—, and B*=—; hence
BB = coshu coshv + sinh« sinh »
+ ¢(cosh % sinhv + coshv sinhu)- ,8*.
Hence B"‘B"’ = Bty
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Suppose that the sector QOP is shifted without change of area
till it starts from OA, and becomes AOR. Then

ON . .

—~= —cosh h

04 cosh u coshv + sinh » sinh v,
and %g= cosh u sinhv 4 coshv sinh u.

To find the product of two diplanar exspherical versors when the
plane of each passes through the principal axis.

Let the two versors POA and A0Q (Fig. 11) be denoted by g™
and y*, the axes 8 and y being each perpendicular to the princi-
pal axis . Then

By* = (cosiu + siniu - ,BK) (cosiv + siniv . 'y!)
= costu cosv — siniu sin v cos By
+ {cosv sinu- B+ cos iu sin¢v-y—sin {u siniv sin By - a}f.
But cosiu = coshu, and siniu =i sinhwu, therefore,

B®y* = coshu coshv + sinh « sinh v cos By,
+ ifcoshvsinh% - B 4 coshu sinhv . y—¢ sinhu sinhv sin By - a}*.
Hence coshg*y* = coshu coshv + sinhu sinhv cos By
and SinhB*%y* = coshv sinhu- B + coshu sinhv.y
— ¢ sinhu sinhv sin By - e,

By expanding, it may be shown that
(cosh By*)?— (Sinh B*y*)? =1,
or (cos B y™)? +(Sing™y")? =1.
The function Sinh is the same as Sin, only an ¢ has been
dropped from all the terms of the latter. The product versor
is also represented by a sector of an excircle of unit semi-axis.

The first and second components of the excircular Sine are per-
pendicular to the principal axis; hence their resultant,

coshv sinhu - B 4 coshu sinhwv .y,

is also perpendicular to the principal axis. Let it be represented
by OV (Fig. 11). The difficulty consists in finding the true
direction of the third component, — isinhu sinhvsinBy.a. At
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page 53 of The Imaginary of Algebra, 1 suggested the following
construction :

With V as centre, and radius equal to sinhwusinhv singy,
describe a circle in the plane of 04 and OV, and draw OS or OS'
a tangent to this circle.

But another hypothesis presents itself; namely, to make the
same construction as in the case of the sphere.

Draw OU opposite to 04, and equal to sinhu sinhwv singy;
and find OR, the resultant of OV and OU. We shall show that
OR satisfies the condition of being normal to the plane POQ,
while OS or O8' does not.

The reasoning at page 2 applies to give the expression for
the vectors OP and OQ. Hence the expressions for the three
vectors OR, OP, 0Q, are

OR = cosh v sinhu - B + coshu sinhv- y — sinhusinh v sin By - By,

= — sinh« %088, i 1, hu-Be
OP = smhusinﬂ-y B+smhusinﬁy y + coshu- By,
=—si 1 . g sinho%By. hv- By.
0Q = smh'vsin By B smh'usin By v + coshw- By.

It follows, as there, that
cos(OR) (OP)=0, and cos(OR)(0Q)=0.

Hence OR is normal to the plane POQ, and OS is not.

The function of the ¢ before the third component of the Sine
is to indicate that the magnitude of the Sine is not vV OV* 4 VR?
but VOV?— VR. This gives
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sinh gfy®
= \/{cosh2y sinh?u + cosh?y sinh?v + 2 cosh % coshv sinh % sinhv cos By
— sinh2y sinh2y sin?By}

=V/(cosh u coshv + sinh u sinh v cos By)2 — 1.

OR
VOV:—-VER:
in magnitude and direction. The plane of O4 and OV cuts the
exsphere in an excircle, and as it passes through the normal OR,
it must cut the plane POQ at right angles. Let OX be the line
of intersection (Fig. 12). Draw XM perpendicular to 04;

The expression gives the excircular axis both

U o A M
Fia. 12.

draw XD a tangent to the excircle at X, and XA' parallel to
0A4, and OR' the reflection of OR with respect to OV. Let ¢
denote the excircular angle of AOX; that is, the ratio of twice
the area of 40X to the square of 04.

As OR is normal to the plane PO, it is perpendicular to OX;
but OV is perpendicular to OA; therefore the angle A0X is
equal to the angle VOR. Also as the angle AOR' is the com-
plement of R'OV and A'XD the complement of AOX, the line
OR' is parallel to the tangent XD.

\/cosh’v sinh® +4cosh?u sinh?»+ 2 cosh  cosh v sinh u sinh » cos By
(coshu cosh v + sinhu sinhv cos By)? —
MX VR
04" VOV —VE?
sinh » sinhv sin By
\f (coshu coshv + sinh u sinh v cos By)* —

and sinh¢ =
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The above analysis shows that the product versor of POQ
may be specified by three elements: first, ¢ a unit axis drawn
perpendicular to OA in the plane of OA4 and the normal to the
plane of POQ; second, ¢ the excircular angle of 40X determined
by OA4 and OX drawn at right angles to the normal in the plane
of OA and the normal; third, w the versor of a unit excircle
determined by the conditions of passing through the points P
and @ and having its vertex on the line OX.

When » and » are equal, half of the line joining PQ is the
sinh of half of the versor of the product. Let y denote the sinh
of each of the factor versors, then it is easy to see from geomet-
rical considerations (v. The Imaginary of Algebra, page 53), that

) 1
smh§=%y\/1+cospy’

w_ 1

2= g V2 YL +cospy)

therefore cosh

But it is also evident that the distance from O to the mid-
point of PQ is

\/y’(l —cosBy)+ 2(y* +1)
¥*(1+ cosBy)+2

The excess of this distance over cosh%’ gives the distance by

which the axis has been displaced along OX.
Hence the product versor may be expressed by an excircular
axis and an excircular versor as ¥, where

¢=cosh¢.e—~isinh¢.a.

To determine these quantities, we have, as in the case of the
sphere, the three equations

coshw = cosh u coshv + sinh » sinhv cos By, (1)

sinhw cosh ¢ = sinhu sinh v sin By, 2)

sinhw sinh ¢ - e = coshv sinh - B + coshu sinhv- . (3)

The axis ¢ may be expressed in terms of two axes B8 and y

forming with « a set of mutually rectangular axes, and the angle

¢ which it makes with B8; so that for the excircular axis we

have
§=cosh¢(cosy B +siny-y)— isinhé-a.
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In the above investigation it is assumed that the magnitude
of the perpendicular component of the Sine is necessarily greater
than the component parallel to the principal axis. This means
that

cosh? sinh® + cosh®x sinh® + 2cosh  cosh» sinh  sinh v cos By

is necessarily greater than sinh?* sinh® sin’gy.

