

VOLUME 2
TABLE OF CONTENTS
COMMENTARY
VRIL TELEGRAPHY
VRIL LINKAGE
MAGNETO-ELECTRIC TELEGRAPHY
VRIL MAPS
EARTH RODS AND LOADS

Organismic Vril conductivity is symmetry-specific. The body requires specific orientations for eidetic transactions. Vril eidetic world transactions determine radionic rates and auric phenomena. Radionic rates are Vril World eidetic nodes. Subjective experiments are verified via consortium of participants. Systemologies are subjectively agreed consortia.

Vril World eidetic experiences may be replicated among participants. Vril eidetic World transactions stimulate inertial entourage. Specific Vril active minerals and metals give experiential distortion. Multi-locational experience is simultaneous multiple-Vril eidetic World transaction. Specific material configurations display multiple Vril world eidetic transactions.

Minerals and metals are Vril eidetic worid agglumerations. Minerals and metals are Vril projections into inertial space. Vril determines the eidetic content of an area. Specific Vrilactive minerals and metals agglumerate at Vril dendritic junctures. Groundplates in these locations are especially potent and eidetic in action.

Vril contact in free space occurs via specific directional axes. Vril eidetic world transaction defines Vril technological design. Vril technological design is eidetic worid specific.

Designs of componentry must be experienced to determine efficacy of transaction. Vril eidetic world material configurations require Vril channel alignment. Organismic extension of consciousness is Vril technological quest. Specific experiential determinations required in designing eidetic world conductors. Vril threadways determine spatialexperiential distribution. Inertial space impedes organismic experience.

Vril paths agglumerate inertia. Vrillic matter is rare. Vrillic matter generates convulsions innature (Corliss, Bergier, Tomas, Moray, et.al.). Vril eidetic world-blends generate variations in organismic experience. Material blends and materio-blended configurations transact unexpected Vril eidetic worlds. Vril componentry awakens, intensifies, clarifies, and translates Vril sensory awareness.

Vril experiential extension is balanced against the inertial resistance managed by an organism. Regional holisms are Vril eidetic world composites. Georegional hegemonies and experiential stratifications require explanation in comprehending Vril Template infra-structure. Vril eidetic clarity determines cognitive success along spatial directionalities. Vril dendritic structure is experientio-space reference.

Vril world-induced transmutations manifest as material transmutations. Specific minerals and metals focus inertial resistance. Specific material geometries focus inertial resistance. Organismic experience is endangered in strong concentrations of inertial resistance. Organismic unity is damaged in strong inertio-resistive currents.

Vril penetrates all experiential realities and holisms. Organismic weakness impedes eidetic experience. Eidetic Vril sensory experience does not operate in inertial resistant minerals and metals. Vril generated minerals and metals are projected from Vril threads. Vrillic minerals and metals are pure Vril projections. These are legendary anomalous minerals and metals. Ordinary matter is Vril projected and semi-inertified via impact projection.
Material inertial behavior is determined via Vril eidetic mate-
rial transactions.
Vril worlds are holistic. Vril eidetic world experience is indivisible. Vril eidetic transaction is holistic experience. Eidetic transaction is not coded inertial transfer. Specific minerals and metals are generated via inertial densifications (lead). Inertially agglumerated elements resist Vril conduction.

VRIL TELEGRAPHY

Human insistence on using applied artificial inertial code in technological systems forces Vril to manifest itself in anomalous ways. The seemingly anomalous schism between code and gradual comprehension derives from human insistence on the use of inertial code. Vril supplies expression and meaning directly.

Each assertive act brings an opposed inertial pattern. Inertio-assertive activities are dualities. Inertio-assertive dualities self-destruct.
Vrll asserts eidetically against inertia. Vril dissolves inertia. Vril projects eidetic holism into void space. Vril projections generate living experience. Vril is the means which dissolves inertial spaces, patterns, and dualities. Vril receptions require surrender and devotional sharing between participant and Vril itself.

Vril eidetic world contact gives revelation. Vril eidetic world blendings join unexpectedly. Vril eidetic world blendings do not nullify. Vril generated imprints define rigid related cohesions in natural settings. Vril Science vril eidetic world junctions and their terminals. Vril communication is direct.

Vril communications are holistic. Vril activated minerals and metals are eidetic. All technological componentry is primary Vril active. Human sensory discernment identifies Vril eidetic resonances. Vril world eidetic transactions are conscious resonances. Vril worlds are pure experiential worlds. Vril worlds exist in conscious hierarchy.

Vril threads give connectivity with Vril worlds. Specific Vril world-orders exist in greater Vril conscious states. Space is Vril dendritic projection. Vril space sensory systems access all organismic terminals. Vril material contact impacts inertial space. Inertial resistancies impede organismic systems. Vril contacts stimulate inertial resistance. Specific material Vril contacts are inertially densifying.

Specific material configurations occlude eidetic Vril world transactions. Specific material configurations intensify Vril eidetic world transactions. Vril schematics are hieroglyphic in Vril terminals. Human neurology extends consciousness via Vril thread conductions in space. Vril schematics define mysterious Vril language and deep-conscious relations. Specific Vril eidetic worlds generate and sustain autonomic biological functions (via iron, carbon, copper).

Vril eidetic world contact is true experience. Vril is the universal fundamental. Vril is the universal generative and projective agency. Vril is the fundamental communications channel. Eidetic imagery and experience is the universal foundation. Vril eidetic worlds independently exist. Inertial pressures lead observers along endless primitivesensory paths. Inertial sensory paths give no eidetic experience.

Inertial patterns emerge as detritus in Vril activities. Vril threads converge on organisms. Organisms become Vril thread
foci. Vril material contact defines Vril eidetic experience. Strong Vril discharges emerge from ground. Vril awareness becomes Vril Science.

Organisms locate sensate Vril threadways. Organisms respond to insensate Vril. Inertial pressures lead observers along endless primitivesensory paths. Inertial sensory paths give no eidetic experience. Inertial patterns emerge as detritus in Vril actuvities. Vril threads converge on organisms. Organisms become Vril thread foci.

Vril material contact defines Vril eidetic experience. Strong Vril discharges emerge from ground. Vril awareness becomes VrilScience. Organisms locate sensate Vril threadways. Organisms respond to insensate Vril.

Metaphysical eidetic contents are Vril generated. The Vril World is the metaphysical world of eidetic contents. Vril eidettc contents cannot be recorded with detection devices. Metaphysical eidetic contents are Vril generated and Vril experienced. Sentient beings experience eidetic content Eidetic content is not inertially registered. There is no correspondence between eidetic content and inertia. Eidetic content disrupts, dissolves, and scatters inertia. Eidetic contents are not objectifiable.

Pure Vril sensual transaction rectifies human society. Systemologies must not apply extra energies to their componentry. No extra energies are needed. Eidetic transactions require only touch contact for engaging their sublime experience. Systems must come back to this point and develop from that true foundation.

Vril sensation is extant in natural surroundings. Vril sensation remains unrecognized and insensate. Eidetic transactions within the natural setting are continuous. Black glowing space is Vril. Black glowing space is Vril permeated. Space is the black eidetic node of Vril itself Space requires Vril material conductive paths to become sensate.

Vril sensation is true experience. Vril consciousness is true consciousness. Black space is the fundamental Vril eidetic node. Black space is a multiplicity of Vril eidetic worlds.

Vril generates the manifestations of eidetic nodes. Vril is pure consciousness. Vril is pure experience. Vril is revelation, eidetic content, and vision. Vril gives distant rapport and exotic experiences of unknown Vril Eidetics. Vril gives comprehension and understanding. Vril alters recipients to enter greater Vril Eidetics.

Vril Eidetics reveal conscious stages and levels which transect inertial space. Human experience and consciousness tunnels through Vril Eidetics. Human consciousness cannot tunnel through inertial space. Vril transactive devices enable human consciousness to rise through successive stages of awareness.

Ferruginous and carbonaceous substances concentrate and collimate the pure eidetic of Vril threads in an organismically "soft" manner. Vril connectivity extends sensation. The Vril extension of the human organism is vast. Vril extension experiences remove the conscious focus of the body. Vril consciousness is transactive fusion with the universe. Vril connectivity produces auditory nerve inductions.

Distant persons can be placed in complete eidetic with one
another through Vril tuners. Vril threads are the central features of the galvanic currents. Vril threads bridge space gaps with extensive white ray manifestations. Vril threads connect groundworks with extensive Vril and eidetic manifestations. Galvani studied metallic atmospheres and white "daylight discharges". These eidetic discharges were not measurable with sensitive electroscopes.

Researchers and discoverers began the use of aerial cathodes and anodes. Specific metals were used in the earliest wireless experiments. It was also discovered that specific transactive forms of metallic masses were required to yield the strongest connective effects. These transactive forms, masses, and positional arrangements of specific metals connected distant communicants with varieties of eidetic sensations. Vril threads projected between these forms. Early researchers were not able to persist in developing the pure Vrillic sensual manifestations. These researchers fractioned the Vril into subordinate inertial forms and demonstrated the effective use of these less excellent energies.

Specific Vril materials have human-matched conductivity of chief importance. Carbon and Iron are the humanly central human matched conductivities. There are groups of humanmatched conductive materials. Through the Vril transactive chart we determine the true elements in their number and variations. Vril conductivity with the human organism defines technology. We utilize the materials which are central to Vril conductivity in the human organism when measuring and establishing parameters of measurement.

Vril conductivities are determined through physical contact with Vril transactive matter. Vril conductivities reveal the degree of inertial agglutination in space. Vril transactive devices reveal the ease with which Vril dissolves and transects inertial space. Between these Vril Eidetics is found the inertial space. Inertial space blocks consciousness. Our chief aim is to dissolve these deadening inclusions.

The Vril supply is determined through specific Vril points in our environment. Vril is consciousness. The environment is experiential because of this energetic Vril supply. Vril Vision enables the observer to recognize the generators and modulators of regional consciousness through direct contact. Increased consciousness marks the materials and places of greatest Vril activity. Vril vision grants its recipients ability in designing Vril active components and systems. Comprehending these truths is essential toward appreciating the purpose of the Vril Compendium.

Vril is consciousness. Vril projects conscious levels to us through its dendritic distributions. Vril filaments generate and project the fundamental eidetic node of consciousness. This glowing eidetic node is what we call eidetic space.

Vril expresses intentions throughout its fundamental eidetic transactions. The generation of original and unexpected qualities from the Vril World emerge through Vril dendritic filaments. Inertial space is an alien and unnatural presence amid the experiential worlds. Inertial is recognized as alien and unnatural because it resists every creative effort of Vril. Inertial space resists each creative expression.

Inertial space distorts Vril intent. Inertia is a deadened
space. Inertia is not a nothingness. Inertia is an imposition. The origin of deadly inertia is surrounded by religious legend. Vril Vision locates sites where inertial densities are sensibly strong. Inertia removes sense and consciousness. Locations and situations in which sense and consciousness perceptibly diminish are inertial zones.

Vril impacts inertia and is distorted. Vril impacts against the inertial space results in the formation of detrital products. Vril Technology is at war with inertial space and its effects. Humanity is the victim of inertial space encroachments.

Vril transects its own eidetic glowing eidetic transactions. Vril transects the very materials it generates. Vril transects matter. Specific Vril eidetic space Vril Eidetics are experienced through the use of special tuning artifice. All materials will reveal these fundamental Vril Eidetics through subjectively and physiological contacts (visceral frictions). Different materals reveal harmonic rays and inflections which proceed from their masses when connected with Vril threadways. It is by these that elements and materials may be differentiated.

Securing solid ground contact require successions of material contact. true ground is Vril not material Grounded objects merge with ground Vril tufts. Proximity to material lodes secures Vril tuft-mergings. Eidetic transactions are Vril world resonances. Vril eidetic world transactions transmute the apparent world. Vril eidetic world transactions interblend. Interblending vril eidetic worids generate and sustain the apparent world.

The apparent world is a multi-dimensional Vril exchange network. Vril eidetic world transactions have mechano-inertial entourage. Vril worlds exert cavitating pressures on inertial space. Vril worlds are pure worlds. Vril thread raysheaths cause and modify weather patterns.

Organisms perceive vril thread raysheaths. Vril thread raysheaths appear as semi-sensate visceral occlusion in otherwise clear space. Vril thread raysheaths dissolve inertial patterns, moderate weather, mark discharge points among mutual junctures of ground and space, are ordained, generate geological strata, metal and mineral lodes.

Organismic auric striations are powerfully endrawn into Vril thread foci conducted and projected by specific configurations. Specific material contacts intensify eidetic transactions. Knowledge comes through specific Vril material contacts. The native content and transactive potential of specific elements provides humanity with new memory storing technologies.

Spontaneous eidetic receptions are noted throughout regions among inhabitants during specific times and seasons in absence of humanly arranged systems. Sympathetic telegraphy relied upon Vril empowerment.

Archane context and the knowledge of correspondency are lost when eidetic experiential reality is forgotten. Alchymy relies upon eidetic content and experiential potentials.

Such distal ground plates connect operators with Vril junctures in absence of experiential transaction through intervening spaces. Instantaneous juncture placements are notable with bilocational experience. Distal sites are possessed of natural sensory apparatus: an additional mystery explained through Vril Science.

Such natural response and native experiential importation is explained by noting fundamental axioms of Vril Science. Organismic modulation of native Vril provides organismic expression and exchange among juncture points. Vril operators manage the spontaneous entunement of specific junctures, obtaining experiential knowledge of distal events and circumstances.

Each telegraphic and telephonic component modified, inflected, permuted, and transmitted eidetic power to recipient ground locales and human operators. Grounded systems became transformed into primary Vril systemologies.

Fundamental eidetic activities do not require the complex technological arrangements which are evident in contemporary power systems. Eidetic experience teaches us about native phenomena which are constantly and permeatingly active and ever-present throughout our world. The knowledge of these native eidetic phenomena provides us with magickal opportunity toward our quest. Reliance on these activities eradicates the need for using any other energy or complex systemology.

Vril technology is comprised of static, material configurations which are properly aligned with regard to Vril channels. Vril designs maintain the integrity of districts. The placement of rods, lines, and ground plates alters the eidetic nutrition of districts.

Telegraphy demonstrated the selective shearing of code and meaning on several occasions among startled operators. One could monitor signals with great exchange clarity while comprehending nothing of the message. One also could comprehend entire meanings without hearing more than one or two code-exchanged words.

What are the minimum cues for deciphering signals? Vril supplies the missing meaning when codes are employed. Early telegraphs were extensions of the dowsing arts. Despite these good beginnings, later developments reveal the inertial tendency. Penduli and ponder-motive impulsers gave mere physical impulse for coded transfer of signal. Ancient Vril systems conducted the enlivening energy of eidetic world experiences.

Vril transactions can move penduli, vanes, and motors (Bain, Stubblefield, Hendershot). The history of influence telegraphy is significantly linked with dowsing and dialettes. This clear indication of Vril transactivity is read throughout these chronicles. Pendulum telegraphy worked not by electrical means. Positional correspondence is electrically impossible.

Penduli were also used in early telegraphic "influence" systems (Bain, Dyar). These systems proved an increasingly inertializing tendency to limit participant experience. Watching penduli separates the operator from the eidetic content which potentially releases whole new worlds to us. Watching penduli, listening to clicks and voices, observing darkened chemical paper strips does not connect us with the deepest Vril foundations: those for which the heart desires.

Pendulo-telegraphic systems were impossible machines (Dyar). Seeking eideto-potent ground sites relied upon old telegraph linemen who were familiar with dowsing arts. Vril was interconnected in a haphazard manner across great distances. Vril energies were utilized with success in several inventive instances throughout the 17th and 18th Century.

These devices employed Vril correspondence to achieve remarkable distant communications.

In these designs we find the appliances of dowsing and geomantic arts appearing in novel use. Pendulum telegraphs were designed and successfully operated throughout this time period until the middle 19th Century. Numerous such devices were displayed, demonstrated, and carefully observed. Equally numerous testimonies affirm their true operation. Such designs cannot operate through electrical means.

Hoops are equipotential gradients. Movement of charge within such a conducting hoop cannot result in distant equivalently directed motion. Other similar hoop-line designs utilized swinging vanes for the indication of letters. Pendulum and vane telegraphs represent the emerging Vril technology glimpsed through the historical persistence of rabdomancy and pendulomancy.

Academic repugnance for vitalism was based on differences of sensitivity among researchers. Only sensitives could discern the causative agencies which generated and supported inertial manifestations. Academicians focussed upon the study and collation of inertial effects. Independent vitalists maintained the ancient awareness of formative forces and insensate causes in nature. Vril technology was gradually developed by these personages. Vril eidetic communication systems began to emerge from the forgotten depths of time.

Several patents for pendulum telegraphs have been found. These devices originally utilized little more than grounded copper hoops into which pith-ball penduli were suspended. Many of these designs never employed electrical energy. Hoops were inscribed with letters for signalling purposes. Conductive hoops were designed as opened or closed conductors. Distant signalling hoops were connected through single conductive wires.

Moving one such pendulum toward one letter position caused an equivalent swing in the receiving hoop. Messages were successfully transmitted in this fashion. Articulated messages were thus communicated in the absence of articulated lines.

VRIL LINKAGE

Certain effects are especially noteworthy along the railway tracks. I mention them because I have found that these sections of track are very prone to similar ground tesonances and communicative effects. They are especially capable of altering one's consciousness and attentions considerably.

While looking along the rails (at specific sections of track) I suddenly experienced a shimmering and wavering of the irons. I first thought these effects due to optical effects and heating phenomena. With successive such experiences I realized that these waverings of the parallel rails were not consistently activated unless certain resonances were taking place through the land. Were they the simple effects of heat they would constantly shimmer and waver...which they do not. One sees the waverings only when ground energy surges for a brief moment.