Let sinBy=1; then cos By =0; and we have to compare
cosh’ sinh* 4 cosh’u sinh* with sinh® sinh%.
Now each term on the left is greater than the term on the right;
therefore their sum must be greater, for each term is the square of
a real quantity. Next let sinB8y=0; then cosBy=1; the for-

mer term becomes a complete square while the latter is 0; hence
the former must always be greater than the latter.

To find the product of two exspherical versors of the general kind.
The two versors are expressed by
&% = coshu 4 ¢ sinhu(cosh¢ -8 — i sinh ¢ - ) 5,
and 7" = coshv + ¢ sinho(cosh¢'-y —¢sinh¢'. a)f ;
it is required to show that their product has the form '
& = coshw + ¢ sinhw(cosh ¢' - ¢ — i sinh ¢"' - &) L
Wehave & = coshu + 7 sinhu -fi
and 7 =coshv + ¢ sinhwv- ‘qi,
therefore
&4y’ = coshu coshv 4 sinhu sinhv cos &y
+%§{coshu sinhv.»4cosh v sinhu . {—7sinhu sinhv sinéy -?»7'}!-
It remains to determine cos ¢y and Sinéy.
Since {=cosh¢.B—isinhé¢-a,
and n=cosh¢'.y —isinh¢'.q,

and as we have seen that the ¢ is merely scalar, and does not
affect the direction, we conclude that
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cos {& = cosh ¢ cosh ¢' cos By — sinh ¢ sinh ¢/,
Sin &) = cosh ¢ cosh ¢' sinfBy-
— i(cosh ¢ sinh ¢' - Be + cosh ¢' sinh ¢ - ay).

Substituting these values of cos & and Sin &, we obtain

coshw = cosh u coshv
+sinh « sinh v(cosh ¢ cosh ¢' cos By —sinh ¢ sinh ¢'), (1)

sinhw sinh ¢" = coshu sinh v sinh ¢'+ cosh» sinhu sinh ¢
+ sinh » sinh v cosh ¢ cosh ¢'sin By, 2)
sinhw cosh @' e = cosh u sinh » cosh ¢'- y+coshvsinhu cosh ¢ - 8
— sinhu sinhv(cosh ¢ sinh ¢'- B +cosh ¢’ sinh ¢ - ay) (3)
Let us consider, more minutely, the above equations
cos ¢ = cosh ¢ cosh ¢' cos By — sinh ¢ sinh ¢,
and Siné) = cosh ¢ cosh¢'sinBy- a
— i(cosh ¢ sinh ¢'- B + cosh ¢' sinh ¢ - ay).
If we square these functions, we find
(cos &n)? = cosh?sp cosh’e’ cos’By + sinh’¢p sinh’¢’
— 2cosh ¢ cosh ¢' sinh ¢ sinh ¢’ cos By,
(8in &))? = cosh’¢ cosh’¢' sin’By — cosh®sp sinh’¢p’' — cosh’¢’ sinh’p
— 2cosh ¢ cosh ¢' sinh ¢ sinh ¢’ cos Ba ay;
but cosBa «y=— cosBy, and cosh?=1 -+ sinh? therefore,

(cosén)? + (Sinéy)?=1.

As the symbol ¢ does not affect the geometrical composition,
Sin ¢y must be normal to the plane of ¢ and 3; hence, if we
analyze it into sinéy.&, we must have sinéy=+V1— (cos&y)?,

= Sinéy
and &= .
V1—(cos &)?

Consider the special case, when y =8. Then
cos & = cosh ¢ cosh ¢'— sinh ¢ sinh ¢/,
and Singy = — i(cosh ¢ sinh ¢' — cosh ¢' sinh ¢) Be.



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 25

Hence £ becomes an excircular versor. Consider next the special
case where y is perpendicular to 8. Then

cos £y = — sinh ¢ sinh ¢/,
and Sin &y = cosh ¢ cosh ¢'- e+ i(cosh¢p sinh¢'- y+cosh¢'sinh¢-B).

It appears that the locus of the poles of all the axes is the
equilateral hyperboloid of one sheet. (v. page 27.)

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF ONE SHERT.

To find the product of a circular and an excircular versor, when
they have a common plane.

P
o K MLA
Fra. 13,

Let AOP represent a circular, and POQ an excircular, versor
(Fig. 13); and let them be denoted by B* and 8. We have

B*B* = B+ = (cosu + sinu - 8¥) (coshw + i sinhv - B¥)
= cosu coshv — ¢ sin u sinhw
+ (coshv sinu + ¢ cos w sinh v)- B’.

‘What is the meaning of the ¢ which occurs in these scalar func-
tions? Is the magnitude of the cosine

vV (cosu coshv)? — (sinwsinhv)?
oris it cosu coshv — sinw sinhv ?
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At page 48 of Definitions of the Trigonometric Functions, I show
that

cos(u + iv) = ‘I:, and sin(u + )= gg,

and that the ordinary proof for the cosine and the sine of the
sum of two angles gives

OA~ 04 OP~ 04 OP’

that is, cos (u + iv) = cosu cosh v — sinu sinhw,

and EQ_MPON_ OMNQ.
OA 04 OP 04 OP’

that is, sin(u + w) = sin » cosh v + cosu sinh .

What, then, is the function of the ¢? It shows that if you
form the two squares, taking account of it, their sum will be
equal to unity. Also, in forming the products of versors, it must
be taken into account. When it is preserved, the rules for cir-
cular versors apply without change to excircular versors.

Here we have the true geometric meaning of a bi-versor, and
consequently of a bi-quaternion; for the latter is only the former
multiplied by a line.

As a special case, let v =7 ; we then-have

l\"

B¥** = — i sinhv + coshv- ¥
this versor evidently refers to the conjugate hyperbola.
Again, let v =; we have
Br+*% = — (coshv + ¢ sinhv -ﬁg),
which refers to the opposite hyperbola.

In the following table, the related excircular versors are placed
in the same line with their circular analogues, and the diagram
(Fig. 14) shows the related versors graphically.
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CIRCULAR.

EXCIRCULAR.