The "swimmy...dreamy" appearance actually has the power to translate one into an elevated consciousness, in which
one loses physical sense of the body and locale. Soon the entire region momentarily loses its "inertial hold" while a bright and grainy synaesthesic sense powerful takes hold. With increasing experience one discovers that these effects are eidetically active ones which are capable of impressing one with bilocational vision. Sudden flashes of distant and relationally connected locales becomes the common receipt of sensitives. I do not doubt that telegraphers were subject to these receptions...especially since they were so well connected with the ground energy (through the lines) and so well aligned (along the woivre-paths of the railroads).

Another effect I havestudied closely deals with the sudden "shooting" appearance of attention-getting surges which fly along the tracks...from one horizon to the other (in sudden short time intervals) and back again. When this visceral activity occurs I know that the train is about to come around the bend. One sees these remarkable "shooting" displays with increasing regularity and rapidity until...the train visibly appears.

These attention-getting visceral surges match the visual surges and discharges by which the eye (the attention) is constrained to follow their path along buildings. One can experience these eye-dragging energies when watching the tops of houses just before lightning storms. Though everpresent and ever-active in their (breathing) charge-discharge cycles we may see them especially during such drastic groundresonant times.

The telegraph line is no different in any of these aspects. The lines were made to follow the rails. They were thus not only grounded by large metal plates in several locales (along these woivre-paths) but also were guided along the Vril channel alignments. They therefore never lost total touch with these energies, forming (as it were) a rayguide system of supernal activity. How it is that operators did not extensively mention and report the strange phenomena (whose appearance traversed the lines constantly) is an effect of the insensitive human condition alone.

We are conditioned and trained to place our attentions upon the inertial aspects (effects) of our world, while remaining essentially insensitive and unattentive to the constant transpiration of fundamental impressions of meaning and message.

Persistent Vril display sites mark permanent Vril connections among insensate transactive space.The spontaneous generation of charge has been used as free-nergy by several persons. Eidetic reactivity produces electro-detritus in metal reservoirs. These inertial charges may be drained to perform inertial work. Large reservoirs are required to achieve adequate charge populations. Tesla used sections of the earth as a reservoir of spontaneous developed excess charge. His devices pumped the ground reservoir to provide huge excesses of freeenergy.

Organic substances conduct special eidetic transactions. Eidetic transactions differentiate when passing through special materials and across boundaries. All materials surge in corresponding Vril surge transactions. Researchers of the 19th Century concentrated on the local responses of Vril rays and eidetic transactions to the local actions of mechanical and electrical devices. Discoveries along these parameters revealed
an amaring variety of reaction correlations among Vril energies and inertialmachines. Keely, Tesla, G.Starr-White, Hieronymus, Lahovsky and other notables dealt with these correlations.

Certain Vril eidetic images experience transit from point material contact site along specific Vril paths. Vril eidetic image experience may take participants along meandering Vril threadways, into and through Vril channels. These open the participant's experiential gave upon omni-conscious panoramae of specific symmetry range and extent. Bilocations are instantaneous experiential placements in unfamiliar surroundings.

Future Vril technology must be sensittvely surrendered to the ordained pre-existent Vril causeways, channels, and junctures. Imposed and impropertrans-connections must be avoided should powerful pure Vril engagement be our desired quest.

Telegraphic systems spanned regions with elevated iron wires. Cross-regional telegraphic networks issued the modern re-emergence of Vril Technology. Major fundamental features of the old telegraphic systems do not find adequate explanation in the science of electrodynamics. Possessors of the VrilScience envision the true cause of these inadequacies.

Telegraphic cables could not be emplaced within the ground directly. Dr.Samuel Morse discovered inordinate degrees of spontaneously developed charge accumulations in buried wires. Vril transactions generate these detrital products.Vril was interconnected in a haphazard manner across great distances. These longline interconnections were not always guided by Vril. Vril ground points are distributed unevenly across the land. Eidetic interconnections can be traced from point to point. Human engineers created artificial Vril interconnections which damaged the intended overground Vril System.

Woodlands and countrysides were converted into interlinked patchboards. Later employment of devices for location of neutral grounds removed the Vril activity from most lines. Those systems which maintained the old positions were continuously operated in absence of electrical power. Vril provided all the energy for signalling. Regional effects are noted throughout locales.

Vril self-inflects in specific material assemblages. Wire lines and cables are optical transactors. Plate-grounded aerial cable systems provide enormous accumulations of eidetic revelations and communal experiences: the primary source of civilization.

Eidetic projections are experientially soft and glowingly vivid. They are naturally found radiating through notable trees and boulders. They are sites of exceptional noumenous power and presence. Sensitives have located these sacred spots throughout the natural environment. Vril generates the materials through which it conducts. Trees give the name "dendritic". Vril generates trees. Vril generates crystalline rock. Vril generated pegamatites and striated rock mattér evidence Vril dendritic process.

Each eidetic manifestation emerges in various manifestations and with varieties of attribute through the depths of space and of ground. Eidetic projection sites were located by telegraph linesmen. Eidetic projection points were used as ground plate sites for telegraphic stations. Telegraphy effectively ac-
cessed eidetic projection sites. Telegraph linesmen and surveyors managed the inter-connection of such eidetic projection sites across the ground of bordering regions.

Interconnected eidetic points became sites where Vril threadways were formed. Telegraphic lines brought Vril into strong conductive presence at the inhabited ground surface. Telegraphic lines conveyed Vril across elevated lines through woods, villages, and towns.

Evidence that Vril is the generatively superior force is found in every created object. Vril easily overcomes the inertial resistance of space. Vril Science provides the awareness that inertia may easily be thwarted and removed from our world. Inertiality covers and disintegrates our world. Vril Technology provides the means for achieving trans-regional heightened consciousness.

Vril active items are energiving and vitalizing. The applance and artifice of Vril Technology is living and vivifying because of Vril eidetic transactions. Linear tracks of cable acquire charge: yet charge is disseminated into grounds. Therefore charge is the detrital residue of a more fundamental energetic transaction. That energy is Vril

Vril self-articulates. Vril technology requires human agency in constructing and configuring artifice. Vrilself-articulates, selforganizes, self-arranges, and self-maintains the operations of its own technology once human agency has provided the material pathways. Human operators serve the inflections and intentions of Vril in maintaining the specific material components required by the system.

Vril IRON paths translocate sensient experience. IRON railways, telegraph and telephone lines are Vril experiential gideways. Experience of multi-locations occurs at the termini of such systems. Train-stations give sudden and sharp experiences of regions which their railways transect. Stations where tranception of telegraph or telephone are the eidetic exchange sites where powerful mult-locational effects are experienced.

The most primary Vril form is the dendritic. Vril thread orientations depend upon local Vril inflections. Vril thread orientations are not strict. Vril fractures are not in quadratures. Vril fractures do not correspond with inertial polarizations. Vril manifestation defines experience. Vril distributions draw experience along self-defined pathways.

Vril is a spark-like dendritic presence which generates and sustains whole realities. Vril dendritic connections appear to be linear in physical distribution. Vril dendritic connections reveals complete experiential holisms. Vril axial passage explains exceptional experiential "fade-out" and "lucidity" in specific locales. Memorable places are special Vril threadways.

Vril interconnects all sentient beings. vril is the eidetic content which floods and generates the universe of experience. Peering into Vril channels releases ideations, visions, revelations, and bilocational transports. Emanates a specific eidetic node when especially Vril activated. Ray proportionality permits the ability of arranging Vrillic reactions.

The noumenous and eidetic suggestive quality of iron railway terminals provided the first realization of eidetic transaction and its importance among societles. Telegraphy provided the next connective eidetic exchange system. Human
nature requires Vril eidetic transaction as the vivifier and integrator of sentient existence.

The noumenous appearance of grounded telegraphic transceiving blocks, stations, terminals, exchangesites, ground plates, poles, lines, and relays reveals the mysterious consciousprovoking presence of powerfully concentrated Vril threadways.

The importation of trans-Atlantic telegraphic cables brought with it a powerful noumenous presence in absence of actual coded transfer.
This imported noumenous presence was entirely due to the Vrillic connectivity achieved between England and North American transfer sites. While many such artificial connections had continuously been established throughout this time period, many humanly-imposed transfers interrupted natural Vril eidetic transactions among the continents.

The deranged viscero-eidetic conditions which certain such cable connections actually brought into existence told their tale upon certain districts. Indian tribes members intur itively viewed the telegraph system as an encumbrance to natural energetic transactions in specific locales. These were places where the arrogance of enterprise took no regard for proper placement of the poles and alignments of the iron line.

Sensitive tribe members experienced difficulty in recetving visions and dreams. The "singing line" referred to something more than the hum which radiated along their miles of length. Indians knew how to hear the ground directly. Emplacement of knife blades into the ground revealed viscero-eidetic sounds.

It was the humanly applied organismic Vril transaction which proved to be of immense human value in the transAtlantic cables. Antonio Meucci had already received the vision of trans-oceanic wireless communications. His experiments demonstrated this system to be feasible on a grand scale. Mahlon Loomis had demonstrated the feasibility of wireless telegraphy without electrical power in 1862. The many foibles of enterprise and human self-will would be gently eradicated by the magick sweep of wireless arts thereafter. The post and line would be no more.

The advent of telegraphy gave the wonderful consciousness of distant locales. Live socially ommunal events were suddenly made possible and heralded with great anticipations and well-wishes. The completion of the Trans-Atlantic cable was an event surrounded and suffused by great love and warmth of human emotion. These systems provoked social consciousness and raised social consciousness by virtue of eidetic transactions. Minds on either sides of the Atlantic were suddenly effortlessly able to "glide across" to the "lands of the others".

Vril designs maintains the organismic unity in regions and districts where inertial concentrations have persisted. Telegraphic lines interact with Vril juncture connections. Improper artificial connections are dangerous to districts and inhabitants. Vril modulations are eidetic modulations, not power exchanges.

Telegraphic systems are optically transactive systems (Hieronymus). The deepest potential content of eloptic energies is viscero-eidetic. Telegraphic lines interact with Vril
juncture connections.
Improper artificial connections are dangerous to districts and inhabitants.

Vril modulations are eidetic modulations, not power exchanges. Telegraphic systems are optically transactive systems (Hieronymus).

Neighborhoods disintegrate when Vril active technologies are forgotten and dismantled. Cathedrals rarely lose their metropolitan position. Local disintegration is marked when original houses of worship are burned, destroyed, dismantled, and converted into dwellings. Vril surface integrity is lost when specific wrought-iron fencework and old rock walls are destroyed and replaced. The neglect and covering of traditionally old parksites contributes to confusion and depression among once-thriving neighborhoods.

Telegraphy was a dangerous profession. Telegraphic hackers flooded train stations and cities in search of work Telegraphers sought to the main cities and lives in hostels and boarding houses awaiting employment. Their quiet profession bore all the secretiveness of the medieval guilds. Women were also hired as telegraphers.

Telegraphers sought safe lightning-proof distances from their stations during storms. Lightning shots rang through exchange terminals from receiving blocks even during windy dry seasons. Inertial detritus built up in these lines when Vril surges spontaneously discharged from the lines to space.

The empirical design and efficacious use of specific components was developed throughout telegraphic history. Such components proved effective because of their fundamental Vril conductivity. Systems are Vril conductive long before detrital species are artificially applied to them.

Entuning these eidetic points best enables the transaction of eidetic content among communicants. Discoveries were made concerning strength of signal and ground potential. The use of carbon rheostats enabled specific eidetic entunement of grounds and districts. Grounds and stations placed at these surface points best transmit eidetic eidetic contents to operators. It is possible to discern which groundpoints require interconnections. Such sensitivity was available to old telegraph linesmen.

These individuals were familiar with the woods and forest and were equally well-acquainted with the dowsing arts. Vril active points require specific conductive linkages. Interground connections were haphazardly provided through the development of telegraphic lines.

We must study these patents and articles in order to find the patterns where electrical componentry behaves as a firstlevel Vril technology. As soon as telegraphic installations were integrated with the ground we find that all sorts of anomalies began to make their appearance. This ground-integration permitted certain unsuspected potentials to interact with human consciousness in an unprecedented manner.

It was found (for example) that human attentions could be directed along certain ground lines during the night. While this phenomenon was not thoroughly recognized in its fullest sense, these eidetic translations were far from complete with telegraphy alone. The discoveries of Antonio Meucci were to pave the
way for another step toward the Vril paradigms.
Telegraphers speak of instances where Vril charging actually prevails over signals in certain pieces of land ("good earth, bad earth') in connection with later telegraph systems. The prevailing notions were that completions of underground currents would be made beneath the overhead lines, in opposing directions. The eidetic vision which ruled the minds of inventors portrayed the earth as a true "return circuit".

The patent by Collins is the earliest disclosure I have found which demonstrates the sudden emergence of single wire lines. The technical term for these embodiments were "conduction line" telegraphic systems. The notion is astounding as it is sudden. The truly remarkable thing about this method is its use of ground terminals. Thinix of the reasons for utiltying large ground-plates, and consider the existing paradigm of that day. How did Collins ever conceive of this sort of arrangement? There certainly was absolutely no precedent for its appearance from a developmental stance. We may exclude then the evolutionary mode of invention here.

Collins received this thought directly through revelation. We have no doubt but that in this disclosure we are in possession of the origins of the ground-plate paradigm. Certainly the people of that day who could vaguely remember electrostatics proceedings in Europe would have pointed out to Mr.Collins that: even if his battery charge were strong enough, it would be lost...dissipated instantly into the earth. Energy of this sort and in this arrangement could never be imagined as practically workable.

It is difficult to explain the effectiveness of grounded ends in telegraph lines. They could not be considered as good conductors, neither as good capacitors at the time when Collins disclosed the effect. What then is happening here? What we are realiving is that an empirical revelation had occurred to this inventor, one based on nothing previous. The closestimage we have to the use of grounded wires were the experiments of Franklin, D'Alibard, Richman, Loomis, Popov and the like, where grounded aerials were used from which to draw "skyfire". Such conduction of "sky-fire" may have taken place between two very close terminals as shown. We are sure this is not the reasoning which prompted Collins at all.

His system is very significant because it is the first genuine instance where someone made use of ground-energy in such a direct manner. The designs of Farmer, for telegraphic underground conduits, reveals a strongly suspicious wonder. Notice the strange descriptions of lines and plates, which seem to stretch across distances and then end in the ground. The dotted lines represent the electrical underground "routes" which interconnect the otherwise intermittent conduits.

MAGNETO-ELECTRIC TELEGRAPHY

Early investigators mistakenly assumed that the operation of electrical machines were direct causes of vitalistic effects. The original investigators claimed no strict equivalences. These Victorian researchers merely noted that one action seemed to summon and modulate another. The development of ever efficient devices utilized both mechanical prowess and subjective sensitivities ... balanced talents which are lost today.

These activities may be perfectly understood through the basic principles of Vril Science. The operation of any technological system or componentry occurs in a Vril saturated environment. Vril is responsive to every action of intent. Working one device will bring an accompanying vril response: though neither are directly coupled. The effective juncture of observations-inertial with observations-subjective occurs in these experiments.

Confusion in thinkers occurs when attempting the balance between erroneous cognitive models and Vril intuittve urges. There is no need for cyclic interruption in Vril transactors. Vril transactors utilize differentiations through which Vril is permuted along variable conductive paths.

The dramatic pose of Dr.Joseph Henry reveals the intensely personal and meditative nature of an academe who lived in true humility. Dr. Henry had discovered the effect of magneto-electric self-induction in 1829 . He discovered the inertial actions of moving magnets upon coils of wire, and had developed the firstsimple magneto-electric transformers before 1831. He did not comprehend that his discoveries dealt with the inertial products which Vril functions create. Electrically impressed signals are not necessary in telegraphy when properly managed.

Dr.Henry's telegraph utilized a bell as the sounding mechanism and was made to operate over nearly a mile of double-line across the Princeton University campus. Henry declared it possible to extend the lines indefinitely: through the use of relays also developed by himself.

Joseph Henry preceded Samuel Morse by nearly 6 years in these demonstrations of magneto-electric telegraphy. Professor Henry would astound later researchers who realized him to be the true discoverer of "electrical rays". In 1842 Henry discovered that electrical sparks could actually magnetize and misalign the tiny needles of astatic galvanometers two full floors below the inductor: some 35 years before Hertz in Germany! Had he grounded his terminals and used an insulated capacitance his device would have drawn Vril power.

Telegraphic systems became progressively more inertial through reliance on code and artificial applications of inertial impulse. Meanings and eidetic experiences cannot be codified. Code is not meaning. Vril meaning bridges the deadness of acoustic code.

The empirical design and efficacious use of specific components was developed throughout telegraphic history. Such components proved effective because of their fundamental Vril conductivity.

Systems progress through sequences of development which begin as revelations and intuitions. They proliferate as nature-conformable systems when applied and materialized in their early systemologic stages. Systems become established and assertive as engineers and corporate involvement assumes leadership responsibility. The arrogance of nature-defying projects inertializes and subverts the intentions of original revelations.

Curious in the development of systemologies is the unexpected and unprecedented developments which undermine and undo the hubris of inertially reliant organizations. Telegra-
phy was developed through intuitive revelation. Telegraphy and telegraphic componentry were perfected through empirical discoveries. Sequential revelations gave knowledge of Vril activity. Several steps of development produced componentry, discoveries, and new progress in communications arts.

The systemological development of magneto-electric telegraphy may be charted in several stages:

1) 2-line telegraphy
2) 1 -line telegraphy
a) virtual return ground current
b) special chemic-action via plates
c) power from ground plates via entunements
d) ground rays and ground plates
3) transmission-line telegraphy.

Thomas Edison maintained his remarkable intuittve sense throughout his early days. In his telegraphic patents we see Edison at his best creative output. Uncomplicated and happy early days...the Edison telegraphy patents are always clearly stated: straightforward and operable. Edison's addition of the rheostat to telegraphy was nothing less than revolutionary! This in no way detracts from their elegant beauty and novelty of design.