B = cosu+sinu-ﬂiﬁ"

B¥™ = sinu4cosu.g¥[gE™ =

¥ = —sinu 4 cosu-g¥[gF™ =

B =—-cosu+sinu-}3} B =
B+ =—cosu—sinu-/3§ B =

}3‘*"" =—sinu— cosu- g B*a_“

= sinu—cosu-B5 B_§+"'= isinh u— coshu-BE

B = cosu—sinu-ﬂ*ﬂ""‘

coshu+isinhuoﬁg
¢sinh w4 coshu-ﬁ*
—¢sinhu4 coshu-ﬁq
- coshu+isinhu-ﬂi
- coshu—isinhu-ﬁ’

—¢sinhu— coshwu- BE

coshu—isinhu-ﬁE

AOP,
AOP,
AOP,
AOP,
AOP,
AOP,
AOP,
AOP,

It is evident that AOP, is the complement, AOP, the supple-

ment, and AOP; the reciprocal, of AOP,

P 3 P 7
B
P, P
A 0— A
P, Fs
B ’
P, P,
Fia. 14.

It is not the circular

term of the complex exponent which is affected by the v —1,
but the excircular term. Thus space analysis throws a new llght
upon the periodicity of the hyperbolic functions.
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To find the product of two versors of the equilateral hyperboloid
of one sheet, when each passes through the principal axis of the
hyperboloid.

Let P be a point on the excircle of one sheet (Fig. 15), OP its
radius; draw OB equal to 04, in the plane of 04 and OP; AB
is joined by a quadrant of a cir-
cle, and BOP by a sector of an
excircle. Let u denote the ratio
Q B of twice the area of the sector

c POB to the square of 04 ; ’2—'is

the ratio of twice the area of
BOA to the square of 0OA.
) N Hence if B is a unit axis per-

Fia. 15. pendicular to OB and 04, the

expression for the versor POA

is B’“'. Similarly, the expression for the versor 40Q is y&+&.

P

Now Bh"‘y%" =(—isinhu+coshu -B‘) (—tsinhv+coshv- 'y*)
= — (sinh % sinhv + coshu coshv cos By)
— {i(coshu sinhv - B 4 coshwsinhu - y) + coshu coshv sinBy- a}*.

Now the magnitude of coshu sinhv.g + coshwsinhu-.y may be
greater or less than coshucoshwvsinBy. If it is greater, then
the directed sine may be thrown into the form

— i{(coshu sinhw- B + coshv sinhu . y) — ¢ coshu coshv sin By - &},

consequently, the ratio is excircular, and the axis excircular;
hence the product takes the form

— &, where { =cosh¢.e—isinh¢-e.

But if coshucoshvsinBy is the greater, the directed sine
takes the form

— {coshu coshv sin By - a + ¢(coshu sinhv - B8 + coshw sinhu-y)}.

The ratio of the product is circular, but the axis is excircular.
Let w denote the ratio; the axis has the form cosh ¢ . a—isinh ¢-¢,
so that the product is of the form

— ¢"=—cosw — sinw(cosh¢ -« — ¢ sinh ¢ - ¢)§.
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In the former case, the locus of the poles of the axes is the
exsphere of one sheet; in the latter, the opposite sheet of the
exsphere of two sheets.

To find the product of two general versors of the equilateral hyper-
boloid of one sheet.

The one versor may be represented by
—fz +(iy-B+2-0) T},

where 2 —3y*+2'=1, and B is perpendicular to . Similarly,
the other versor may be represented by

—{o+ (' y +2 @),
where z" — y® 4 2% =1, and y is perpendicular to «.

The cosine of the product is
xx' + yy' cos By — 22!,
and the Sine of the product is
i(2y' -y + 'y B) + (v + 22 + yy' sinfy)- e

As before, if (xy')?+ (2'y)®+ 2xa'yy' cos By is greater than
(22! + @'z + yy' sin By)? the ratio of the product is excircular; but
if less, it is circular. In the former case the axis is an axis
of the exsphere of one sheet, in the latter it is an axis of the
exsphere of two sheets.

To find the product of two versors which pass through the prin-
cipal axis, when the one belongs to the exsphere of two sheets, the other
to the exsphere of one sheet.

Let the former versor be denoted by B™, and the latter by
y}-Hv. Then .

..7§+" = (cosh u+isinhu- ,Bf) (—isinhv4coshv- y*)

= — i(coshu sinh» + sinhu coshv cos By)
+ jcoshu coshv -y + sinhu sinhv. 8 — ¢ sinhu coshv sin By - a}}.
As the magnitude of coshu coshv-y+ sinhusinhv.g is by
reasoning similar to that at page 23 seen to be greater than
sinhu coshv sinBy, we see that the axis is excircular; and the
i before the scalar term shows that the ratio is excircular. From
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comparison of the table, page 27, we see that the product versor
has the form

é‘“", where { =cosh¢.e—isinh¢.a,
the equations being

sinhw = coshu sinh v + sinh  coshv cos 8y, 1)
coshw sinh ¢ = cosh » sinhv 4 sinh « coshv cos By, )
cosh w cosh ¢ - e = coshu coshv -y + sinhu sinhv . 8. 3)

FUNDAMENTAL THEOREM FOR THE
HYPERBOLOID.

The theorems for the hyperboloid are obtained from the theo-
rems for the exsphere in the same manner as the theorems for the
ellipsoid are deduced from those for the sphere.

Two general versors for the hyperboloid of two sheets are
expressed by ¢ and ", where

¢=cosh¢ (cosy -kB +siny -k'y) — i sinh ¢ - ,
and n = cosh ¢'(cosy'- kB + siny'- k'y) — i sinh ¢"- cz.
Now ¢9*=(coshu + ¢sinhu- f*) (coshv + ¢ sinhw. 1,;)

=coshu coshv + sinhu sinhv cos &

+ {i(coshv sinhu-  + coshu sinhv.y) + sinhu sinhv Sin &y} .
The problem is reduced to finding the versor &. We apply the
same principle as that employed in finding the versor between
two elliptic axes (page 13), namely: Restore the axes to their
excircular primitives, find the versor between these excircular
axes (page 23), and change its axis according to the ratios of the
contraction of the hyperboloid. This gives

cos &y = cosh ¢ cosh ¢’{§os (¢ —y')} — sinh ¢ sinh ¢,

Sinéy = cosh ¢ cosh ¢’ sin(y — y') - .
—i(cosh ¢ sinh ¢' siny—cosh ¢'sinh ¢ siny') - kB
+i(cosh ¢ sinh ¢' cos y—cosh ¢'sinh ¢ cosy') - k'y.

In this manner, each theorem proved for the exsphere may be
generalized for the hyperboloid.
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DE MOIVRE'S THEOREM.

To find any integral power of a versor.

Let n denote any integral number. For the general spherical
versor we have (£)" = {™, because the axes of the factor versors
are all the same. Hence

cosnu + sinnu - fi

= (cosu + sinu- £})"

= cos™ +n cos™ 'u sinu . f* + 7—"‘-"2_'—12 cos™ 2 sin’y . §7 4,
from which it follows that

COS NU = COS™U — ﬂ%’"—l) cos ™%y sin*u +,

. R nn—1)(n—2 s
and sinnw = ncos™u sinu — “\® 31 )cos" 3u sindu +.

Similarly for the exspherical versor (§*)*, as the axes are all
the same ({*)" = &, and

coshnu 4 ¢ sinilnu . ég = (coshu 4 ¢sinhu. f*)"
= cosh ™y +4nt cosh* ' sinh % - f* +ﬁ7—zz'l'if’cosh""u sinh?y.§74;
therefore

coshnu = cosh™u + ﬂ"’z;'ll cosh*~%y sinh% 4,
and sinhnu = n cosh™ 'y sinhu + ’_‘i"_‘%ﬁ——zlcoshn-su sinh®u .

The only difference in the case of the general ellipsoidal versor
is that u is measured elliptically and ¢ is an ellipsoidal axis.
So for the general hyperboloidal versor, « is measured hyper-
bolically and ¢ is a hyperboloidal axis.
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To find any integral root of a versor. d

Consider first the case of an ellipsoidal versor. If u is defined
as the ratio of twice the sector to the rectangle formed by the
1

semi-axes, it cannot be greater than 2#. Then (¢*)* is unambigu-
ously equal to & Hence

1
cos:‘:-l- sin :‘:'f‘ = (cosu + sinu- ¢¥)~,

If cosu is not less than sinw, then

1 1
c08§+8ing‘f¥=(°°5“);§1 + tanu- ¢4}

_ 1)
= (cosu* { 1+ tanu- ¢+ N Lhantu g 1

21
therefore
u_ H (n—=1)
00 = (cosu)» { 1+ 2= Doeant
_(7»—1)(2n—1)(3n—1)mm+}’

n*4!

LU 1(1 (n—-1)2n-1), .,
and sin = (cosu)n {;'tanu- —Wtanu + } .

But if sinw is not less than cosw, we have the complementary
series :
b4 1w -5 1
& =(sinu)*& {1 4 cotu-& i~

Consider next the case of a hyperboloidal versor. A versor for
the hyperboloid of two sheets is denoted by £*. Now

1w 1
()" =¢" ={coshu + ¢ sinhwu -f*}"
1 1
= (coshu)*{1 + i tanhu- £5},

for coshu is always greater than sinh » ; therefore

) 1 n—1
¥ Adl—
cosh = = (coshu) { ey

_(n=1)(2n—-1)(3n—1) tanh?y 4 ... },

tanh®y

nt4!
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_(n—-1)(2n—

LU 1 1)
and sinh > = (coshu)» {ﬁta.nhu e tanku+ }

But a versor for the hyperboloid of one sheet is expressed by
& Now '

w  fu

(ff-”')é: F: = i —isinhu 4 COShu-f*}é
1=

= (coshu) f*"{l—itanhu-f"*}%,

which is expanded as before.

POLAR THEOREM.

To deduce in the trigonometry of the sphere the polar theorem
corresponding to the fundamental theorem.

The cosine theorem, which is the fundamental theorem of
spherical trigonometry, expresses the side of a spherical triangle
in terms of the opposite sides and their included angle. In
treatises on spherical trigonometry, it is shown how to deduce
from the cosine theorem a polar or supple- _
mental theorem which expresses an angle s
in terms of the other two angles and the
opposite side. It is our object to find the
polar theorem corresponding to the com-
plete fundamental theorem. c b

Let the versors of the three sides of the
spherical triangle (Fig. 16), taken the same _
way round, be denoted by ¢% 9% {5, where £n
& 7, ¢ are unit axes, and @, b, ¢ denote the ¢ “
ratio of twice the area of the sector to the area Fra. 16.
of the rectangle formed by the semi-axes of its circle (which, in
this case, is simply the square of the radius). The angles in-
cluded by the sides are usually denominated A4, B, C, respectively,
but what it is necessary to consider in view of further generali-
zation is the angles between the planes, or rather the versors
between the axes. These in accordance with our notation are
denoted by ¢, £ and & respectively ; the axes of these versors,
which are also of unit length, are denoted by ¢, & and &,
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respectively, and they correspond to the poles of the corners of
the triangle as indicated by the figure.
The fundamental theorem is

& ¥ = cosa cosb — sina sind cos &
+ §{cosbsina-¢ 4 cosa sinb .y — sina sinbd sin&,-f—q}‘;
but as {° is taken in the opposite direction, we have
¢ =cosa cosb —sina sinbd cos &y
4 {—cosbd sina-§ — cosa sinb-y+sina sinb sinéy -5;*.
The polar theorem is obtained by changing each side into the

supplement of the corresponding angle and the angle into the
supplement of the corresponding side. Hence

cos (r — &) = cos(r — q{) cos (m— {£)
—sin(x — 9{) sin(r — {£) cos(w —c¢);
that is, coséy= — cos»{ cos{¢ — siny{ sin{é cosc.

When A, B, C, are used to denote the external angles between
the sides, the above equation is written

cos C = — cos .4 cos B — sin 4 sin B cosc.
Apply the same rule of change to the Sine part, and we obtain
Sin (— &) = —cos (v —{£) Sin(r—nf) —cos(xr—nf) Sin(r—L£)
+ sin(r — ) sin(r — {¢) sine-{;
that is, Sin&) = cos{¢ Siny{+cosxn¢ Sin{é+siny sinfésinc- L.

To deduce the polar theorem for the ellipsoid.

Let ¢, v}, { denote the three versors of the original ellipsoidal
triangle taken the same way round; then the corresponding
versors of the polar triangle are ¢, {{, and &. The third versor
of the original triangle is given in terms of the other two by the
theorem

& =cosa cosb — sina sinbd coséy

+{—cosbsina-¢ —cosa sinb-y+ sina sind Sin&,}*.
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The third versor of the polar triangle is obtained in terms of
the other two by changing each versor into the supplement of its
corresponding versor ; hence

cos én = — cos n{-cos {¢ — siny{ sin ¢ cosc,
and Sinéy = cos {£ Siny{ + cosn{ Sin ¢ + siny{ sin ¢ Sin -

In form it is the same as for the sphere; the only difference is
in the expressions €or the ellipsoidal axes ¢, %, {, and the manner
of deducing the cosine and Sine of the versor between two such
axes. (See page 13.) The polar ellipsoid is not identical with
the original ellipsoid; the ratios of the two minor axes are
interchanged.