Edison's prolific and unexpectedly effective use of rheostats in balancing telegraphy circuits offers us another insight into tellurgo-radionic process and design. These devices were unmistakably crude radionic (carbon) tuners. Mr.Edison was "balancing" his telegraphic circuits with respect to the Vril eidetic potentials of earth. Only then would they effectively operate.

Taken as a purely electrical feature of the system, these became commonly used everywhere. Each operator and system manager gradually realized the superiority of this method of "tuning the lines". Furthermore...the tunings (the rates) needed to be corrected regularly. these corrections were required by an unknown (and unquestioned) requirement of the ground space itself.

The later employment of these tuners everywhere made the rheostatic tuner a common feature of every telegraphic system. Numerous inventors had dispensed with groundplates and simply employed large capacitor banks also similarly "entuned" to the impulses utilized in their systems. What drove the continual use of groundplates? Indeed, the underground manifestations of Vril transactions are easily discerned during certain storm seasons, during cold winter nights, and especially near the operation of wireless devices.

Through the systemologies of early and middle telegraphy we find that Vril was evidently and overwhelmingly active. The telegraph lines themselves displayed features which could not possibly have been caused through acousto-mechanical or chemo-electric energies.

It was only ignorance concerning the vast ever-present potentials of the telluric system which brought humanity into the epoch of "extra energy applications" when attempting longrange communications. It was inconceivable (through this reference frame) that an "unpowered" grounded appliance might actually represent far greater power than any "application of extra energy".

The further development of complex tuning circuits enhanced the operation of telegraph signals could be properly "tuned and clarified". Examination of these designs and their componentry reveals a singularly potent eidetic transaction in each. The early record of radionic tuning is a stupendous find. The possibility for extracting Vril power directly from earth is here found in schematic form. One must correctly view each patent through Vril sensitive eyes. It is only then to uncover the vast secrets which herein lie dormant and potential.

The need to remove all resistance from the line would seem to be the most effective means for transmitting and receiving the most unimpeded (and therefore powerful) electrotelegraphic signals. Yet we find that each geological locale requires vastly different such attunement, a tunable carbon resistor being the device which satisfies the condition. Others would also experiment with variable-resistance coils: the remarkable parallels to radionic tuning principles is unmistakably evident.

Confusion among designers occurs when attempting the balance between erroneous cognitive models and Vril intuitive urges. Such paradigm-confusion is evident throughout the development of aerial and earth battery systems which preceded and accompanied the faltering steps of telegraphy.

Vrilintuitive revelations revealed opportunities for restructuring the archane Vril Grand System of eidetic communications.

Gradual encroachment of human misguidances distorted the original vision and guidances which focussed awareness on the possibility of distal communications. Natural eidetic phenomena permitted the effortless exchange of eidetic experiences among communicants with defined and exquisite human artifice.

The human tendency toward creating, designing, and proliferating self-assertive systemology tantalized Samuel Morse. His originally received intuition came through a spark display. Watching the marks which sparks made on paper suggested a means for communications based on code. Had Dr.Morse recognized that revelatory vision itself is the true foundation of all communications he would have sought to deeper and far more ancient technologies.

Early telegraphic sounders were often placed in iron boxes. This act "increased the pitch" which certain telegraph operators enjoyed. Material configurations are especially Vril transacted when possessed of a harmonic "ring" (M.Theroux). Mass manufactured telegraph receiving blocks weresurrounded with organic hoods which intensified participations in modulated Vril eidetic transactions. Wooden cabinets are special inertial dissolvers when properly designed and aligned. Telegraphic blocks were especially potent transactors when aligned with local Vril channel axes.

Telegraphic keys organismically Vril connect with Vril channel axes. Vril channel axes fix eidetic experience through specific minerals and metals.

Telegraphic coil-blocks powerfully Vril connect organisms with deepest subterranean causeways.

In several patents we see the presence of anomalous battery connections and impulse effects (Bain, Edison, Delaney).

Vril transactions were eidetic tuned through the use of carbon rheostats. Rheostats were used to entune eidetic transactions and counteracted the negative derangement poised by impropesly placed elevated telegraph lines. Each ground required specific entunement with regard to local eidetic nodes (natural). The transfer of impulsed code was only incidentally intensified in this process.

Telegraphic components became the radiant site of specific eidetic Vril transactions. Coils, switches, rheostats, bells, batteries, and connectors all become auri-resonant. These altered mind and consciousness of regional inhabitants as well as telegraph operators.

Increased and articulate Vril transmissions came with the inception of telephony. Dr.Morse abandoned the burial of cables in favor of elevated terminals. Elevated telegraphic lines brought submerged Vril threadways again to the ground surface.

We have elsewhere mentioned that viscero-eidetic content (meaning) is an externally generated, sustained, distributed, suffusive, and necessary presence which permeates our lives. Along with so many organic and cognitive receptions and transactions we require an outer supply which maintains integrity of the same. Speech requires some context which the spoken word alone does not contain.

In some mysterious fashion spoken words and meaning combine to convey whole meanings and expressions. Words are only the acousto-inertial expressions. They (of themselves) lack meaning and significance to the hearer or speaker. how often can we "parrot" foreign words? How often do we encounter the unintelligable writings of foreign languages? Meanings are the vital-contextual expressions which use words. Telepathic exchanges (and transactions) demonstrate that meanings may effectively transferred in the absence of words.

What function or value possess signal systems which further separate signal from meaning? To understand this would be to learn what telegraphy meant. Telegraphy was a new language: a new mode for communicating. In the technological absence of ordinary word-communications (telephony) the conversants were forced to further separate their direct transactions of meaning through an artificially synthesized code.

There were those legendary tales of telegraph superlinguists who were able to speak fluently in code for long and uninterrupted intervals of operating time. T.A.Edison was one such individual. Handicapped through deafness, his ability to communicate entirely in telegraphic code enabled him to become the marvel of his often disgruntled employers. A contest (involving telegraphic endurance and key-speed) was conducted with Edison at the key. After 4 hours of continuous exchange Edison signalled the other operator to "get on some speed". He was a young legend among the telegraphers who knew him.

The ability of any individual to "see through" the code and "enter the meaning" is a fascinating study. Reading is just such an activity. The reader must "translate through the page" into the author's world of meanings. The reader must decode the letters and enter the meanings. the difficulty which some
children have in performing this task serves as another demonstration of the fragmentability of signals and meanings. Signals and meanings are representatives of different realms. Signals are inert. Meanings are alive. Our world is one whose confusion between the two has resulted in frightful ignorance and horrid frustration down through the halls of time.

The future of communications may have several surprises if we allow ourselves time to study these features. Discussion must (in time) prove the possibility of eidetic language systems: where meanings are freely transacted in the absence of words. While sounding far-fetched there is considerable evidence that certain radionic tuners can and do enhance such exchanges, though these provide an (as yet) limited capacity. The art of learning the archetypical mode (of effortless language-transaction) is something which takes time. The reception of runic messages represented some such system. There were those individuals of old who (throughout cultures and histories) who could decode the rustling leaves, the rippling pools, the call of birds, the sounds in thunder, and the like. No doubt these arts will be researched, developed, and proliferated among those who remain opened to their promise.

The design of archetypical symbologies communicate fundamental and universal meanings in the absence of words. Why can we not design a hieroglyphic system which does not require decoding: being the fundamental and universal language of the universe. Reception of meanings through such fundamental forms would make us privy to the continuous and living utterances which the universe shares with those who know its patterns. One would KNOW the meaning of such form, while the transacted supply of meanings and message would flood the participant without effort. Tesla spoke on these topics before his death. few comprehended exactly what he speaking about when be mentioned "the transmission of intelligence in forms".

Comprehending the differences between signals and meanings serves us well when studying Vril. Our entire science is one which marvelously declares the reception of whole meanings and messages, directly from the universe. In the absence of words we receive meanings. The principal means through which these meanings and messages are conveyed to us (through which we are integrated and connected with the universe) is through Vril threadways which transpierce our environment.

Both words and the meanings combine as seemingly fused components to form a seemingly continuous "whole communication". Communications demonstrate an alarming capacity to permit fragmentation. Meaning and message break down when this outer supply (external support) is in some way diminished or removed. The so-often assumed "continuities" of our eidetic experiences are (in reality) compositions: which are fragmented in the absence of the primary generative energy. In other words we are totally supplied from the external space with networks and mappings of living energy. These combine so perfectly that we always assume them to be solid, when in fact they are fragmentable.

There are situations in which we all have experienced "loss of context" and "lack of communication". What these
general and vague phrases intend to covey is some sense of loss: loss of meaning and message between conversant parties. This phenomenon has never been studied in the manner which it demands. Such loss of meaningful integrity presupposes a context in which whole meaning can and does prevail in society. Breaking, inhibitting, or distorting some central power will cause corresponding negative modulations in perceived meaning.

How often do we intend to express a specific thought but actually are perceived as communicating some other context? "I didn't mean it to sound that way!" is a frequent (hopefully comic...usually embarrassing) situation we all know. There are reasons for context misinterpretations which exceed the explanation of simple word usage. "Double entendre" is frequently due to a "room condition" or "spaceloading": in which recipients and speakers are preconditioned to misperceive.

I have found that there are places...actual locations...in which these conditions prevail. There are several places I have known in which confusion, chaos, and a pervading sense of misunderstanding prevail. These conditions maintain their negative character through the years. I am forced to accept the fact that these distortions of contextual integrity prevail because of some basic Vril disturbance or derangement.

Discovering the variables allows us to discover the unknowns of our universe. It is through the universal comparisons that we learn the nature of (supposed) solidities and permanence. The numerous instances when integrity of meaning is actually amplified beyond one's own words is an amazing surprise. That a group consortium can be "in one accord" (with very little convincing orspeech) is a miraculous condition in our distorted world. I have also discovered that such places also maintain their wonderfully supportive character and essence over time. Such places are possessed of an amplified ability to proliferate (human) integrity of meaning. I am forced here also to accept the fact that these incidences (these locales) are not accidental: they are the distinct resultants of Vril powers in balance.

Signal systems are (of themselves) incapable of transmitting meaning. Those who use them cannot become that fluent in the decoding and coding aspects that MEANING can be derived. Piecemeal signals do not make holistic MEANINGS possible. Unfortunate people who have suffered from aphasia are unable (in some measure) to code or decode verbal and written signals. In some cases the individual may understand but cannot make sentences. In other cases the situation is reversed. Coding does not in itself produce meaning. The "silent ... mystical ... supportive" agency is that which we rarely glimpse in action while talking and listening.

Why have we been so insensitive as to detect this overwhelming presence ... this "meaning-integrator"? It is precisely because the presence of which we speak is so overwhelming ... so thoroughly permeating. Signal systems have filled our world. In the writing and speaking modes of various cultures we find that coding-decoding places heavy emphasis on the need for a meaning-integrator. Divergent signal systems place heavy emphasis on the need for a meaning-integrator. This is especially true of degenerate language, where hand signs and
gestures "fill in the unspoken gaps". There are cultures in which very dense coding-decoding systems require the densified presence of the meaning-fintegrator (oriental writing systems) in order that social contextual comprehension be supported and maintained.

Pictograms and hieroglyphs represent a system which requires such heavy support. While one can easily "read" through the dynamics of some hieroglyphic tract one yet loses much of the "in between" meanings. Unable to contain the continuity of expression we find that such systems fail in the details. Because of these truths we find that "signal systems" are only capable of transmitting distant meanings because of a local response to some portion of transmitted signal: Vril, whose appearance comes to support and proliferate understanding.

In order to comprehend the Vril functioning of the telegraphic systems we must comprehend something of signal systems and their implications.

The eidetic transactions which flash through physical contacts and certain discharge components are due to Vril Vril floods and saturates the system night and day. The saturation of telegraphic systems with Vril energies resulted from the moment they were grounded and installed. The blind insistence of engineers (in superimposing electricimpulses upon the Vril power) did not prevent the Vril power from continuing to express itself. It was this feature which brought forth all the anomalous activities regularly observed, catalogued, and published.

Look at the telegraphy designs as radionic circuits. Though marked by extreme simplicity and ruggedness they transduce great potential across equally great distances. When we examine the duplex and multiplex circuits from this point of view we arrive at very different perspectives than when looking from an "electric" viewpoint. Suddenly we are no longer interested in the minute details of the electrical exchanges and the maddening conduction paths (which defy experience and logic). We are viewing the radionic functioning of the circuitry in whole perspective. we see the sections as wholes...as aggregates and cavities of resonance rather than as singular paths of conduction. These systems of telegraphy (and their components) were capable resonators of the Vril power.

The curious manner by which we may best examine the patents (seeing whole portions of circuitry rather than specific little activities therein) seems to indicate the nature of the power which forged the system. Remember most of the telegraphic developments originally emerged from dream impressions and visions. therefore it is crucial that we recognize the holistic signature of the power which forged the system. We can easily achieve this awareness by seeing (not independent little "electrical" activities: internal paths and shunts, vibrations, and reactions) but by grasping whole portions of the diagrams given.

Confusion between Vril activity and electrical impressments caused early electrical engineers to imagine that empircally discovered efficiency equalled "electrical efficiency". They do not. The empirically discovered means (for enlarging and enhancing telegraphic signals) had nothing to do with electrical signalling at all Yet, it is difficult to convince most
conventionalists of these truths. Why? Do not certain Vril systems operate in electrical (inertial) modes? They do. Where do the differences substantially diverge? How were the differences ever merged to begin with?

Telegraphic systems worked because they served Vril principles ... not electrical ones. Empirically discovered components and their (apparent) functions were not thoroughly examined to discern the important differences. It was assumed that these empirical functions were actual indications that the components (coils, resistors, batteries, plates, etc.) were performing electrical work functions. In fact they were not. They worked in spite of the electrical impressments. Yet what did we find historically? The engineers of that day reduced the identities of components and electrical functions together ... making comprehensive theories which were poisoned with the errors. The erroneously equated identities (component function and electrical function) became automatic mental equations. This forging of error blinded the eyes and minds of the engineers until now...we cannot speak of such matters without excessive conflict. We have yet to ask the most fundamental question concerning these intrigues.

Has anyone in fact ever made the right equations: that is ... has anyone ever equated the Vril power with the functional service of material forms? I believe that historical evidence proves the ancients to have achieved this equation. We will find an amazing repetition (of symmetries and forms, patterns and shadings, functions and abilities) when comparing the functional elements of telegraphy and wireless with the functional elements of ancient architecture. There you will find your greatest discoveries. there you will see the form of the mysterious and marvelous archetype which has blessed humanity with its presence. Piece by piece (element by element) we are privileged in our time to be again receiving these very forms. Let us not ruin our emerging opportunity.

With telegraphy we find that the affairs of engineers took proceeded with virtually no consideration for the overwhelming Vril power. There was little consideration for the powerful reality through which many had been receiving bilocational impressions of the most powerful sort. The telegraph line could transfer "dreams and visions" from far off places. Operators frequently thought themselves to be going mad.

For the engineers there were only the troublesome problems which affected "the line". Even taking such into account, the engineers were beset by local conditions and problems which seemingly corresponded with no known electrical principle. For example ... how was it that mild battery voltages could actually effect an electrical transfer over a single wire? Without the ground connection the powerfully transaction ceased.

We may infer by these several patents the mannerisms and requirements by which telluric energy interacts with applied electro-stimuli on grounded conductors. Unable to rely upon the purely eidetic signals (of experiential impressions and telepathic sensations) which such a system could provide its operators, we behold the progressive and historic application of electric impulse alone. Telegraphers and inventors of telegraphic appliances seemed unable to both envision and rely upon Vril alone. Yet we have several occurrences in which the
telluric eidetic forces were indeed overwhelmingly evident.
Some hoped to prove that the earth was merely an infinite (electrical) capacitor. In this view the ground plate was simply connection with an immense capacitor plate. Why then were tunable resistors needed at each terminal in certain grounds? In addition we find that the calculated wavelengths of each dot and dash exceeded 30,000 miles. This means that (since lines were rarely more than 300 miles in sections) current was actually flowing through the line for 100 times the line length. In other words the line was conducting current...and current has to be both drawn from and deposited into some reservoir. The back-flow required (by such a long conduction time period) must take place through the earth. In effect: there must be a return circuit somewhere.

VRIL MAPS

We will examine the varieties of components which appeared throughout the course of telegraphy: later to become the primary tools of radionics. Rheostats, coils (inductors), capacitors, and other components will be examined with especial regard to the Vril primary function of each. Component designs sustain (artificial) impressments because Vril activity is accompanied by an inertal entourage in our present space.

We will learn how the former primary function of telegraphy and its componentry was forgotten and lost ... while the electrical function was retained and magnified. Comprehending the separate viscero-eidetic behavior of each component is extremely valuable knowledge. We find chokes, tunable coils, resistors, tunable (carbon) resistors, rheostats, resistance coils, chemo-electric batteries, branches, groundplates, exchangewire conduction paths and so much more. These are the elements of circuitry. They are not fundamentally electrical components. These form the parts of the Vril resonant system called "Telegraphy".

Remember that telegraphy was designed from visions and built through empirical means. What worked best was implemented. If a component worked very well it was patented. So it was that the systemology of telegraphy was developed. Empirical discovery needed no explanation. In denying the overwhelmingly present Vril power the designers assumed that every empirical feature was serving some vague electrical function. When these erroneous reductions became dogmatically fixed (as "electrical law") it became impossible for the researchers to disassociate one effect from the other. Thenceforth it was necessary for the empiricists to employ and rely upon the Vril vision in order to discern the activities, functions, and potentials of every (supposed electric) artifice.

The empirically derived componentry of telegraphic systems served the Vril power. Fundamentally a telegraphic system is a Vril accumulator and transducer of immense potential. These systems operated well insofar as their components and configurations served the Vril potentials primarily. Contact with the ground converts any material configuration into a Vril transducer. Whether as accumulator, diffractor, focussing device, directional enhancer, clarifier, or translator ... the grounded artifice is the prolific and proverbial rod of power
... a ground pole ... a link with the Vril threadworks.
When we examine the ancient origins of distant communications telegraphy we find that its envisioned potential was far deeper in significance. Telegraphy was far more eidetic and magickal in operation as envisioned by those who managed penduli, auric-vanes, and dialettes.