To deduce the polar theorem for the exsphere of two sheets.

Let &2, 4®, { denote the versors for the three sides of a triangle
of the exsphere of two sheets, taken in the same order round.
The axes £, u, { have their poles on the exsphere of two sheets
‘(page 23); it is required to deduce the theorem for that polar
triangle. For the original triangle, we have

{* = cosia cosib — sinia sinib cos &y

+ {—cos ib sinia - é—cosia sin ib - 5+ sinia sin ib Sin &y} ¥.

By changing each versor into the supplement of the correspond-
ing versor, we obtain

&= —cosy{ cos{¢ — siny¢ sin{é coshe
+ feos ¢ Sinyn¢+cosq¢ Singé+4sinng siné sinhe- ¢} .

The above cosine equation has a marked resemblance to the
fundamental equation of non-euclidean geometry (see Dr. Giin-
ther’s Hyperbelfunctionen, pages 306 and 322). It is true that »¢{
and ¢ are not simple circular versors, but the functions are cos
and sin in a generalized sense. I venture the opinion that non-
euclidean geometry is nothing but trigonometry on the exsphere;
and that the so-called elliptic and hyperbolic geometries are iden-
tical with the ellipsoidal and hyperboloidal trigonometry developed
in this paper.
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To deduce the general polar theorem for the exsphere.

Let ¢, % {* denote the three sides of an exspherical triangle;
the axes ¢, », { are exspherical, but the ratios a, b, ¢ may be cir-
cular or excircular, or be compounded of = or § and an excircular
ratio. For the original triangle, we have

{=-cosacosb—sina sind coséy
+ {—cosa sinb-é—cosa sinb-. q+sin¢.z sind Sin&;}‘,
and for the polar triangle,
&n=— cosp{ cos {¢ — siny{ siné cosc
+ {cos ¢€ Sin n{+ cos n{ Sin {¢+sin ¢ siné Sin #} %.
He.re the functions cos and sin are used in their most general
meaning.
SINE THEOREM.

To prove that if &, o, ¢ denote the three versors of a spherical
triangle, then
singp{ _sin{{_ siny

sina sind sinec

We have cosc=cosa cosb — sina sinbd cos &y,
and  sinc-{=—cosbsina.£{—cosa sinb-y+sina sind siné&y-&.
By squaring the second equation, we obtain
sin’c = cos?b sin’a+-cos’ a sin’*b 4 sin’a sin’d sin’éy
+ 2cosa cosbsina sinb coséy;

then, by substituting for cos & from the first equation, and reduc-
ing, we obtain

sina sinbd sin ¢y = V1 —cos?a— cos?b—cos?c+2cosa cos b cosc.
y

sinéy _ siny{ — sin ¢¢

Hence - - -
sinc sina sind

This theorem is also true for an ellipsoid of revolution, for then

sina sinb sinéy = k V1 — cos’a—cos?b—cos?’c+2cosa cosbcosc.
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To find the analogue for the exsphere of the sine theorem.

Let ¢ 7, { denote exspherical axes, and a, b, ¢ versors which
may be circular, or excircular, or both combined. Then, with the
general meaning of the sin and cos functions,

sina 8inbd 8inéy =V1 — cos’a—cos?b—cos?c+2 cosa cosd cosc.
sinfy_ sinn{_ sin{{
sinc sina  sind

We have seen that, if a and b are both simply excircular, it
does not follow that ¢ is (page 28).

Hence

SUM AND DIFFERENCE THEOREMS.

The reciprocal of a given versor.

By the reciprocal of a given versor is meant the versor of
equal index but of opposite axis. Let ¢ denote the given
spherical versor; its reciprocal is (— £)* But it may be shown
that ¢+ =(—¢)* For

¢ = cos(— u) + sin(—u) . &
=cos® — sinu - ff
=cosu + sinu- (—&)¥
=(=#~ :
Similarly the reciprocal of an exspherical versor & is (—¢)*
or {7 and
¢ = coshu — i sinhu-¢%.
The reciprocal of an ellipsoidal versor £ is also £ the only

difference being that ¢ is no longer a spherical, but an ellipsoidal
axis. So for the hyperboloidal versor.

To find the analogues of the sum and difference theorems of
plane trigonometry.

At page 45 of “The Imaginary of Algebra,” I have shown how
to generalize for the sphere the following well-known theorems
in plane trigonometry, namely, "

cos(A+ B)+cos(4A— B)= 2cosAcosB,
cos(A4 + B) — cos(4 — B)= — 2sin 4 sin B,



88 PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS.

sin(4 4 B) + sin(4 — B)=2cos Bsin 4,
8in(A4 + B) — sin(A4 — B) = 2cos 4 sin B,

and c0sC+cos D= ZcosC;DmsC’;D’
cosC—cosD=—2sin0;DsinC‘2"D,
gin C' + sin D = 2sin0'12'DcogC‘;D,
sin ¢ —sin D= 2cosC;Dsin0;1)_

The generalized formule of the first set for the sphere are,
using general axes ¢ and 7,

cos §y® 4 cos ¢y~ "= 2cosAcosB,

cos ¢y® — cos #n~F = — 2cos(Siné Siny”),

Sin¢y® 4+ Siné‘n~? = 2cos BSiné,

Sin ¢y — Sin#y~"= 2 {cos A Siny® — Sin(Sin ¢ Siny®)}.

.

Corresponding to the latter set of four equations we have
cos{°+cosw®= 2cos{ w"(w"’{")*} cos(w™2¢%) i
cos {¢ — cos w® = — 2cos[Sin§ w”(w""{c)}} Sin (w™2¢°) %‘],
Sinf°+ Sinw?=  2cos(w 2%} Sinfw?(«=2¢%) !},
Sing°—Sinw?= 2cos{w’(w2¢%) ¥} Sin(w2¢%)}
— 28in Sinfw?(w~2¢%) ¥ Sin(w=2¢%) 1
The corresponding theorems for the ellipsoid are the same,
excepting that
f=cosp-kB —sing-e, p=cos¢’'-ky—sing'-a.
Consequently coséy is the same as before, but
Sin gy = cos ¢ cos ¢’ sinBy - ¢ —k(cos ¢ sin ¢’ - B +-cos ¢’ sin b - ay).