Our goal and quest is deep and more devotional in character. We follow the lead of alchymy and the great labor. the quest after extended consciousness. Technology is being studied which will effectively enhance world consciousness by deliberate activations of Vril channels.

Enhanced reception of telegraphic signals and the anomaly of long-distance signal transfer were routine observations. Even before the use of "power relays" and "line amplifiers" we found reports of enhanced (and anomalous) energetic ground activities.

The mere application of moderate voltages at the telegraph ground terminals was sufficient to traverse many miles of line-length, effecting powerful results at the receiving end. The selfenhancing power which the ground was providing was never questioned or curiously addressed by most engineers. The special grounds of mineral and metal-bearing earths seemed to provide the best such action ... but this was relegated to mere "resistance-free conduction paths". Never did most conventionalists bother to recognize that specific combinations of metal-mineral-clay paths actually effected a loss-free transmission! The functional dynamics of an immense "earthmachine" is observed directly: one whose resonant components are the specific minerals and metal lodes found in situ.

The establishment of telegraphic lines across mineral-rich regions of ground was fortuitous and revelatory. The actual observation of seemingly self-amplified signals was an anomaly not easily explained or forgotten. Ground signals traversed metal veins, metal lodes, crystalline caverns, and mineral tracts. The considerable improvement in clarification and intensity of signals led many sensitives to recognize the generative and regenerative earth.

To enter earth with a small signal and thereafter retrieve a much clarified and stronger signal infers that the ground contains some "springy" and autonomic intensifer. It is closer to the truth when we perceive this action to be the direct result of generation and regeneration rather than signal-sustenance. The early telegraph lines did not operate on pure electric impulse. If they did, then powerful echoes would have been consistently ringing on their lines.

We know that the length of impulses (manually generated) actually demanded the lines to conduct current from the batteries into the ground. On electrical terms alone we may calculate the effective pulse length of any "dot or dash" to be (inertially) in excess of 90,000 miles! Therefore (when continuously operated) any section of line was forced to wholly conduct for sizeable lengths of time. The tendency for significant reflections to result in such a condition is not possible.

The more esoteric and astonishing reality becomes apparent when we consider that organic signals are especially well received into the ground veins. Organismically managed signals never diminish irregardless of distance and ground
type. Indeed it was through organically stimulated sounds that Rossettl discovered that powerless telephony was a practical reality. Any human auric) contact is necessarily an organic signal. Mahlon Loomis effected such signals when he gripped the key of his aerial transmitter...and caused the reception of signals 20 miles away! When we consider that these experiments took place in 1862 we are even more astonished. In fact we will show that auric interactions with Vril channelry would effectively transmit "meaning through signal" with telephony.
"Good ground" was also a commodity which required a special talent. Eventually there were those inventors who answered the general need for consistent "good ground detection". Numerous devices were developed to (electricallY (inertially) indicate such conditions. With the prevalence of these non-participant methods the loss of telluro-active ground sites also became an increasing feature.

The anomalous instances where it was possible to operate telegraph lines without battery power began to become ever the rare item. These (once numerous) instances were actively sought by linesmen. Not needing battery houses to operate a length of line on a system saved money! There were those for whom this exceedingly strange ground power posed an essential mystery. Some wondrous creative power was obviously and manifestly active in such situations. The Vril gift was not required by those who began using the electro-inertial ground meters.

What kind of "ground points" these meters located were not the Vril active ones. These "meter-found groundsites" had very different characteristics. These were null spots of a very different activity and energy. Yet for a few sensitives we find the continued reliance on non-participatory meters. Those who used them rarely found "ground current". It is a curious and noteworthy thing to recall one particular sensitive obviously endowed with Vril vision. The Vril gift continued to operate in a latter day telegraph linesman who used his skill to perfection: Nathan Stubblefield.

Telegraphers (and those who designed the distribution paths through the countryside) were intuitively guided along ground veinlines of especially Vril potential. They thus often followed the railroad tracks less out of ease and necessity and more out of reliable alignment. There were grounds where static interferences were well known, not understood, and less well-mentioned. Some special telegraphers (NathanStubblefield) seemed to take rare note of such places and made use of them in their new and astounding technologies. Telegraphers continued to follow the rails.

To understand something of the intuitive reasons why one would originally choose the old railroad paths we need to comprehend who was choosing the cuts and lanes. Old railroad men rarely used geologists unless it was absolutely necessary. Cutting through mountains and along ridges was a later requirement in which geologists found themselves employed. Blasting and excavating was their special province. Before this, the rails were not needy of geologic expertise at all: they simply followed "the lay of the land". This meant geomancy at its intuitive best. The results (whenever found) are truly astonishing.

Railroads notoriously follow Vril ground veins: les woivres. In the rare instance that the rails cut across such telluric veins we find them (not strangely enough) reconforming to the woivre lines after a short distance. Not so geologically conformed as geomantically aligned and convoluted we find the railroads to be especial sites of Vril activity. Curving and winding magically through and among green rolling hills, along the crests of sinuously long rilles and ridges, and down through the very heart of thin natural valleys (where old streams long since ceased from flowing) we find the rails utterly romantic in every aspect. This romance is not without its real reasons: its real powers. The "romantic" and "winsome" sensations are often tinged with the very deepest of ancient beckonings: the very hallmark of Vril viscero-eidetic energy at work in us.

Old rail-lines are remarkably Vril active. They are carved through the surrounding countryside and convolute with rare precision along nearly every Vril channel coursing through each district. These are sub-gradient troughs in certain lengths. Railroads course through very Vril transactive regions of ground.

Staten Island is possessed of a singular Vril symmetry which runs directly through its "heartland". I have outlined and mapped its "spinal column" and this remarkably coincides with a wonderfully old road (Van Duzer). In fact it is the oldest road on the island itself Van Duzer Road is the path along which one must travel should one want fusion with the history and persona of the island. It too (not surprisingly) was the naturally chosen path which led the Dutch and early settlers directly across the island's length. It is amazingly verdant...and warm...at all times of the year.

The number of encounters with significant landmarks and active ground points is the typically wonderful pattern with which geomancers are well-familiar. One cannot travel along certain old roads without experiencing significant personal changes and powerful shiftings of awareness. Such shiftings always bring us to the realization that the resultant thoughts are the only important issues oflife. We find ourselves drawn away from our immediate problems and concerns and drawn into eidetic worlds of incredible joy and elevating power.

The dreamy and impressionable energies which course throughout such old roads elevate those who travel into a ringing joy! Ivy, churches, old cottages, quaint and unexpected town squares, wrought iron gates and gardens...all add to the scenic beauty which is typical of wandering Vril lanes. One encounters spontaneous eidetic experiences here.

One finds in the sub-surface (open-air) troughs of the railroad that sounds are especially powerful and distantly carried only along certain railroad lines. We find this to be so regardless of wind conditions. With the wind moving away from ourselves along the tracks we find that even whispered sounds downwind manage to reach our hearing...against the breeze.

I have often observed the Vril glowing blackness which one experiences and senses externally when descending into these troughs. The change in lighting is only part of the whole phenomenon. The sense of glowing blackness is more the adequate description of the effect. One does look toward the
sky (however blue) to find it strangely blackened with a granular blackness. One's sense become shifted along specific patterns. Thinking clarifies into simple and piercing vision and negative emotions disappear. One finds the sensitivity to Vril force and geometry especially heightened therein. One can literally begin to see the Vril topography quite distinctly and directly in their lanes...through the ground!

One becomes entranced with the rails and the sub-ground environment quite willingly: this seems to be a relatively natural inclination. However long one needs to wait for the train makes no difference: one is entranced with the environs and remains impressionably intrigued with the oldness of the land thus evidenced. Down there one senses that the land itself is messaging certain historically significantsense-meanings. Trees and brush grow with special strength. They never seem to wither or wane in their growth patterns. The ability to sense suddenly changes and inductions of weather patterns down in these railways is very distinct.

One easily senses there that the very ground is surging with sensate energles, whose essence induces vibrations throughout the deeper abdominal area of the body. One senses that the very ground is resonating crystallographically from region to associate region. These resonations soon result in strange alterations of weather. There are times when we feel the removal of the "good weather energy" from the surface of the ground ... down into the depths. The resultant appearance of inertialistic patterns (rain, fog, humidity, general congestion ...) is what usually follows.

More surprising are the numerous "weather lanes" I have isolated and observed for several years now. I find that (on Staten island) there are distinct weather alleys along which Vril energy often vibrantly resonate and surge. Whenever this resonation occurs I know that certain weather patterns are about to transpire. These patterns appear to enter and exit along the specific angulated paths which may be mapped. They appear repeatedly ... year in and out. I know them to represent some regional crystallographic feature of the entire region.

Vril transactions transform and crystallize ground minerals and metals (minerals, metals, rocks). Vril threadways form mappable dreamlines. Many inventors had intuittvely envisioned and described their sense of "electrical ground return circuits": wriggling currents necessary to the "completion of the circuit" (Farmer, Wilkins, Bear, Ader, Vail, Rosebrugh).

Telegraphic and telephonic exchanges were remarkably Vril threadway conformable. The manner of their design differs in no way from the artificial design and material articulation of a dendritic ganglial array. In time sensitive designers recognized that such human fabrications were not necessary. The Vril natural articulated systems provided more than the means for attaining connections.

Vril thread space distribution is an ordained system through which communal and regional consciousness is actually generated, sustained, suffused, disseminated, and shared. Spatially distributed Vril threadways and their nodes and junctures may be mapped. Mapped Vril threadways maintain their position throughout history. Dreams and imaginations are distortions of real Vril eidetic experience.

The old telegrapher's tradition of "earth as reservoir of selfgenerating electrical potential" was successfully received by great personages of inventive prowess (Loomis, Stubblefield, Dolbear, Tesla).

Eidetic contents are spontaneously transmitted through Vril articulations. Humanly arranged artistic channels transduce Vril modulations directly. With Vril the need for excessive human code is eliminated. Code free channels are found in singularty sustained ultra-harmonic sounds. Innate eidetic contents and evidence for space-distributed intelligence is revealed when monitoring ground and aerial sounds.

Departures from the immediacy of the apparent world are easily achieved through Vril articulations. Vril threads guide the human organism into deepest eidetic contents of the Vril World. The Vril World is the true World of eidetic content.

Vril power points are sensed throughout the experiential spaces. Fixed Vril power points are ordained. Fixed Vril power points are found throughout experiential space. Vril points can be located in aerial space and ground. Vril power points can be interpenetrated by material imposition. Tremendous eidetic and unexpected energeticmanifestations are conducted through such material interpositions. Vril reactions define all mysteries. Vril presence generates all unexpected conscious activities. Vril Science explains all scientifically observed anomalies.

Establishing Vril communion is not difficult. Vril contact is first achieved through the natural artifice of specific boulders and trees. Sensittvity reveals Vril activity among metropolitan settings. Cathedrals, iron fencework, towers, and rock walls transmit powerful Vril threads to unwary recipients. Dreams, visions, and exceptional clarity of consciousness are discerned near and upon Vril active points.

Vril threadways cross streetlanes, emerge through basements, radiate from iron poles. converge upon stone pillars, vivify special garden walkways, pierce through fire hydrants, arc from stone-metal curb rims, and discharge from evergreens. Natural Vril points are found in special parts of neighborhoods. Vril points are located in the old sectors of town. Original setilers intuitively sought such exceptionally vivid zones to found their villages.

Vril activity sustains the conscious and material integrity of neighborhoods. Neighborhoods rely on the generative supply of Vril active points. Neighborhoods become depressing, dull, and vacuous when natural Vril points are disturbed. Many local inhabitants remember the time and season when their neighborhoods lost vitality. Construction operations which covered natural Vril points mark the time. Natural Vril points are disrupted through excessive ground surface construction and demolition.

Basic Vril contact may be achieved through a simple iron rod in the ground (Stubblefield, Tesla, G.Starr-White). Enhancing Vril communion requires simple Vril Technological aid. Vril reactivities permit technological manipulations of deep space and deep ground Vril channels. Lost Vril threadways may be re-accessed through simple artifice. Vril entunement may be achieved with relatively inexpensive devices. Vril operators require sensitivity, patience, surrender, and devotion.

Codes separate Vril organismic experience.
Many designers illustrated their intuitive comprehension of underground energetic passages, conduits, rivers, rays, threadways, and channels (Framer, Barney, Wilkins).Comprehending the "return circuit" relied entirely upon intuittive insights which were actually eidetic transactions received by the sensittive inventors.

Dowsers were not rare figures in the telegraphic proliferation. Dowsers knew the land and the lay of it. Such natural surveyors were often in charge of determining early telegraphic line details. While general directions were delineated, it was the dowser whose fine-tuned sensibilities guided the line along specific pathways. Vril Science discovers regional eidetic world site-projections via natural geological forms.

Iron rails appear to "swim" before the eyes because Vril surges through them in processions. Vril passes through materials which inertial technology establishes for its own purposes. Powerful Vril conduction in special materials requires specific position and angulations in the environment.

Bright "clear sight" pathways are found just above the ground surface. Leylines are whitesheathed Vril threads. Vril aerial routes may be mapped. Organisms experience impedance when encountering densified inertial spaces. Specific design geometries extend organismic participation where no previous participation was possible (coils and iron cores). Increased Vril thread contact and mergings increase degree of viscero-eidetic translations.

Vril technology seeks the dissolution of all regional inertia. Vril active minerals and metals and configurations release Vril eidetic images with strength of degree. Vril eidetic images reveal distance regions, give bilocational experiences, diverse hierarchic conscious resonations, permit deeper experience of immediate surroundings.

Vril axdal contact is required for eidetic transaction. Offangle contacts yield inertially contaminated experiences. Telegraphic block-coils are extremely Vril active. Viscero-eidetic experience is focussed from the tops of the iron cores. The use of the copper finecoils brings visceral experience of sensation to the operator. Grounding and iron-wire connectivity strengthens the contact immeasurably. Telegraphic operators were in eidetic mutual contact constantly. Bilocational experiences through matter contain singular truths concerning the Vril environmental structure of a region.

Continual bilocational visitations to specific eidetic points reveals the existence of powerful Vril centers. Space surrounding such Vril centers is eidetically projected space. The integrity of the apparent world depends on these points. Alterations in environmental conditions creates organismic interference during eidetic transaction. Organismic stability depends upon fixed proportions of inertia space and Vril eidetic content. Organismic sensitivity includes interruptions due to musical tones, illuminations, color, and inertial detrital currents. Telegraph stations are silent during the long night hours.

Natural Vril nodes dissolve inertia fibrils and greatly expand eidetic consciousness through discharge. When this occurs there is "static on the line". Researchers who discovered
that certain kinds of (earth) induction were "anomalous" were baffled. Empirical inventors took these anomalous instances and worked them into equally strange apparatus. These form the bulk of our bibliography.

The Vril functions of telegraph systems and their components forms the basis of animmense revelation. The telegraphic systems represented the first instance in which large transregional systems were interconnecting earth and city-centers directly. In addition, we find the trans-national interconnections and even the trans-oceanic connections which so gripped the minds of the day.

First and foremost therefore the telegraphic communications systems were ground connected systems. Intimately fused with the ground power they transduced its energetic persona directly between towns and (especially) sensitive operators. The primary power which operated in these systems did not require application of electricity at all.

If not for the human failure to consciously sense and operate with this power we could have seen astounding fulfillments years before our time. The nature of these Vril energies have not been discussed before with any great depth. Suffice it to say that these are the energies which fulfill our deepest dreams.

The telegraphic systems were forced to operate under a conjugate energy load: the naturally suffisive Vril power and the impressed electrical clackerings of batteries. No less effective in the Vril mode. These systems continued to manifest strange and anomalous energetic transactions. These were not all duly noted and recorded in the public transcripts of technology. yet we manage to find sufficient weight of extracts (from the periodicals of the day) to support our thesis.

The addition of electrical impulse stimulated the appearance of the Vril power. Our growing familiarity with this power has permitted us to recognize some of its astounding characteristics. Vril energy differs vastly from all notions of energy which we have been taught. We know that technology could have relied totally upon Vril power for the benefit of humanity.

It is therefore inestimably valuable in reconstructing the steps which were encountered by researchers who realized the presence of the ground energy. What we find in telegraphy is a vast presentation of paradigms. These dealt with conduction, conduction pathways, and continuity of actions (contact action).

The entire field of telegraphy reveals embodiments which make use of transactions by which organismic integrity is governed. The design and proliferation of special Vril tuners will enable each desirous individual to experience degrees of these Vril energies: the consciously expansive spaces of which we speak.

Our familiarity with inertial pressure technology is the result of a false step taken by engineers early on. The subsequent development of technologies (which solely develop inertia and transform inertia) have led our world astray. This betrayal stems from the fact that inertial pressures are not fundamental energies at all: they are pressures and by-products of more fundamental powers.

The telegraph of Salva intended the reception of such
electrical shocks to be received into the body. Messages could be so pulsed as to permit the recipient a means for decoding the pre-arranged signals. These shocks were not pleasant ... but they revealed a singular mystery when once the lines were established over land and the ends were earthed.

Through the use of various metals and organic lines (threads, strings, cords, ropes) Baron von Reichenbach found it possible to transmit eidetic signals to sensitives who were grasping their end of the terminals. These signals were limited to emotional signals as generated through natural sources (minerals, metals, crystals, sunlight, moonlight, etc.). I have not found any records where his sensitives saw holistic visual impressions. Thesensitives each experienced these signals with consistent reports, though of variable strengths (as their sensitivity allowed).

Dr. AAbrams and his experimental arrangement for entuning thought-forms: another step in a progressive movement toward eidetic transmissions. With wired attachments (to the bodies of separated individuals) Dr. Abrams literally demonstrated that thought-forms could be holistically transferred. These through-line transfers exceeded the thoughttransference commonly called "telepathic" (through space alone). The interposition of minerals and metals and special components (rheostats, variable resistance bridges, minerals, organic matter, etc.) enhanced, amplified, and clarified the same signals.

The immense reservoir of Vril energies far outweighs and outclasses any conception we may have of electrical capacity. What electrical vibrations and capacity we may measure is the mere by-product of the Vril power surging in the ground. Therefore the benefit of grounding radionic systems is immense in scope. The telegraphers achieved this first off...through empirical findings!

In telegraphy we find an old form of radionics: systems which embody direct earth-connection and transduce Vril energies. They therefore operate solely in the Vril mode. They may have been suspected as embodying a curious "life of their own" as so many ground-embodied structures often do. It is not uncommon to experience the quasi-living states which certain old buildings manifest during specific Vril seasons.

Without power the telegraphic systems were capable of continuous operation in the eidetic mode of transmission: a mode tbrough which experiential impressions can be transacted from station to station with great clarity and force. "Premonitions" and other visions were a constant feature of encounter for the "night operator". Indeed the night operators frequently reported that the transmission at night was astonishingly more clear and powerful than during the daylight hours.

When you look at a telegraphic component you are looking at a piece of a large and powerful radionic tuner. When you examine patents (which display and describe multiple ground connections through specific polarizations and tuning assemblies) you are examining a radionic system. When you read of anomalous currents and continuous manifestations of power you are reading of a surging Vril power which responds to electrical stimuli by expanding and overwhelming.

When we analyze the issue we find that Reich's statements
were indeed correct. The use of electrical "irritation" triggers an automatic response by the living energy. In this case the Vril power moves into lines so as to quench the irritant. All the resultant effects are the direct result of such energeticintrusions.

EARTH RODS AND LOADS

When telegraphic support-posts are driven into specific foci (ground nodes) there is interaction with the telluric power by which they become powerful (organic) conductors. Thus even the support-structures of telegraphic systems become saturated and interactive with the Vril energy. One sees these energies flooding and connecting the skeletal form of wire and poles. The evidence of insensate Vril is the observation of the rare and highly energetic violet glow which covers them. We find that every wooden pole becomes thus especially flooded at the times of sunrise and sunset.

The telegraph systems of old we find these poles to be necessary every 40 feet or less. The likelihood of enjoining Vril points was therefore greatly increased. Vril Points do not cancel. Threadways which exit or enter the ground nevertheless transact eidetic experience with their recipients. The entire system therefore became flooded with rare Vril energies which had every potent effect upon the exchanged and impressed signals.

Thus we find that telegraphic lines are possessed of far greater potentials and activities than the mere electrical detritus which we add to their length by impulses. The interactions of telluric energies with these electric impulses produced intriguing new varieties of energetic (conscious, eidetic, and inert) effects, which certain gifted individuals grasped and developed.

The power of insulators as transducers is never mentioned. These artifices are potent transactors of Vril energies. M. Theroux has constructed several arrangements in which these effects are especially powerful. Used to alter the Vril condition of a locale, the use of a large and black (manganese) grounded porcelain column reveals potent telluric activity. Difficult (if not impossible to peer into) the sensitive finds that the insulator axis guides whatever applied or impressed energy is made available to the geometry. When grounded, we find that the surface coating is especially effective in conveying Vril threads along a tightly self-collimating beam.

These threads are potent, viscero-eidetic, and have deliberate drastic effects on regions in which they are utilized. Their effects have little to do with the true transmission of beamenergy to distant locales. They seem more to deal with the literal modulation of crystallographic ground resonances in a region. It is possible then to effect an entire crystallographic ground region through the reactions which occur at a (specific) point!

We need to study the surface coatings of these insulators to determine (with deliberate precision) the exact functioning of the whole form of insulators. It is obvious that the geometric form of these designs is evidently part of their effectiveness in Vril operation. Perched atop telegraph poles these forms had a powerful influence on the transduced Vril energies which processed along the lines. Each surge (proceeding to its own relationally resonant station) brought viscero-idetic transac-
tions into the operator with continual force. Vril is what gives the "mood and tone ... sense and feel" of any particular station in which human affairs are publically conducted.

Iron spontaneously dissolves and eradicates inertial space. Iron poles, rods, and towers are potent in viscero-idetic transactivity. Vril revelations provide short-cuts through which we achieve futural science.

Vril eidetic messagings direct and restructure human consciousness into its deepest potentials. Vril eidetic consciousness breaks the inertial bondage to the 5 -sensory degenerate perceptive mode. Vril is foundational reality and is the meaningful core of being. Vril is the shared generative living presence whose power sustains all living organisms.

Geometric material configurations direct and collimate inertial detritus. Specific minerals and metals dissolve, absorb, shear, and cavitate inertial space in the native states. Iron spontaneously dissolves and eradicates inertial space. Iron poles and towers are excessively viscero-eidetic in transactivity.

Primary in the human Vrilmatched conductions is IRON. Vril Technology provides the linkage and artifice through which Vril manifests eidetic potentials. Civilization requires Vril eidetic union. Iron forged connections. Through Vril we each experience universal communion. Eidetic projection sites merge at the ground surface where Vril inflects deep in the ground or in space.

Wooden poles are compacted capillaries which are highly Vril conductive. The design of aerial dendritic manifolds brought a sudden transactive potential into public meeting places. The corresponding increase of social activities were described by daunted city dwellers of certain sensitivity. Complaints that the city atmosphere had suddenly become "all a-burzing" were all means a literal truth with the ponderous placement of telegraph and telephone lines in the hundreds.

The design and construction of subterranean telephonic lines brought with it a new eidetic potential to the telephone systems. Excessive reliance on carbonaceous and other organic matter to insulate telegraphic and telephonic lines actually resulted in the enhanced eidetic transactivity of these lines with Vril junctures through which these passed.

Specific eidetic transactions were engaged through telegraph poles and the special varieties of insulators which surmounted them. The insulators provided special eidetic transactions which must be experienced to be appreciated. Insulators were made of a great variety of minerals and metals in combination.

A careful study and examination of the specific metal glazes used on porcelain substrates. Each mineral glaze is (curiously) organo-resonant and effects easy transactions of eidetic energy along the iron wire which they support. Glass insulators were also used. These give strong eidetic connectivity with iron. Intuition prevailed despite electrical predelictions. Electrical insulators conduct Vril effortlessly. Each provided a specific visceral sense and eidetic potential. These were conveyed en masse to each station operator and subscriber.

Insulators were made with organic reservoirs (Johnson, Phillips). Ferruginous glazes made ceramic insulators much more than electrical non-conductors (Bloomfield). Their use is
inconsistent with electrical principles and are often the very sites where lightning strikes dangerously entered systems.

Manifolded cables and organically covered sheaths are Vril dendritic imitative forms (Spalding). Iron poles treated with carbonaceous liquids were incredibly potent Vril conductors (Sprout).

Telegraphic poles were historically developed in several stages. The sue of trees as vascular Vril conduits was quickly replaced with special geometric iron posts and towers of exquisite beauty and Vril conductivity (Dodge). Surmountings of special insulators focussed Vril threads (MacDonald). These designs are powerful in projecting Vril discharges across space (Conilin).

Others were covered with organically heavy dopings made to formulary specifications. Geometric appendages, wriggling iron projections, and special ground-gripping spikes were added to designs. Some included organically soaked wood as pier-foundations. These forms enabled the enhanced entrance of telegraphic aerial arrays with the natural Vril ground distribution and were prolific Vril transactor.

Underground conduits and cables soaked in organic materials are notorious absorbers of Vril threads. Underground conduits and hooded pipelines enabled special Vril conductions (Rosebrugh).Underground tunnels represented a new movement which assumed the work abandoned by Morse long before. Underground cables soaked in carbonaceous matter are notorious absorbers of Vril threads, concentrators of vril intensity.

The specific means by which telegraph and telephone cables were vril loaded involved the use of specific carbonaceous formulae (Smith). Special constructions of telegraph poles are highly geometric, materio-resonant, and exceptionally Vril conductive (MacCarver).

Telegraphic lines created individual-altering surface conditions because of their material configurations. Shimmering Vrillic energy powerfully attracted human attention toward the telegraphic lines which entered and traversed forests. The line were themselves objects of mystical fascination because of their vril potent conductivity. Inherent meaning was perceived because that which generates meaning and focussed perception was enhosted there.

Telegraph and telephone lines created ground standing conditions where vrillic energies consistently resided. Night emergent vril threadways flooded these systems because of their material configurations and excessive use of iron. Such observations and experience were also prevalent along the iron rails.

The ephemeral forms draw the experienced sensitive in close proximity with telegraph and telephone lines with the distinct result of Vril eidetic transactions.

Distinctly crystalline surfaces could be detected near certain sections of telegraph line when these coincided with Vril channels. Blocks of granular substances gradually become Vril conductive. Houses and other enclosures become permanently polarized to conduct Vril through time. Specific material configurations and enclosures grant specific Vril eidetic transactions. Vril operators and their apparatus permanently alter

Vril distributions in enclosures.
Telegraphic systems gradually became Vril polarized and saturated. Their materials were gradually transmuted for the clarified transaction of Vril eidetics. Telegraph and telephonic stations were powerfully noumenous sites.

Vril threads crystallize in metal braids and conductive lines, sustaining systems and founding primary systemological functions. Our eyes engage in visceral influences caused by Vril transactions. The "eye drag" phenomena follow Vril transactions as they inflect through lines, cables, braids, iron railways, and stone works. Vril causeways interlink cities and stimulate bilocational experiences. Vril technology magnifies these effects by deliberate means.

Through Vril causeways we are translated into mysterious experiences of unknown meanings, and mysteriously hieroglyphic significations. Social upheavals increase with increased Vril emergence. These events have chronicled several technological upheavals in the last 200 years of unprecedented importance. Social revolution follows Vril activations.

It is possible to peer in through a vril eidetic material and sense all of the associated branching awarenesses and views.

Such omni-conscious vision is a native phenomenon in eidetic worlds. Iron aerial wire connectors poised between the special telegraphic poles and their accoutrements distort the local Vril matrix. Telegraphic interlinkages between towns and whole districts were artificial, effecting sometimes dangerously unnatural detrital formations and concentrations. The improper placement of telegraphic and telephonic poles proves harmful to certain Vril integrity in villages and little hamlets.

The railroad station became the focal point of each small community. These were noumenous gateways of eidetic travel for the casual inhabitant of a town...the focus of all attentions as endrawn by the very surges which traversed the rails. Vril loaded systems effect increased social activities and human energies. Overhead vision was diverted along the telegraphic and telephonic lines

Vril axial contact is required for eidetic transactions. Iron wires provide such alignments at the station sites. Operators needed to align themselves with respect to their local Vril channels. Off-angle contacts yield inertially contaminated experiences. Telegrpahic block-coils are extremely Vril active. Viscero-eidetic experience is focussed from the tops of the iron cores. The use of the copper fine-coils brings visceral experience of sensation to the operator. Grounding and iron-wire connectivity strengthens the contact immeasurably.

Telegraphic operators were in eidetic mutual contact constantly. Grounding and iron-wire connectivity strengthens the contact immeasurably. Telegraphic operators were in eidetic mutual contact constantly. Telegraph lines were not constantly electro-active during the day, being left with switches opened a great deal of the time. Organic substances enable organismic participation in otherwise inertially concentrated volumes of experiential space. Awareness of earth and densifications of ground topographies became especially intensified during the latter 1800's. Increased human interactivity with space and space-oriented themes appeared when telephonic cables and systems were buried.

Social alignments and metropolitan activities became increasingly and notably collimated along the converging telephone lines. This was very obvious where such aerial cablery cut across city avenues and found their ways toward the local main terminal. Special cables were developed in neural analogies (Hawley, Jacques). Specially carbonaceous-laden cable were especially Vril attractive. Cables were distinctively Vril accumulative (Jacques).

Others combined cables and earth battery technology to produce "artificial ganglia" (Piggott). Spectal cable reactions induced galvanic actions for self-powered transmissions across long distances (Hawley). Chains of earth-batteries (Smith). Such process patents are often textbooks on forgotten scientific principles and theoretics (Kitsee). Certain inventors gave textbook descriptions of lost science. Some made distinction between electric, electrical, galvanic, and even magnetic currents (Simpson).

"M. Carallo suggested the idea of conveying intelligence by passing a given number of sparks through an insulated wire in given spaces of time; and some German and American authors have proposed to construct galvanic telegraphs by the decomposition of water. Mr. Ronalds, who has devoted much time to the consideration of this form of the telegraph, proposes to employ common electricity to convey intelligence along insulated and buried ${ }^{2}$ wires, and he proved the practicability of such a scheme, by insulating eight miles of wire on his lawn at Hammersmith. In this case the wire was insula5 ted in the air by silk strings. But he also made the trial with 525 feet of bufied wire; with this view he dug a trench four feet deep, in which he laid a trough of wood two inches square, well lined within and without with pitch; e and within this trough were placed thick glass tubes, through which the wire ran. The junction of the glass tubes was surrounded with shorter and - wider tubes of glass, the ends of which were sealed up with soft wax.
"Mr. Ronalds now fixed a circular brass plate, figure 37, upon the second ! arbour of a clock which beat dead seconds. This plate was divided into twenty equal parts, each division being worked by a figure, a letter, and a preparatory sign. The figures were divided into two series of the units, and , the letters were arranged alphabetically, omitting J, Q, U, W, X and Z. 4 In front of this was fixed another brass plate as shown in figure 38 , which F could be occasionally turned round by the hand, and which had an aperture like that shown in the figure at V, which would just exhibit one of the figures, letters and preparatory signs, for example, $9, v$, and ready. In front ! of this plate was suspended a pith ball electrometer, B, C, figure 38 , from

a wire D, which was insulated, and which communicated on one side with a glass cylinder machine, and on the other side with the buried wire. At the further end of the buried wire, was an apparatus exactly the same as the one now described, and the clocks were adjusted to as perfect synchronism as possible.
"Hence it is manifest, that when the wire was charged by the machine at either end, the electrometers at both ends diverged, and when it was discharged, they collapsed, at the same instant. Consequently, if it was discharged at the moment when a given letter, figure, and sign on the lower plate, figure 37, appeared through the aperture, figure 38, the same figure, letter and sign would appear also at the other clock ; so that by means of such discharges at one station, and by marking down the letters, figures and signs, seen at the other, any required words could be spelt.
"An electrical pistol was connected with the apparatus, by which a spark imght pass through it when the sign prepure was made, in order that the explosion might excite the attention of the superintendent, and obviate the necessity of close watching.
"Preparatory signs. A, prepare; V, ready; S, repeat sentence; P, repeat word; N, finish ; L, amul sentence ; I, amul word; G, note figures ; E, note letters; C, dictionary."

FORESHADOWING OF THE ELECTRIC TELEGRAPH.

> "Whatever draws me on, Or sympathy, or some connatural force, Powerful at greatest distance to unite, With secret amity, things of like kind, By secretest conveyance".

Milton, Paradise Lost, x. 246. 1667. Amongst the many flights of imagination, by which genius has often anticipated the achievements of her more deliberate and cautious sister, earth-walking reason, none, perhaps, is more striking than the story of the sympathetic needles, which was so prevalent in the sixteenth, seventeenth, and eighteenth centuries, and which so beautifully foreshadowed the invention of the electric telegraph.* This romantic tale had

> " In the dream of the Elector Frederick of Saxony, in 1517 , the curious reader may like to discern another dim glimmering, a more shadowy foreshadowing, of the electric telegraph, whose hosts of iron

VRIL CORRESPONDENCE
THROUGH MAGNETIC NEEDLES
 reference to a sort of magnetic telegraph, based on the sympathy which was supposed to exist between needles that had been touched by the same magnet, or loadstone, whereby an intercourse could be maintained between distant friends, since every movement imparted to one needle would immediately induce, by sympathy, similar movements in the other. As a history of telegraphy would be manifestly incomplete without a reference to this fabulous contrivance, we propose to deal with it at some length in the present chapter.

For the first suggestions of the sympathetic needle telegraph we must go back a very long way, probably to the date of the discovery of the magnet's attraction for iron. At any rate, we believe that we have found traces of it in the working of the oracles of pagan Greece and Rome. Thus, we read in Maimbourg's Histoire de ['A rianisme (Paris, 1686)* ${ }^{*}$ -
and copper 'pens' reach to-day the farthest ends of the earth. In this strange dream Martin Luther appeared writing upon the door of the Palace Chapel at Wittemburg. The pen with which he wrote seemed so long that its feather end reached to Rome, and ran full tilt against the Pope's tiara, which his holiness was at the moment wearing. On seeing the danger, the cardinals and princes of the State ran up to support the tottering crown, and, one after another, tried to break the pen, but tried in vain. It crackled, as if made of iron, and could not be broken. While all were wondering at its strength a loud cry arose, and from the monk's long pen issued a host of others."-Electricity and the Electric Telegraph, by Dr. George Wilson, London, 1852, P. 59; or'D'Aubigne's History of the Reformation, chap. iv. book iii.

* English translation of 1728 , by the Rev. W. Webster, chap. vi.

\&c., I 502, verbo MAGNES, refers to this experiment as one familiar to mariners, and Blasius de Vigenere, in his annotations of Livy, says that a letter might be read through a stone wall three feet thick, by guiding, by means of a loadstone or magnet, the needle of a compass over the letters of the alphabet written in the circumference.*

From such experiments as these the sympathetic telegraph was but a step, involving only the supposition that the same effects might be possible at a greater distance, but when, or by whom, this step was first taken it is now difficult to say. It has been traced back to Baptista Porta, the celebrated Neapolitan philosopher, and in all probability originated with him ; for in the same book in which he announces the conceit he describes the above experiment of St. Augustine, and other "wonders of the magnet"; adding that the impostors of his time abused by these means the credulity of the people, by arranging around a basin of water, on which a magnet floated, certain words to serve as answers to the questions which superstitious persons might put to them on the future. \dagger

- Les Cing Premiers Livres de Tite Live, Paris, 1576, vol. i. col. 1316.
\dagger While it is generally admitted that magnetism has conferred incalculable benefits on mankind (witness only the mariner's compass), we have never yet seen it stated that it has at the same time contributed more to our bamboozlement than any other, we might almost say all, of the physical sciences. With the charlatans in all ages and nations, its mysterious powers have ever been fruitful sources of imposture, sometimes harmless, sometimes not. Thus, from the iron crook of the

He then concludes the 21st chapter with the following words, which, so far as yet discovered, contain the first clear enunciation of the sympathetic needle telegraph : -" Lastly, owing to the convenience afforded by the magnet, persons can converse together through long distances." * In the edition of 1589 he is even more explicit, and says in the preface to the seventh book : "I do not fear that with a long absent friend, even though he be confined by prison walls, we can communicate what we wish by means of two compass needles circumscribed with an alphabet."