For the general ellipsoid the only difference is in the expres-
sions for ¢, %, and sinéy- &y,
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EXPONENTIAL THEOREM.

To find the exponential series for an ellipsoidal versor.

In the expression & for a spherical versor, the u and £ are truly
related as index to base, for logé* =u logé' =u.- £’, and therefore
&= el Consequently

1 1
f‘:l_:?._!u’+4_'.u‘
ut W 5
+{u_§_!+g_!_}.f .

In the case of the spherical versor, § =cos¢-B —sin¢-a, or
cosp(cosy B+ siny.y) —sinp.a, where a, B, y are unit axes
mutually rectangular.

The expansion for the ellipsoidal versor ¢ differs only in the
way in which % is measured, and in the expression for ¢, which is
now cos¢ - kB — sin¢ - e, or cos p(cosy - kB + siny - k'y) — sin¢p - .

To find the exponential series for a hyperboloidal versor.

The expression for a versor on the exsphere of two sheets is
& Now

= et
=1+z‘u-£*+5;“—!)2 : £'+%%)—3 Ly
'
+i{u+g—:+§—2+ } ¢
The expression for a mixed exspherical versor is £&+*. Now

bt = e(u+t-)-ef

=1 (ut i) gF o PO ey (ki) 2T

—q1_ (utw)?  (utiv)t
=1 21 + 4!

+{u+iv—(“—'§!i—”)f+ }-f*-




40 PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS.

Both the cosine and the sine break up into two components, the
one independent of i, and the other involving ¢. Here we have
the sine and the cosine of the ordinary complex quantity.

As the ratio of a hyperboloidal versor may be circular or excir-
cular, or both combined, the general versor may be expressed by
¢, where a is as general as stated. Then

f‘:e'f!
a® , a
—1—ﬁ+4—!—
a® | a® 3
+{a 3—!+~5—!—} ¢

To find the exponential series for the product of two ellipsoidal
versors.

In the paper on The Fundamental Theorems of Analysis Gener-
alized for Space I have shown that if £ and »* denote any two
spherical versors, then

eu,qv = e* G!M'}

=1+ (& + oD Loty S roahys,

where the powers of the binomial are expanded according to the
binomial theorem, but subject to the special proviso that the order
of the axes ¢, y must be preserved in all the axial terms. Thus

Er=1+u-& 4ot

1

Syl &+ 2uv- T oy

+

+%§u8.£3§ +3u2'0-f"'1]} +3u@’.£§,"ir + 'Us'ﬂa}}
+ ete.

=1—§1?§u’+2wvcos$1,+v’}

+%§ * + 4uPv cos &y + 6 uPv®+ 4ur® cos fn+v'} &)

— ete.
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+{u-%(u’+3m}’)+ etc.}uf! )

+ 1v—l(3u"v+'v"’)+et’43 } i ®
LeEY! B

+{ =5, 200+ (4w + 4ur’) — ke }sin}.t.,-?q‘. ©

In the case of the sphere
§=cosp-B—sing-a,
and n=cos¢'-y—sing'-a;
consequently coséy= cos¢ cos ¢' cos By + sin¢ sin ¢/, and
Sin &) = cos ¢ cos @' sin By - « — (cos ¢ sin '+ B + cos ' sin ¢ - ay).

For the ellipsoid of revolution the expansion is obtained by
introducing ellipsoidal axes ¢ and »; and the corresponding theo-
rems for the hyperboloid are obtained by changing the axes and
indices into hyperboloid axes and indices.

To find the exponential series for the product of two hyperboloidal
versors.

Let £ and # denote any two hyperboloidal axes, and » and v
general hyperboloidal ratios (p. 40). Then the product is

f"l]’ = eu.‘!-{»'.'i

=14 @u-F4vgh)+ ("'g;v"”)’+ ud ;v"")’+m

The form of the theorem is the same as before.

LOGARITHMIC VERSORS.

In the paper on The Fundamental Theorems of Analysis Gen-
eralized for Space, page 16, I have shown that when the index of

a, in e"J, is generalized, we obtain the expression for the versor
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corresponding to a sector of a logarithmic spiral. Let w denote
the general angle, and a4 the generalized versor; then

a:=e‘"'
_ o A M.t Ao
=l+de+ =+ T+

A%cos2w , A®cos3w
g1t gy Tete

A%sin2w , A®sin3w

¥
o1 + 31 +etc.}»a

=14+ Acosw+

+ {A sinw +
p— eAm-eAlh-.‘E.

It is there shown that w is the constant angle between the radius
vector and the tangent, or rather that it is the constant difference
between the circular versor from the principal axis to the tan-
gent, and that from the principal axis to the radius vector. It is
also shown that A sinw gives the ratio of twice the area of the
corresponding circular sector to the square of the radius, while
Acosw gives the logarithm of the ratio of the radius vector to
the principal axis.

I have there called such a logarithmic versor, when multiplied
by a length, a quinternion. In his Synopsis der Hoheren Mathe-
matik, Mr. Hagen has pointed out that the proper classical word
is quinion. A quaternion means a ratio of three elements mul-
tiplied by a length; therefore, a ratio involving an additional
element when multiplied by a length, is a quinion.

In the paper on The Imaginary of Algebra, an excircular ana-
logue is deduced, namely, o4 = e4™ but there are in reality
three, according to whether 4 or w, or both, are affected by the
V-1

To deduce the four forms of logarithmic versor.

First: circular-circular. Let ¢ denote a general spherical
versor, then

f: = ewf"’___ eumw+ulln|r£§
. 1 "] u’ 20 uB 3w
=14 ufs+ g 4 g fete.

Here w denotes the constant difference between the versor from
the principal axis to the tangent and that from the principal
axis to the radius vector.
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Second : circular-excircular. Let iw denote the constant dif-
ference between the excircular versor from the principal axis to
the tangent, and that from the principal axis to the radius
vector; then

e‘\:' = e'l‘f"' =e* cosh w4 dnhw‘tf
= y u w0 u® 0
_1+u.$‘w+ﬁ.§2‘ +3_!..£3‘ +
=1+ucoshw+;—"cosh2w+§cosh3w+ ’
+i{usinhw+'2£'sinh2w+%sinh3w+}-5*.