The next person who mentions this curious notion was Daniel Schwenter, who wrote under the assumed name of Johannes Hercules de Sunde. In his Steganologia et Steganographia, published at Nürnberg in 1600 , he says, p. 127 :-"Inasmuch as this is a wonderful secret I have hitherto hesitated about divulging it, and for this reason disguised my remarks in the first edition of my book so as only to be under-

Greek shepherd Magnes, and the magnetic mountains of the geographer Ptolemy, to the magnetic trains of early railway enthusiasts; from the magnetically protected coffin of Confucius to the magnetically suspended one of Mahomed; from the magnetic powders and potions of the ancients, and the metal discs, rods, and unguents of the old magnetisers, to the magnetic belts of the new-the modern panacea for all the ills that flesh is heir to; from the magnetic telegraphs of the sixteenth century to the Gary and Hosmer perpetual motors of the nineteenth, et hoc genus omne * Magia Naturalis, p. 88, 'Naples, $\overline{1558}$. now, however, communicate it for the benefit of the lovers of science generally." He then goes on to describe, in true cabalistic fashion, the preparation of

Fig. 1.

De Sunde's dial as given in Schott's Schola Steganographica.
the two compasses, the needles of which were to be made diamond-shaped from the same piece of stee! and magnetised by the same magnet, or rather, magnets, for there were four: 1, Almagrito ; 2, Theamedes; 3, Almaslargont ; 4, Calamitro ; which

in: amongst whom are Hakewill," Addison, t Akenside, \ddagger,
The references to it in the present century are
and "Misographos."
the latest English version, which, with the original
Latin, appeared in the Telegraphic Journal, for November 15,1875 :-
" There is a wonderful kind of magnetic stone to which if you bring in contact several bodies of iron or dial-pins, from thence they will not only derive a force and motion by which they will always try to turn themselves to the bear which shines near the pole, but, also, by a strange method and fashion between each other, as many dial-pins as have touched that stone, you will see them all agree in the same position and motion, so that if, by chance, one of these be observed at Rome, another, although it may be removed a long way off, turns itself in the same direction by a secret law of its nature. Therefore try the experiment, if you desire a friend who is at a distance to know anything to whom no letter could get, take a flat smooth disc, describe round the outside edges of the disc stops, and the first letters of the alphabet, in the order in which boys learn them, and place in the centre, lying horizontally, a dial-pin that has touched the magnet,

[^0]

so that, turned easily from thence, it can touch each separate letter that you desire.
"After the pattern of this one, construct another disc, described with a similar margin, and furnished with a pointer of iron-of iron that has received a motion from the same magnet. Let your friend about to depart carry this disc with him, and let it be agreed beforehand at what time, or on what days, he shall observe whether the dial-pin trembles, or what it marks with the indicator. These things being thus arranged, if you desire to address your friend secretly, whom a part of the earth separates far from you, bring your hand to the disc, take hold of the movable iron, here you observe the letters arranged round the whole margin, with stops of which there is need for words, hither direct the iron, and touch with the point the separate letters, now this one, and now the other, whilst, by turning the iron round again and again throughout these, you may distinctly express all the sentiments of your mind.
" Strange, but true! the friend who is far distant sees the movable iron tremble without the touch of any one, and to traverse, now in one, now in another direction; he stands attentive, and observes the leading of the iron, and follows, by collecting the letters from each direction, with which, being formed into words, he perceives what may be intended, and learns from the iron as his interpreter. Moreover, when he sees the dial-pin stop, be, in his turn, if he thinks

Cardinal Richelieu's system of espionage was so perfect that he was regarded (and feared) by his contemporaries as a dabbler in "diabolical magic" He was supposed to have possessed either a magic mirror, in which he could see all that went on in the world, or the equally magic magnetic telegraph. A propos of this, we find the following passage in the Letters writ by a Turkish Spy, a work which has been attributed by the elder Disraeli to John Paul Marana:-"This Cardinal said, on another time, that he kept a great many courtiers, yet he could well enough spare them ; that he knew what passed in remote places as soon as what was done near him. He once affirmed he knew in less than two hours that the King of England had signed the warrant for the execution of -_. If this particular be true, this minister must be more than a man. Those who are his most devoted creatures affirm he has in a private place in his closet a certain mathematical figure, in the circumference of which are written all the letters of the alphabet, armed with a dart, which marks the letters, which are also marked by their correspondents ; and it appears that this dart ripens by the sympathy of a stone, which those who give and receive his advice keep always at hand, which hath been separated from another which the Cardinal has always by him ; and it is affirmed that with such an instrument he gives and receives immediately advices."*

The learned physician, Sir Thomas Browne, has

* Thirteenth letter, dated Paris 1639 , vol. i. telegraph, which are worth quoting. "There is," he says, " another conceit of better notice, and whispered thorow the world with some attention ; credulous and vulgar auditors readily believing it, and more judicious and distinctive heads not altogether rejecting it. The conceit is excellent, and, if the effect would follow somewhat divine; whereby we might communicate like spirits, and confer on earth with Menippus in the moon. And this is pretended from the sympathy of two needles, touched with the same loadstone, and placed in the center of two abecedary circles, or rings, with letters described round about them, one friend keeping one, and another the other, and agreeing upon an hour wherein they will communicate. For then, saith tradition, at what distance of place soever, when S one needle shall be removed unto any letter, the other by a wonderful sympathy, will move unto the same. But herein I confess my experience can find no truth, for having expressly framed two circles of wood, and, according to the number of the Latine letters, divided each into twenty-three parts, placing therein t.ro stiles, or needles, composed of the same steel, touched with the same loadstone and at the same point. Of these i two, whenever I removed the one, although but at the \therefore distance of but half a span, the other would stand like ". Hercules pillars, and, if the earth stand still, have i' surely no motion at all." *
 toucht by the same magnet being set in two dyals exactly proportion'd to each other, and circumscribed by the letters of the alphabet, may affect this magnale hath considerable authorities to avouch it. The manner of it is thus represented. Let the friends that would communicate take each a dyal ; and having appointed a time for their sympathetic conference, let one move his impregnate needle to any letter in the alphabet, and its affected fellow will precisely respect the same. So that would I know what my friend would acquaint me with, 'tis but observing the letters that are pointed at by my needle, and in their order transcribing them from their sympathised index as its motion directs : and I may be assured that my friend described the same with his, and that the words on my paper are of his inditing.
"Now, though there will be some ill contrivance in a circumstance of this invention, in that the thus impregnate needles will not move to, but avert from each other (as ingenious Dr. Browne in his Pseudodoxia Epidemica hath observed), yet this cannot prejudice the main design of this way of secret conveyance, since 'tis but reading counter to the magnetic informer, and noting the letter which is most distant in the : abecedarian circle from that which the needle turns to, and the case is not alter'd. Now, though this desirable effect possibly may not yet answer the expec: 4 tation of inquisitive experiment, yet 'tis no despicable item, that by some other such way of magnetick efficiency

it may hereafter with success be attempted, when magical history shall be enlarged by riper inspections, and 'tis not unlikely but that present discoveries might be improved to the performance."-C. xxi.

At the end of this chapter we give a list of references, as complete as we could make it, which will be useful to those of our readers who may wish to pursue the subject. It will also be instructive from another point of view, for it illustrates, in a very complete way, what Professor Tyndall has so well called the "menial spirit" of the old philosophers." Notwithstanding that some of the more enlightened authors endeavoured laboriously to disprove the story, it was, for the most part, blindly and unquestioningly repeated, by one writer after another-credulous and vulgar auditors, as Sir Thomas Browne says, readily believing it, and more judicious and distinctive heads not altogether rejecting it, amongst whom we are tempted to reckon the learned knight himself.

Of those who stoutly and, at an early period, combatted the story, Fathers Cabeus and Kircher deserve
> * "The seekers after natural knowledge had forsaken that fountain of living waters, the direct appeal to nature by observation and experiment, and had given themselves up to the remanipulation of the notions of their predecessors. It was a time when thought had become abject, and when the acceptance of mere authority led, as it always does in science, to intellectual death. Natural events, instead of being traced to physical, were referred to moral causes ; while an exercise of the phantasy, almost as degrading as the spiritualism of the present day, took the place of scientific speculation."-Tyndall's Address to the British Association at Belfast, 1874
to be mentioned-the one for the excellence, and the other for the vehemence of his observations. Those of the former are particularly remarkable, as containing a hazy definition of the "lines of force" theory -a theory which Faraday has turned to such good account in his Experimental Researckes. Cabeus, as well as we can understand him, says, in his tenth chapter :-"The action by which compass needles are mutually disturbed is not brought about by sympathy, as some persons imagine, who consider sympathy to be a certain agreement, or conformity, between natures or bodies which may be established without any communication. Magnetic attractions and repulsions are physical actions which take place through the instrumentality of a certain quality, or condition, of the intervening space, and which [quality] extends from the influencing body to the influenced body. I cannot admit any other mode of action in magnetic phenomena; nor have I ever seen in the whole circle of the sciences any instance of sympathy or antipathy [at a distance]. * *
"That which is diffused as a medium [or, that quality, or condition, of the intervening space] is thin and subtle, and can only be seen in its effects; nor does it affect all bodies, only such as are either conformable with the influencing body, in which case the result is a perfecting change [or sympathy = attracI tion], or non-conformable, in which case the result is a corrupting change [or antipathy $=$ repulsion]. This

quality is, I repeat, thin and subtle, and does not sensibly affect all intermediate [i. e., neighbouring] bodies, although it may be disseminated through them. It only shows a sensibly good or bad effect according to the natures of the bodies opposed to one another.
" Bodies, therefore, are not moved by sympathy or antipathy, unless it be, as I have said, through the medium of certain essences [forces] which are uniformly diffused. When these reach a body that is suitable, they produce certain changes in it, but do not affect, sensibly, the intervening space, or neighbouring non-kindred bodies. Thus, the sense of smell is not perceived in the hand, nor the sense of hearing in the elbow, because, although these parts are equally immersed in the essences [or forces], they are not suitable, or kindred; in their natures to the odoriferous, or acoustic, vibrations." *

Kircher scouts the notion in no measured terms; after soundly rating the propagators of the fable on their invention of the terms chadid, almagrito, theamedes, almaslargont, and calamitro-vile jargon, which, he says, was coined in the devil's kitchen-he thus delivers himself:-"I do not recollect to have ever ${ }^{\text {" }}$

[^1]- met anything more stupid and silly than this idotic lies and impositions as there are words, and a crass ignorance of magnetic phenomena withal. In their craving after something wonderful and unknown they have manufactured a secret by means of barbarous and high-sounding words and by imitating the forms of recondite science, with the result that even they themselves cannot understand their own words." *

Many of the authors, who describe the sympathetic needle (dial) telegraph, speak also of another form, which seems to have been especially believed in by the Rosicrusians and Magnetisers of the last two centuries. It was supposed that a sympathetic alphabet could be marked on the flesh, by means of which people could correspond with each other, and communicate all their ideas with the rapidity of volition, no matter how far asunder. From the arms, or hands, of two persons intending to employ this method of correspondence a piece of flesh was cut, and mutually transplanted while still warm and bleeding. The piece grew to the new arm, but still retained so close a sympathy with its, native limb, that the latter was always sensible of any injury done to it. Upon these transplanted pieces of flesh were tattooed the letters of the alphabet, and whenever a communication was to be made it was only necessary to prick with a magnetic needle the letters upon the arm composing

the message; for whatever letter the one pricked, the same was instantly pained on the arm of the other.*

List of authors of the sixteenth, seventeenth, and eighteenth, centuries, who either describe the sympathetic needle and sympathetic flesh telegraphs, or make a passing allusion to one or both of them; chiefly compiled from Mr. Latimer Clark's list of books shown at the Paris Electrical Exhibition of 1881, and from the catalogues of the British Museum. As far as possible, only first editions quoted in full:-

1558 Porta (Gian B.). Magic Naturalis, \&ec. Libri IIII. 8vo. (See page 90. Other editions: Antwerp, 1561, 8 vo .; Lugduni, 156 I , 16 mo . ; Venetia, 1560 , 8 vo .; and 1665, 12 mo . Colonix, 1562, 12 mo .) Neapoli, 1558. 1570 Paracelsus (i.e., Bombast Von Hohenheim). De Secretis nature mysteriis, \&c. Svo. (Speaks only of sympathetic flesh telegraph. Numerous editions in British Museum.) Basilea, 1570.
1586 Vigenere (Blaise de). Traicte des Chiffres, ou Secretes Manieres d'Escrire. (Quoted in L'Électricien of Jan. 15, 1884, P. 95.) Paris, 1586.
1589 Porta (Gian B.). Magia Naturalis, Eec. Libri XX. Folio. (See preface to Book VII. for first clear mention of sympathetic needle telegraph. Other editions : Francofurti, 1607, 8vo.; Napoli, 1611,

* Upon this delusion is founded Edmund About's curious novel, Le Nex drun Notaire, in which he relates the odd results of sympathy between the notary's nose and the arm of the man from whom the flesh was taken. But it is not in novels only, that we read of instances of the marvellous power of sympathy in these enlightened days; witness the story of The Sympathetic Snail Telegraph of Messrs. Biat and Benoit, which went the rounds of the newspapers forty years ago, and which the curious-we were going to say sympathetic-reader will find fully described in Chambers's Edinburgh Fournal, for February 15, 1851.

"But it is time to tell you briefly in what my plan consisted. One can imagine a subterranean tube, of glazed earthenware, the inside of which is divided, at every fathom's length, by diaphragms, or partitions, of glazed earthenware, or of glass, pierced by twenty-four holes, so as to give passage to as many brass wires, which could in this way be supported and kept apart. At each of the extremities of this tube, the twenty-four wires are arranged horizontally, like the keys of a harpsichord, each wire having suspended above it a letter of the alphabet, while immediately underneath, on a table, are pieces of gold leaf, or other bodies that can be as easily attracted, and are, at the same time, easily visible.
" He, who wishes to signal anything, shall touch the ends of the wires with an excited glass tube, according to the order of the letters composing the words; while his correspondent writes down the characters under which he sees the little gold leaves play. The other details are easily supplied."

Le Sage had an idea of offering his invention to Frederick the Great, and drew up an introductory note as follows :-

" To the King of Prussia.

"Sire,-My little fortune is not only sufficient for all my wants, but even for all my tastes-except one,

viz, that of contributing to the wants and tastes of. jothers; and this desire all the monarchs of the world, united, could not enable me to fully satisfy. It is not, then, to a patron who can give much, that I take the liberty of dedicating the following discovery, but to a patron who can do much with it, and who can judge for himself of its utility without having to refer it to his advisers." •

Whether he ever carried out this idea or not is difficult to say, but it is certain that his plan was never ! practically tried, and, like so many of its class, was soon forgotten.

1787.-Lomond's Telegraph.

The next plan that we have to notice was a decided improvement, and had an actual existence, though on a very small scale. Seeing, no doubt, the difficulty and expense of using many wires, Lomond of Paris reduced, at one sweep, the number to one, and thus produced a really serviceable telegraph. * Arthur Young, the diligent writer on natural and industrial resources, saw this apparatus in action during his first visit to Paris, and thus describes it in his journal, under date October 16, 1787 :-

[^2]"In the evening to M. Lomond, a very ingenious and inventive mechanic, who has made an improvement of the jenny for spinning cotton; common machines are said to make too hard a threąd for certain fabrics, but this forms it loose and spongy. In electricity he has made a remarkable discovery. You write two or three words on a paper; he takes it with him into a room and turns a machine enclosed in a cylindrical case, at the top of which is an electrometer, a small fine pith-ball* ; a wire connects with a similar cylinder and electrometer in a distant apartment, and his wife, by remarking the corresponding motions of the ball, writes down the words they indicate, from which it appears that he has formed an alphabet of motions. As the length of the wire makes no difference in the effect, a correspondence might be carried on at any distance ; within and without a besieged town for instance, or for a purpose much more worthy, and a thousand times more harm-less-between two lovers prohibited, or prevented, from any better connection. Whatever the use may

- Soon after the discovery of the Leyden jar the necessity of some sufficient indicator of the presence and power of electricity began to be felt, and after some clumsy attempts at an electrometer by Gralath, Ellicott, and others, the Abbé Nollet adopted the simple expedient of suspending two threads, which when electrified would separate by their mutual repulsion. Waitz hung little leaden pellets from the threads for greater steadiness, and Canton, in 1753, improved upon this by substi-- tuting two pith balls suspended in cuntact by fine wires-a contrivance which is used to this day. The electrometer mentioned in the text was of the kind known as the quadrant electrometer, introduced by Henley

be, the invention is beautiful. Mons. Lomond has made many other curious machines, all the entire work of his own hands. Mechanical invention seems to be in him a natural propensity."*

As in all systems where the signals were indicated by electroscopes, or electrometers, their action would continue so long as the charge communicated to the wires lasted, and, as during this time it would not be possible to make another signal, the authors must in some way have discharged the wires after every signal," so as to allow the balls, gold leaves, or other indicators, to resume their normal position. This they might have done, either by touching the wires with the finger after the signal had been noted, or by making the indicators themselves strike against some body that would convey their charges to earth. But, probably, there was no need for any such stratagem, as the insulation of the wires would be so imperfect, and the speed of signalling so slow, that the inconvenience

highly polished，and in this，it is stated，the whole cause of the trouble lay．It was found that this frame was peculiarly liable to become electrified，that the （．slightest friction，even the mere carrying in the pocket， was sufficient to charge it，and that，when thus electri－ Pfied，if brought near the needle of a compass，it had almost the effect of a loadstone in drawing it from its true settling place．On discarding this magnifier and using an ordinary glass lens without a frame，no further trouble was found in the field work done with the compass．This must be taken for what it is worth．＂
1 As little value attaches to the observation of Mojon which we find recorded by Aldini，and which γ seems to us but a repetition of Franklin＇s experiment （before mentioned，p．252），with this difference，that a voltaic battery was used instead of one of Leyden ．jars．Aldini says：－＂The following experiment has －been quite recently communicated to me by its author \rightarrow Mojon ：－
＂Having placed horizontally sewing－needles，very fine，and two inches long，he put the two extremities \therefore in communication with the two poles of a battery of . one hundred cups，and on withdrawing the needles，at \rightarrow the end of twenty days，he found them a little oxidised， －${ }^{\prime}$ but at the same time endowed with a very sensible magnetic polarity．This new property of galvanism
 Romanesi，who has found that galvanism is able to deflect a magnetic needle．＂＊

At p． 120 of his Manuel dul Galvanisme（Paris， 805），Joseph Izarn describes Mojon＇s experiment，and appends an illustration，which shows most conclusively that it had no reference to electro－magnetism．His words are ：－
＂Apparatus for observing the action of galvanism n the polarity of a magnetised needle ：－

Fic． 9.

Mojon＇s Experiment，according to Izarn．
＂Preparation．Arrange the horizontal rods $a b, b d$ 参 （Fig．9）so that they may approach the magnetic bar shown between them，in place of the knobs $b b$ ，screw on little pincers which take hold of the magnetic bar， and attach one pole of a pile to a ，and the other to d ， thus completing the voltaic circuit through the length＇ of the magnet．
＊Essai Thiborigue ct Exptrimental sur Le Galvanisme，Paris，1804， vol i．p．339．
"Effects. According to the observations of Romagnosi the magnet experiences a declination, and according to those of Mojon needles not previously magnetised acquire by this means a sort of magnetic polarity." "
In a paper read before the Royal Academy of Munich, in May 1805, Ritter, a Bavarian philosopher, advanced some curious speculations, which, although always quoted, as suggestive of electro-magnetism, are really as wide of the mark as the experiments of Romagnosi, Schweigger, and Mojon. We find them thus described in the Philosophical Magazine, for $1806: \nmid-$
" The pile with which M. Ritter commonly performs his experiments consists of 100 pairs of plates of metal, two inches in diameter; the pieces of zinc have

[^3]\dagger Vol. xxiii. p. 51. "An ingenious and extraordinary man, from whom much might have been expected, had nature permitted the continuance of his scrutiny into her secret operations. A premature death deprived the world of one whose constitutional singularity of opinion, ardency of research, and originality of invention, rendered him at once systematic in eccentricity, ioexhaustible in discovery, and ingenious even in error."-Donovan's Essay on the Origin, Progress, and Present State of Galvanism, Dublin, 1816, p. 107.
Johann Wilhelm Ritter was born December 16, 1776, and died at Munich, January 23, 1810.

a rim to prevent the liquid pressed out from flowing away, and the apparatus is insulated by several plates of glass.
" As he resides at present near Jena I have not had an opportunity of seeing experiments with his great battery of 2000 pieces, or with his battery of 50 pieces, each thirty-six inches square, the action of which continues very perceptible for a fortnight. Neither have I seen his experiments with the new battery of his invention, consisting of a single metal, and which he calls the charging pile.*
"I have, however, seen him galvanise a louis d'or. He places it between two pieces of pasteboard thoroughly wetted, and keeps it six or eight minutes in the circuit of the pile. Thus it becomes charged, though not immediately in contact with the conducting wires. If applied to the recently bared crural nerves of a frog the usual contractions ensue. I put a louis d'or thus galvanised into my pocket, and Ritter tcld me, some minutes after, that I might discover it from the rest by trying them in succession upon the frog. I made the trial, and actually distinguished, among several others, one in which only the exciting quality was evident.
"The charge is retained in proportion to the time that the coin has been in the circuit of the pile. Thus,

* The charging pile, or, as we now call it, the secondary battery, was first described by Gautherot in 1801. See Izarn's Manuel du Galvanisme, Paris, 1804, p. 250; also Phil. Mag., for 1806, vol. xxiv. p. 185.
of three different coins, which Ritter charged in my presence, none lost its charge under five minutes.
"A metal thus retaining the galvanic charge, though touched by the hand and other metals, shows that this communication of galvanic virtue has more affinity with magnetism than with electricity, and assigns to the galvanic fluid an intermediate rank between the two.
"Ritter can, in the way I have just described, charge at once any number of pieces. It is only necessary that the two extreme pieces of the number communicate with the pile through the intervention of wet pasteboards. It is with metallic discs charged in this manner, and placed upon one another, with pieces of wet pasteboard alternately interposed, that he constructs his charging pile, which ought, in remembrance of its inventor, to be called the Ritterian pile. The construction of this pile shows that each metal galvanised in this way acquires polarity, as the needle does when touched with a magnet.*
"After showing me his experiments on the different contractibility of various muscles, Ritter made me
* We may here dispose of a paragraph which has hitherto puzzled a good many writers, who have supposed it to refer to some kind of magneto-electric machine. It occurs in The Monthly Magazine, for April 1802, p. 268, and reads as follows :-
" Galvanism is at present a subject of occupation of all the German philosophers and chemists. At Vienna an important discovery has been announced-an artificial magnet-employed instead of Volta's

Jobserve that the piece of gold galvanised by communication with the pile exerts at once the action of itwo metals, or of one voltaic couple, and that the face, which in the voltaic circuit was next the negative pole, became positive; and the face towards the positive pole, negative.
" Having discovered a way to galvanise metals, as iron is rendered magnetic, and having found that the galvanised metals always exhibit two poles as the magnetised needle does, Ritter suspended a galvanised gold needle on a pivot, and perceived that it had a certain dip and variation, or deflection, and that the angle of deviation was always the same in all his experiments. It differed, however, from that of the magnetic needle, and it was the positive pole that always dipped." *

Ritter also observed that a needle composed of silver and zinc arranged itself in the magnetic meridian, and was slightly attracted and repelled by the poles of a magnet ; and, again, that a metallic wire through which a current had been passed took up of itself a N.E. and S.W. direction.
pile, decomposes water equally well as that pile, or the electrical machine; whence it has been concluded that the electric, galvanic, and magnetic fluids are the same." Clearly the artificial magnet here mentioned can be none other than Ritter's secondary pile. One thing is certain, it cannot be a magneto-electric machine, for magnetoelectricity was not known in 1802.

- C. Bernoalli, in Van Mons' fournal, vol. vi. See further on this subject in Phil. Mag., vol. xxv. pp. 368-9.

Dr. Tommasi, in republishing Romagnosi's experiment, asks the following questions, which he submitted, in particular, to the managing committee of the (late) Vienna Exhibition, in the hope that they might have been brought before electricians :-
" Is it to Oersted, or to Romagnosi, that we should ascribe the merit of having first observed the deviation of the magnetic needle by the action of the galvanic current?
" Had Oersted any knowledge of the experiment of Romagnosi when he published his discovery of electro-magnetism ?*
" Have any other savants taken part in this discovery?"

Now, we should have thought that after the admirable expose of Govi, to which we have just referred, no electrician would seriously put to himself these questions. But it appears that our Paris confrive does so, although, if he had only read carefully the facts on which he bases them, he would perceive that they have no relation whatever to electro-magnetic action, but are simply effects of ordinary electrical attraction and repulsion brought about by the static charge which is always accumulated at the poles of a strong voltaic pile-the form of battery used in Romagnosi's

* Dr. Hamel, for one, thought he had, and tries to prove it in his 1 Historical Account, \&e., of 1859 (pp. 37-9 of W. F. Cooke's reprint).

experiments, and which, as is well known, exhibits this phenomenon in a far more exalted degree than : the ordinary cell arrangement.

We cannot establish better the correctness of our conclusions than by quoting in full the recital of Romagnosi's experiment, as it originally appeared in the Gazzetta di Trento, of August 3, 1802 : *-

" Article on Galvanism.

"The Counsellor, Gian Domenico de Romagnosi, of this city, known to the republic of letters by his learned productions, hastens to communicate to the physicists of Europe an experiment showing the action of the galvanic fluid on magnetism.
" Having constructed a voltaic pile, of thir discs of copper and zinc, separated by flannel soaked in a solution of sal-ammoniac, he attached to one of the poles one end of a silver chain, the other end of which passed through a short glass tube, and terminated in a silverknob. This being done, he took an ordinary compass-box, placed it on a glass stand, removed its glass cover, and touched one end of the needle with the silyer knob, which he took care to hold by its glass , enampepe. After a few seconds' contact, the Tedie waso Themader even after the removal of the knob. A fresh application of the knob caused a still further

[^4]

The force is in that form more latent than as electricity, and less so than as magnetism. It is, therefore, probable that the electric force, when superposed, will exercise a less influence on magnetism than on galvanism. In the galvanic pile, it is the electric state - [tension] which it acquires that is affected by the approach of an excited glass rod; more, it is not that interior distribution of forces constituting magnetism that we can change by electricity, but it is the electric state which belongs to the magnet as to bodies in general.
"We do not pretend to decide anything in this matter ; we only wish to clear up, as far as possible, a very obscure subject, and, in a question of such importance, we shall be very well satisfied if we have made it apparent that the principal objection to the identity of the forces which produce electricity and magnetism is rather a difficulty of reconciling facts than of the facts themselves."

And again, on p. 238, he says:-"Steel when heated loses its magnetism, showing that it becomes a better conductor by the elevation of temperature, like electrical bodies. Magnetism, too, like electricity, exists in all bodies in nature, as Bruckmann and Coulomb have shown. From this it seems that the magnetic force is as general as the electric; and it remains to be seen whether electricity in its most latent state [i. e., as galvanism] will not affect the

 culty, for the electrical actions will blend and render the observations very complicated. In comparing, the attractions on magnetic and non-magnetic bodies, some data will probably be obtained."

In trying experiments with a view to the illustration ? of these hazy notions Oersted is said to have succeeded in obtaining indications of the action of the conducting . wires of the pile, during the passage of electricity, on the needle ; but the phenomena were, at first view, not a little perplexing ; and it was not till after repeated investigation that, in the winter of 1819-20, the real nature of the action was satisfactorily made out.*

Even then Oersted seems not to have clearly understood the full significance of his own experiment. Unlike Davy, who, when he first saw the fiery drops of potassium flow under the action of his battery, recorded his triumph in a few glowing words in his laboratory journal, \dagger Oersted took no immediate steps,

* " Professor Forchhammer, the pupil and friend of Oersted, states that, in 1818 and 1819 , it was well known in Copenhagen that he was engaged in a special study of the connection of magnetism and electricity. Yet we must ascribe it to a happy impulse -the result, no doubt, of much anxious thought-that, at a private lecture to a few advanced students in the winter of $1819-20$, he made the observation that a wire uniting the ends of a voltaic battery in a state of activity affected a magnet in its vicinity."-Ency. Brit,, 8th ed., Dissertation vi. p. 973.
\dagger Onisth October, 1807 , while investigating the compound nature of the alkalies. On seeing the globules of potassium burst through the crust of the potash, and take fire as they entered the atmosphere, he could not contain his joy, but danced about the room in wild delight,
As the result of all these observations the Bavarian

he published in German, in 1807, on the identity of chemical and electrical forces, he observes: *-
"When a plate composed of several thin layers is electrified, and the layers afterwards separated, each is found to possess an electric polarity, just as each fragment of a magnet possesses a magnetic polarity.
"There is, however, one fact which would appear to be opposed to the theory of the identity of magnetism and electricity. It is that electrified bodies act upon magnetic bodies, as if they [? the magnetic bodies] were endowed with no force in particular. It would be very interesting to science to explain away this diff. culty; but the present state of physics will not enable us to do so. It is, meanwhile, only a difficulty, and not a fact absolutely opposed to theory; for we see in frictional electricity and in that of contact [galvanism] analogous phenomena. Thus, we can alter the tension of the electric pile by bringing near it an excited glas: rod, and yet not affect in any way the chemical action A long column of water, or a wetted thread of flax 0 wool, will also suffer a change in its electricity withoul experiencing any chemical changes.
" It would appear, then, that the forces can be super posed without interfering with each other when thes operate under forms of different activities.
" The form of galvanic activity holds a middle placı bctween those of magnetism and [static] electricity
* Chap. viii. pp. 235-6 of the French edition, Recherches su [1dentite des Forces Chimiques et Électriques, Paris, 1813.

This event in which Chappe's semaphore played so important a part caused much attention to be directed to the subject of telegraphy, and on the 5th July following we find the Bavarian minister, Montgelas, requesting his friend, Dr. Sömmerring, to bring the subject before the Academy of Sciences (of Munich), of which he was a distinguished member.*

Sömmerring at once gave the matter his attention, and soon it occurred to him to try whether the visible evolution of gases from the decomposition of water by the voltaic current might not answer the purpose. He worked at this idea incessantly, and, before three days had elapsed, had constructed his first apparatus, shown in Fig. 6. He took five wires of silver, or copper, and, insulating each with a thick coating of sealing-wax, bound the whole up into a cable. These wires, at one end, terminated in five pins which penetrated a glass vessel containing acidulated water; and, at the other, were capable of being put in connection with the poles of a pile of fifteen pairs of zinc discs, and Brabant thalers, separated by felt soaked in hydrochloric acid. By touching any two of the wires to the poles of the pile he was able to produce, at their distant ends, a disengagement of gases, and
thereby indicate any of the five letters a, b, c, d, c. Having thus shown the feasibility of his project, he set himself to perfect his apparatus, and worked at it with such a will that by the 6th of August it was completed. He wrote in his diary on that day :-" I have tried the entirely finished apparatus which completely answers my expectations. It works quickly through

Fig. 6.

wires of 362 Prussian feet." Two days later he worked it through iooo feet, and then through 2000 feet, the wire in each case being wound round a glass cylinder for greater compactness."

* Hamel, pp. 7, 8. On the 4th February, 18ı2, he worked through 4000 fect, and on the I5th March following through as much as 10,000 feet.

The proposal that we have now to notice is one of great merit, and resembles in some respects Cooke and Wheatstone's five-needle, or Hatchment, telegraph of 1837. It is the invention of Professor Luigi Magrini, of Venice, and is described by him, at length, in a brochure, which he published, at Venice, in 1838, entitled Telegrafo Elettro-Magnetico, Praticabile a Grandi Distanze. From an Appendix on pp. 85-6, it appears that the first published account of this telegraph is that contained in the Gazzetta Privilegiata di Venezia, No. 189, of 23 rd August, 1837 ; * but, as far as we can discover, it was never tried on any extensive scale. Had this been done, there can be no doubt that it would have succeeded as well as the English one, and we should have had the curious result of seeing the simultaneous and independent establishment in Italy and in England of electric telegraphs, which are not only based on the same principles, but, in some respects, are almost identical.

The signal apparatus consisted of a horizontal table, one metre long, and sixty centimetres broad, into which fitted three galvanometers as shown in the \therefore Fig. 3I. By means of two batteries of different is strengths, and a commutator, each needle was suscep-: hi: tible of four movements, one weak and one strong to 1 the right, and one weak and one strong to the left. These four positions indicated for each needle al different letter which was suitably inscribed on the, board, or table. Thus, the letters appertaining to the first galvanometer were A, B, C, D; those of the ${ }^{6}$ second, I, L, M, N ; and those of the third, S, T, $1 \% \mathrm{U}, \mathrm{V}$.
sidneedles I and $2 ; H$, to strong deflections of the same 4, two needles, and in the same direction; O , to weak, said to date back to 1832 ; but this is probably a misprint.

A Ffor an experiment of the kind with which we are dealing, and had it been possible for Sömmerring to have employed a more delicate indicator than his water-decomposing apparatus he would probably have noticed that, notwithstanding the shorter way, some portion of the current still went the longer way ; and this fact could hardly have failed to suggest to his acute and observant mind further experiments, which, as I have just said, might easily have resulted in his recognition of the possibility of wireless telegraphy.
Leaving the curious suggestion of Salvk, which, though seriously meant, cannot be regarded as more than a jeu; diesprit - a happy inspiration of genius - and the what-might-have-come-of-it experiment of Sömmerring, we come to the year 1838, when the first intelligent suggestion of a wireless telegraph was made by Steinheil of Munich, one of the great pioneers of electric telegraphy on the Continent.
The possibility of signalling without wires was in a manner forced upon him. While he was engaged in establishing his beautiful system of telegraphy in Havaria, Gauss, the celebrated German philosopher, and himself a telegraph inventor, suggested to him that the two rails of a railway might be utilised as telegraphic conductors. In July 1838 Steinheil tried the experiment on the Nuirmberg-Fürth railway, but was unable to obtain an insulation of the rails sufficiently good for the current to reach from one station to the other. The great conductibility with which he found that the earth was endowed led him to presume that it would be possible to employ.it instead of the return wire or wires hitherto used. The trials that he made in order to prove the accuracy of this conclusion were followed by complete success ; and he then introduced into electric telegraphy one of its greatest improvements-the earth circuit. ${ }^{1}$

[^5]
Morse's system of telegraphing across a canal used metal plates ($\mathbf{A}, \mathbf{A}^{\prime}, \mathbf{B}, \mathbf{B}^{\prime}$) submerged beneath the water. When the key to (A^{\prime}) was pressed, current from the battery flowed along the left-bank wire and then from plate (A) through the water to plate (B). The right-bank wire completed the circuit through the receiver and plates (B^{\prime}) and (A^{\prime}). A lot of current was lost by diffusion in the water.

 of the appromels of the Bingltsh in any manaut; two
 Inchite awch other, thot the rnemig are in growe furco." The ewrlient well dufinel plas of telorgraphic comanamication in
 Ilayal sweiety in 10k4, and publimbed in 1728 ia Ikertrame

 olovatedi framowork. M. Chapper unch improwonl on thio in
 biacland in the fint dioveramont iime of telegrapic frum lasedone to Dhivery It is watest that isformation hed buea ove-
 of enurwe, was oaly availathle ita cloyp weather.