Third : excircular-circular. Let £+ denote a general exspherical

versor; it is equal to e""fg, and here ¥ denotes the constant sum
of the circular versors above mentioned. Let that constant sum
be any other circular versor w. Then

f:;«=em-;"=eueo-o+m.m~-ﬁ
=1 +iu.$w+M.gw+M.fu+etc,
2! 3!
2 4 )
=1-F 8+ e+
3
+ifuee—Lopet]
=1—" cos 2w+ cos 40 — ete
= —2—! Z—!- .
+i{ucosw—g—s'cos3w+etc.}
u(

. w? : -3
+ {—ﬁsm2w+4—!sm4w—} ¢

+i{usinw—gi'sin3w+etc.}oéi.

Here both the cosine and the sine consists of a real and an ap-
parently imaginary part. The geometrical meaning has already

been explained (page 25).
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Fourth : excircular-excircular. Let iw denote the constant sum
of the excircular versors mentioned in the second case. Then

= o £ — goow-wiinhe- ¥
s\ 2 2z \3
=14 g GV e B ey
=1 ¥ (cosh 2w+ isinh 2w~ &) +
+ tu(coshw + i sinhw - 8*)—

=1—;—’!cosh2w+g‘—!cosh4w —
+i{ucoshw—;—3!cosh3w+}
- {usinhw—'g_’!sinhsw+}-£*
+i{_g—'!sinh2w+:_‘!sinh4w—}.e*.

To find the product of two logarithmic versors of the most general
kind.

Let ¢ and » denote general axes, and w, w, v, ¢ general ratios;
that is, each may be a sum of a circular and an excircular ratio.
Then £ and 9} each denote a general logarithmic versor. Then

Eagp = ev oo
. )2 . . 3
=1 (ue g o) + (LEA0 N (0 EHOA) o

The powers of the binomial are formed according to the same
rule as before. (Fundamental Theorems, page 18.)

COMPOSITION OF ROTATIONS.
To find the resultant of two elliptic rotations round axes which
pass through a common point.

Two circular rotations are compounded by the principle that
the product of the half rotations is half of the resultant rotation.
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Let any two circular rotations be denoted by & and »°, and
their resultant by £“ x n ; then

={cosgcos§—singsin§cos&,
3
+(cos§sing-$+cosgsingon—singsin58in&,)§} .
w Ve U
Let =08, o8y — sing siny cos &,
y= V1=—4a3,
c—cosgsing-t+cosgsing'1’—singsing Sin&,.
- vi—a ’
then & x =t —yt+2ay- LN

The elliptic generalization is obtained by generalizing the axes
¢ and » and finding cos & and Sinéy, as at page 15.

To find the resultant of two hyj)erbolic rotations round awxes which
pass through a common point.

Let & and »* denote two exspherical rotations which have a
common principal axis; let their resultant be denoted by & x »".
By analogy we deduce that

R
& X g = (&%)
= U Y 4 sinh¥sinh ¥
_{coshzcosh2+smh23mhzcos&,

i(cosh 2 sinh ¥ . % ginh? . y— i sinh sinh USin & )¥ L
+z<cosh 2sl‘nh 3 &+ cosh 2smh 3 n — i sinh 2smh 2Sm&;) }

Let z=cosh'§‘coshg+sinhgsinhgcos &

y=VvVa2—1,
V.U uU . 1V co U 1V

cosh-2- smhé . $+cosh§ smh§ cqp—1 smh§ smh§ Sin &

Vai—1
Then é“xq“=z’+y’+2zy~{§.

{=
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Suppose a fluid to move round the axis ¢, each particle describ-
ing a hyperbolic angle u, and then round the axis y by a hyper-
bolic angle v, the principal axes of the two motions coinciding;
the resultant gives the angle, the plane, and the principal axes of
the equivalent single motion of the same kind. The axis of that
motion does not pass through the intersection of the axes of the
components.

A more general result is obtained by supposing the ratios to
be complex; the theorem is then expressed by the spherical
theorem taken in a generalized sense, just as in ordinary algebra
z may be positive or negative.

To find the effect of an elliptic rotation on a line.

The effect of a circular rotation ¢{* upon a unit axis p, is given
by the equation

&p=cosép- £+ sinu Sinép + cosu Sin(Sinép)é.
(Principles of the Algebra of Physics, page 100.)
It was shown by Cayley that the effect of £* upon p is given
by the Sine of the product é—;,ﬁ f‘. For by the expansion of

(cos1—2° - sing . é‘)p‘(cos% + sing . f‘),

the directed sine is found to be
u

cos’g-p + sin’2

cosép-¢ + cosg sing Sin £p — sinfg Sin(Sinép)¢.
2%, — cog?¥
But cos 2P cos 2

therefore the directed sine is

cosép- &+ cos";—‘ Sin(Sin £p)¢,

cosép - £ + sinu Sin £p + cosu Sin (Sin &p)é.

To generalize for an elliptic rotation we substitute the more
general value of ¢ and form cos £p, Sin ép, and Sin(Sinép)é, accord-
ing to the rules stated at page 15. For example, let

¢=kcos¢p-B—sing-a,
p=sinfd.y + cosf-a;
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" then

cos ép = cos ¢ 8in 6 cos By — sin ¢ cos b,

Sinép = cos ¢ sinfsinBy - & + k(cos ¢ cos @ - Ba — sin ¢ sin 6 - ay).
To find the effect of a hyperbolic rotation on a line.

Consider the simplest exspherical analogue of the spherical
theorem of the preceding article; it is

£4p = cosép- £ + i sinhwu Sin £p + coshu Sin(Sinép)¢é.
But £ is now an excircular axis of the form
¢=cosh¢.-B—isinh¢-a. l

Let, as before, p=1sin@.y + cosfd-a;
then cosép = cosh ¢ 8in 6 cos By — ¢ sinh ¢ cos 6,
Sin ¢p = cosh ¢ sin § sin By - @ + cosh ¢ cos@- Bx — i sinh ¢ sind - ay,
Sin(Sin¢p)¢

= cosh®¢ sin @ sin By - «f + cosh?¢ cos 6+ « — sinh®¢p s8inf .y
— icosh ¢ sinh ¢ cos @ - B—i cosh ¢ sinh ¢ 8in § sin ayB - e

The effect of a hyperbolic rotation is obtained by taking the
more general value of ¢ and applying the hyperbolic rules of
multiplication.






Utility of Quaternions in Physics. By A. McAuray, M.A,
Lecturer in Mathematics and Physics in the University of Tasmania.
PP- xiv, 107. London, Macmillan & Co.

The volume before us is an essay that was submitted in December, 1887,
in competition for the Smith’s Prizes at the University of Cambridge, under
the title of “Quaternions as a Practical Instrument of Physical Research.”
An article bearing the original title of the essay appeared in the Pkilo-
sophical Magazine for June, 1892, and another extract was printed in the
Proceedings of the Royal Society of Edinburgh, 1890—91, p. 98, under the
title of “ Proposed Extension of the Powers of Quaternion Differentiation.”
The present volume contains the complete essay, with a short preface and
some foot-notes in addition.

The essay opens as follows : “It is a curious phenomenon in the History
of Mathematics that the greatest work of the greatest mathematician of the
century which prides itself upon being the most enlightened the world has
yet seen, has suffered the most chilling neglect.” In further description of
this phenomenon, it is stated that the work has been neglected alike by pure
analysts and mathematical physicists with very few exceptions, the grand
exception being Professor Tait ; that it is not studied at the University of
Cambridge except by a few, and only as a non-commutative algebra, not as
a geometrical method ; that there is a solid and well-nigh universal scepti-
cism as to its utility in original physical investigations, and that the physicists
who have studied it are satisfied with Maxwell’s paradoxical position: “I
am convinced that the introduction of the ideas, as distinguished from the
operations and methods of quaternions, will be of great use to us in all
parts of our subject.” To complete the description of the phenomenon,
I may add that a Scottish mathematician, on reading Hamilton’s Quater-
nions, first formed the alternative conclusion that either he himself was a
dull stupid or the book sheer no'nsense, but on reading further was able to
arrive at the more comforting alternative ; that a German mathematician
declared the method to be “an aberration of the human intellect” ; and
that a French mathematician gave the verdict, “ Quaternions have no sense
in them, and to try to find for them a geometrical interpretation is as if one
were to turn out a well-rounded phrase, and were afterwards to bethink
oneself about the meaning to be put into the words.”
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How does the author explain the curious phenomenon? As follows :
“ Workers naturally find themselves, while still inexperienced in the use of
quaternions, incapable of clearly thinking through them and of making
them do the work of Cartesian geometry, and they conclude that quater-
nions do not provide suitable treatment for what they have in hand.
They then grow rather disgusted with these vexatious quaternions, and,
consoling themselves with the reflection that Maxwell, before penning
the above extract, had had more experience than themselves, decide
that the subject only requires a superficial study to be rendered of as great
utility as it is capable.” But the author admits that there is a veritable
stumbling-block in the way, and to remove it is the object of the essay.
He says, p. 2: “ The fact is that the subject requires a slight development
in order readily to apply to the practical consideration of most physical
subjects. The first steps of this, which consist chiefly in the invention of
new symbols of operation and a slight examination of their chief properties,
I have endeavored to give in the following pages.” The author’s develop-
ment consists in an extension of quaternion differentiation, pp. 12-24.

dz
merely an operator, and therefore should be written immediately to the
left of the operand ; but, according to Mr. McAulay, it is a symbolic vector,
and therefore is capable of any position, whether before or after the
variable. He denotes the tie between the symbolic vector and the variable,
not by juxtaposition to the left, but by a common suffix. In the third
edition of his Z7eatise, Professor Tait allows separation, but he stickles for
separation to the left only. A new symbolic vector A is introduced ; it
applies to all the variables in the term in which it appears. The symbol vy

with a prefix, as oA, means %z‘+;{%} + %,,k’ o being w4 v +wk

According to Hamilton and Tait, the symbol y=¢ 5—, +jg;+k£ is
x

Similarly, ¢ being a linear vector function of any vector whose co-ordinates
are a,5,c1, @bsty, aghycs, $A is defined as a symbolic linear vector function,
whose co-ordinates are g dd ddd dad Finally, a sym-
bolic vector { is introduced, which is such that Q (&, B) being linear in
each of the vectors «, B,

QW OH=0C(V ) =Q( )+ QU /) + Q% 4).

The remainder of the essay consists of an application of the quaternion
analysis so developed to the theories of elastic solids, electricity and
magnetism, and hydrodynamics. It is almost wholly a translation into
quaternion notation of known results : the author, however, has endeavored
to advance each of the theories chosen in at least one direction. The work
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shown is designed to make good the following statements : fis that qua-
ternions are in such a stage of development as already to justify the
practically complete banishment of Cartesian geometry from physical ques-
tions of a general nature; and second, that quaternions will in physics
produce many new results that cannot be produced by the rival and older
theory. But in the preface, the author now states that he delayed publica-
tion until he could by a more striking example than any in the essay show
the immense utility of quaternions; this he believes has been done by a
paper published in the Philosophical Transactions for 1892. At the time
of writing the essay he possessed little more than faith, and he felt that
something more than faith was needed to convince scientists. In conclu-
sion he exhorts mathematical physicists to study quaternions seriously, and
he looks forward to the time when quaternions will appear in every physical
text-book that assumes the knowledge of elementary plane trigonometry.

I agree with the author in his estimate of the value of Hamilton’s quater-
nion researches: they constitute, in my opinion, the greatest mathematical
work of the century. They contain what was long sought after — @ verita-
ble extension of algebra to space: I do not say #ie, for 1 believe that
there is more than one. The Cartesian analysis is also an extension of
algebra to space, but it is fragmentary and incomplete; whereas the
quaternion analysis is the true spherical trigonometry in which the axis of
an angle as well as its magnitude is considered.

But I cannot agree with the author in his explanation of the comparative
neglect which the work has hitherto received. The notation has been a
stumbling-block. Familiar functions, such as the cosine and sine, are
replaced by new selective symbols .S and 7; Greek letters are used alike
for axes, vectors, versors, and functions of these. As a consequence, the
notation is contracted ; to make it more expansive, Maxwell introduced

- German capitals for vectors, Mr. Heaviside used black letters instead, and
in the work before us we have a rather incongruous mixture of Greek and
black letters. The notation has divorced the method from the rest of
analysis, so much. so that Mr. McAulay believes that it is an independent
plant which cannot be grafted on the old tree of analysis (Philosophical
Magaszine, Vol. 33, p. 479).

The identification of vectors and quadrantal versors has been a stumbling-
block. Quaternion analysis is nothing but spherical trigonometry in which
the axis of the angle is explicitly denoted ; this will become clear to any
one who studies the fundarhental rules and the manner in which Hamilton
arrived at them. It is the analysis of directed ratios. The identification
mentioned assumes that it is also the analysis of lines, areas, volumes, and .
other physical products ; it leads to the paradox that the square of a vector
is essentially negative, and to a total disregard of the dimensions of physi-