We mow cume to the electric telongraph, by which Puek'o fairy bunct of patiog a girdle ruard the earth in forty mis utre can be rraliz-d, thungh, inelegel of forty miantere it can

 minolun of thoughte and worls lnetwren two imoliqhiuale orur

 pmeticular diruction. the wher will aympethotionlly move paralle: tos is. Themes nuallew wem to low primed, and mounceal jurallot un a dind with the luctersonef the alphaber aruand. It is wonderful haw nearly thic deneription womlal apply t thom rheceric telorgraph. Adolimon playfully gundew thice wa a

 'rwaklia's thonsy of pmitiva aud merracivo ularificity waw.

 Prancia ltonalds eaployeal frictional oluetriefty. Ilte telegreph way a wiagio invuluerd wire, the indieaclon twing by pith balls in truat of a dial. In the ment guar, Mr. Hill, of Alfurton, in. vernted a voleaic elsetrie tolegraph.
 thetral by the pamaguof a circuit of eloctricity through a wire parallel and in clume proximaty to le. This made the woaderful dimcuvery of the telegraph. puwible. But the deticetige perwer of the curruat munt be multiplied, and Echweigerep did this by paming a wirw ingulated by eilk a number of timew ruund the meedle. M. Arago, is 1810, invented the frut elee tromaknet, by coiling round a piece of coff irom a longth of Inuulatend coppur wire, the eads of which commualeated with a battury. Hy alternately makiag and broaklag the cireuis of the current, an up and down movament can be produced, which is the priseiple of setion in Wheatmone's electric magnetic dial instrumunt. Thetediccoverios do not neom to lave bewn followed up in a practical manaer till, is 1837. Whomet stone took out a patent in coojunction with Mr. Cooke. Their tulagraph hed five wiret and five needlen, two of which indi. caterl the lottere of the alphabet pleced around. In July, 1487, wires werw laid down from Euncon Byuare to Carncien Town Sleciona, by the sanction of the Nurthwectera Railway. and Profumor Wheatwone went the first meviage to Mr. Cooke butwen the two etations. The profemar may: "Nuver did I fool auch tumultuous eaneation bulurw, al when, all alone in the atill room, I heard the needile click; and an I apellod the worde, I folt all the magnitude of the invention, now proved to ing practical begond cavil orillepute." The form of telugraph now in use was subatituted ; beemuce of thu ceonomy of its construction, not morw than two wirue (cometimes only one) boing reyurion. Of courm eovoral permase claimed to have invonted the tulograph be fore Profomeor Whencatono. In the came month that the profomor wee working upon the NorthWemtern Hailway, there was oae in operation Invented by Steinheil of Munich, bus Whearncono's patent hed bwen takon ous in the moath before. As Amoriean namul Morse clajms to have lavented it in 18sa, but did not put is in operation till 1847. Aftor this, him aysters wee gunerally adopted in the Unitud Stateo. It is a recording one.

VRIL AND GROUND

DENDRITIC CIRCUITRY

Discovery of the Earth Circuit.

In order not to interrupt the continuity of our description of Steinheil's beautiful apparatus, we have reserved for a special paragraph our notice of this most important discovery.

As we have seen in our second, third, fourth, and fifth chapters, the earth circuit was used, with few exceptions, in all experiments with static electricity. Its function, however, was either unsuspected or misunderstood.* Of all the telegraphic proposals based on static electricity, those of Bozolus, 1767, and of the anonymous Frenchman, 1782, are the only ones in which complete metallic circuits were proposed. Reusser, 1794, used one common return wire; while all the others employed the earth, Volta, Cavallo, and Salvá making distinct mention of their doing so.

The power of the earth to complete the circuit for dynamic electricity has also been known for a very long time. Thus, on the 27th of February, 1803, Aldini sent a current from a battery of eighty silver and zinc plates from the West Mole of Calais harbour to Fort Rouge through a wire supported on the masts of boats, and made it return through 200 feet of intervening water. \dagger

Basse, of Hamel, made similar experiments, and - As in Watson's experiments, described at Pp. 111-13 of Priestley's History of Electricity, 1767.
\dagger Aldini's Account of late Improvements in Galvanism, London, 1803, p. 218.

All these are very early and very striking instances of the use of the earth circuit for dynamic electricity ; but the most surprising and apposite instance of all has yet to be mentioned, in which the use of the earth

[^6]
is suggested precisely as we employ it to-day. In a letter signed "Corpusculum," and dated December 8, 1837, in the Mechanics' Magazine,* we read :-
"It seems many persons have formed designs for telegraphs. I, too, formed mine, and prepared a specification of it five years ago, and that included the plan of making one wire only serve for the returning wire for all the rest, as in Alexander's telegraph ; but even that might, I think, be dispensed with where a good discharging train, as gas, or water, pipes, at each end of the telegraph could be obtained."

In July 1838, or seven months after the publication of "Corpusculum's" letter, Steinheil made his accidental discovery in a way which we find thus related by De la Rive : $\dagger-$
" Gauss having suggested the idea that the two rails of a railway might be employed as conductors for the electric telegraph, Steinheil, in 1838 , tried the experiment on the railroad from Nüremburg to Fürth, but was unable to obtain an insulation of the rails sufficiently perfect for the current to reach from one station to the other. The great conductibility, with which he remarked that the earth was endowed, caused him to presume that it would be possible to employ it instead of the return wire. The trials that he made in order to prove the accuracy of this conclusion were followed

* For 1837, p. 219. The full text of this interesting letter will be found at p. 477, infra.
\dagger Treatise on Electricity, London, 1853-58, vol iii. p. 35 r. electric telegraphy one of its greatest improvements."

In Steinheil's own account of this discovery, he begins by pointing out that Ampère required for his telegraphic proposal more than sixty line wires; that! Sömmerring reduced the number to thirty or so; Cooke and Wheatstone to five ; and Schilling, Gauss, and Morse to " one single wire running to the distant station and back."

He then goes on to say:-" One might imagine that this part of the arrangement could not be further! simplified; such, however, is by no means the case. I have found that even the half of this length of wire : may be dispensed with, and that, with certain pre-i cautions, its place is supplied by the ground itself. 1 We know in theory that the conducting powers of the ground and of water are very small compared with that of the metals, especially copper. It seems, however, to have been previously overlooked that we have it within our reach to make a perfectly good conductor out of water, or any other of the so-called semi-conductors.
"All that is required is that the surface that its section presents should be as much greater than that of the metal as its conducting power is less. In that case the resistance offered by the semi-conductor will equal that of the perfect conductor; and as we can make conductors of the ground of any size we please, simply by adapting to the ends of the wires plates

presenting a sufficient surface of contact, it is evident that we can diminish the resistance offered by the ground, or water, to any extent we like. We can indeed so reduce this resistance as to make it quite insensible when compared to that offered by a metallic wire, so that not only is half the wire circuit spared, but even the resistance that such a circuit would present is diminished by one half.
"The inquiry into the laws of dispersion according to which the ground, whose mass is unlimited, is acted upon by the passage of the galvanic current, appeared to be a subject replete with interest. The galvanic ${ }^{5}$ excitation cannot be confined to the portions of earth situated between the two ends of the wire; on the 3 contrary, it cannot but extend itself indefinitely, and it, therefore, only depends on the law that obtains in this excitation of the ground, and the distance of the f exciting terminations of the wire, whether it is neces-i sary or not to have any metallic communication at all: for carrying on telegraphic intercourse.
"An apparatus can, it is true, be constructed in which the inductor, having no other metallic con-? nection with the multiplier than the excitation transmitted through the ground, shall produce galvanic currents in that multiplier sufficient to cause a visible deflection of the bar. This is a hitherto unobserved fact, and may be classed amongst the most extraordinary phenomena that science has revealed to us. It only holds good, however, for small distances; and it must be left to the future to decide whether we shall ever succeed in telegraphing at great distances without any metallic communication at all. My experiments prove that such a thing is possible up to distances of 50 feet. For greater distances we can only conceive it feasible by augmenting the power of the galvanic induction, or by appropriate multipliers constructed for the purpose, or, in conclusion, by increasing the surface of contact presented by the ends of the multipliers. At all events the phenomenon merits our best attention, and its influence will not perhaps be altogether overlooked in the theoretic views we may form with regard to galvanism itself." *

[^7]
 that the earth itself furnished sufficient galvanic power to operate the electro magnet without the aid of a battery. In the first experiment, a copper plate was buried in the ground, and about three hundred yards from it, a zinc plate was also buried in the ground. To each of these plates a wire was soldered, and the ends brought into the telegraph office, and properly connected with the key and electro magnet of the register. The battery not being in connection. Upon manipulating at the key, it was found that the electro magnet was operated upon and the pen of the register recorded. This led to another experiment upon a more magnificent scale, and nothing less than that of using the copper plate at Washington, and the zinc plate at Baltimore, with the single wire, connecting those distant points, and the battery thrown out. Here, too, succesa followed the experiment, though with diminished effect. By the application of a more delicate apparatus, the Electro Magnet ${ }^{*}$ was operated upon, and the pen of the registering instrument recorded its success. From these experiments, the fact appears conclusive, that the ground can, through the agency of metallic plates, constantly generate the galvanic fluid.

Six Independent Circuits, with six wires, each wire making an independent line of communication.

Fic. 23.

- Franklin appears to have been the first, or among the first, who used the ground as part of a conducting circuit in the performance of electrical experiments. Steinheil it appears was the firat to use the ground as a conductor for magneto electricity. Bain, in 1840, wa the firat to wee the ground as a source of electricity in conjunction with its conducting power, at a circuit

PASSAGE WAS BLASTED IN MDUNTAIN ROCK

 $1 \times x, T$

\rightarrow THE EIDETIC TRANSACTION WITH INCOMING SIGNALS IS A TRANSCENDENT PROCESS
TELEGRAPH OPERATORS EXPERIENCED THE EIDETIC POTENTIALS PROJECTED INTO THEM
FROM DISTANT STATIONS...
EXPERIENTIAL TRANSACTION WITH DISTAL SURROUNDINGS GAVE EXCEPTIONAL CLARITY
WHEN VRIL REQUIREMENTS WERE BEST MET ALONG THE LINE
THE REVERIE OF THE RECIPIENT WAS TOTALLY ENMESHED IN THE EIDETIC AURA
TRANSACTED THROUGH IRON LINES AND MAGNETIC RECEIVING BLOCKS
-"
CODE MERGED WITH MESSAGE IN A SYNAESTHESIAL EXPERIENCE OF UNEQUALLED STRENGTH

holds good, however, for small distances, and we must leave it to the future to decide whether it will ever be possible to telegraph to great distances entirely without metallic connections.'

Morse, 1842.-S. F. B. Morse (4a, 4b, and 9), Superintendent of Telegraphs to U.S.A. Government, when giving a demonstration of line-telegraphy at the request of the American Institute of New York, between Governor's Island and Castle Garden, a distance of one mile, had the demonstration entirely spoiled owing to a vessel weighing its anchor and in so doing cutting his submerged cables. Owing to this accident the idea occurred to him that possibly water itself might be employed to carry the electricity across the river without any metallic conductors.

Fic. 4. Illustrnting Morse's original system of telgataphing across a river.

During the same year, on December 16th, $18{ }^{2}$, he successfully transmitted current across a canal at Washington, the distance bridged being $80 f t$. Fig. 4 shows the method he adopted. On each side of the canal he had insulated line wires, to the ends of which were connected large copper plates A, A^{1}, B, B^{1}, submerged in the canal. On the transmitting side he had a battery S , and Morse key K (of his own invention), and on the receiving side he placed a galvanometer in series with the
insulated line. He conducted a series of tests, placing the plates on each bank of the canal at different distances apart up and down stream, and found that, provided the plates were separated by a distance greater than the width of the canal, a reading could be obtained on the galvanometer. In 1845, working in conjunction with Vail and Rogers (his assistants), he succeeded by the same method in signalling across the Susquehanna River at Havre-de-Grace, a distance of almost one mile. (6)

A very full and interesting account of the life and work of Morse is given in a two-volume book written by his son, E. L. Morse, 1914, entitled "Samuel F. B. Morse, his letters and journals," in which it is claimed that he was the original inventor of the Electro-Magnetic Telegraph (7, 93, 4). It is interesting to note that during the first 30 years of his life Morse devoted himself to art. In 1813 he exhibited a picture in the Royal Academy. He devoted himself to the study of electricity after attending a course of lectures on Electricity and Magnetism by Professor Dana, at the New York Athenæum, in 1826. Having heard that Benjamin Franklin had experimented and shown that "electricity passes instantaneously over any known length of wire," Morse foresaw that it might be used for signalling to great distances, and before he had invented his telegraph he devised, almost by inspiration, his " Morse alphabet," which, with slight variations, is in universal use at the present day for telegraphy and radio-telegraphy. Another interesting fact, and one not very well known, is that whilst in Paris in 1838 he met Daguerre, who explained to him how far he had succeeded in perfecting the daguerrotype process, and in America he shares with Professor Draper the honour of being the first to photograph living persons.

In Great Britain, in 1845, Wm. F. Cook and Chas. Wheatstone carried out similar experiments to those shown in Fig. 4, using an instrument designed by Wilkins, which was a forcrunner of Lord Kelvin's Siphon Recorder. Wheatstone, it will be remembered, was responsible for laying the first Channel cable to France in 1850 (the same year in which the first trans-Atlantic cable was laid). He also patented a needle telegraph, and there is some doubt as to whether this was not prior to that of Morse.

Lindsay's Experiments.-In 1843 James Bowman Lindsay carried out a series of experiments very similar to those of

HOW ONE WIRE CAN BE USED

A bald statement that an electric current must always have a complete circuit does not appeal very forcibly to many minds. I have seen people quite at sea in trying to arrange a simple electric circuit, such as connecting up a bell, push, and battery. There need not be the very slightest confusion if one clearly keeps in mind what is taking place when a battery sends a current of electricity along a wire All that the battery does is to cause an electric current to pass from its carbon plate to its companion rinc. We fix a short wire across from the one plate to the other, and an electric current passes along the wire on its way from the carbon to the zinc. We may make the wire a mile long, or as long as we please, and the current must pass by this route on its way from the one plate to the other. If we carry the wire to it is forced to travel via Land's End. If the wire circuit is broken at any place the current immediately ceases, as it has no path left from the carbon to the zinc; if the wires are touched together again, the current once more passes. The ordinary electric bell push is merely a means of making and breaking the circuit.
If the wire of our imaginary Land's End circuit be cut at that distant place and the two free ends be joined to the two ends of the coil in a needle-telegraph instrument, then the current in going from the carbon to the zinc in the battery has to pass through this distant telegraph instrument, as its coil has become part of the circuit. The necessity for a complete circuit is therefore quite apparent (see Fig. 5).

While fitting up a telegraph installation on a railway in 1838, Steinheil, of Munich, noticed that his return wire was broken, and the two ends were put into the earth; the current passed just as though the wires were joined together. It was soon found that it did not matter how far distant these earth connections were, so that if a telegraph is to be fitted up between London and John O'Groat's a wire is led from the carbon in the battery at London all the way to that northern linit of the Scottish mainland and there connected to one end of the telegraph coil. Instead of now bringing a return wire from the other end of the coil right back to the zinc of the London battery, a short wire is simply connected to the earth at the Scottish end, while at the London end another short wire is led from the earth to the zinc in
the battery there. At the London end it would be quite sufficient to fasten the short wire from the zinc to any water-pipe in the building and thereby get into contact with the earth, but not finding a similar convenience at

Fiu. 5
bhownea a cell conmbcted to a teljoraph instaubient the northern house it would be found necessary to attach the wire to a copper plate and then bury it in the moist subsoil: In Fig. 6 an earth circuit is shown in which both ends are attached to buried plates.
It was originally supposed that the current of cleetricity passed through the earti from the one plate to the other, but it seemed afterwards more reasonable to picture the current as being dissipated in the earth at the one end and fed on at the other end. An analogy portrays the earth as a great ocean, the wire like a pipe with its two free ends dipping into the ocean at far separated points, and the battery as a pump propelling the current along. Whatever mental picture we form, we must remember that the electric current is not a material fluid.

There is no difficulty in sending a current over this

single wire with its earth circuit, but one is not surprised to learn that when any great natural disturbance takes place in this ether-ocean into which the wires are dipping,

Fio. 6
HOW A TELEGRAPH IS WORKRD WITH A SINGLE WIRE
the current in these earth-connected wires is very appreciably affected, our whole telegraph system being sometimes quite upset during a magnetic storm.

MODE OF CROSSING BROAD RIVERS, OR OTHER BODIES

 OF WATER, WITHOUT WIRES.The following extract from Professor' Morse's letter to the Secretary of the Treasury, and by him summitted to the House of Representatives, Dec. 23,1844 , in relation to this interesting subject, will sufficiently illustrate it:
"In the autumn of 1S42, at the request of the American Institute, I undertook to give to the public in New York a demonstration of the practicability of my telegraph, by comnecting Gorernor's Island with Castle Garden, a distance of a mile; and for this purpose I laid my wires properly insulated beneath the water. I had scarcely begun to operate, and had received but two or three characters, when my intentions were frustrated by the accidental destruction of a part of my conductors by a vessel, which drew them up on her anchor, and cut them off. In the moments of mortification, I immediately devised a plan for avoiding such an accident in future, by so arranging my wires along the banks of the river as to cause the water itself to conduct the electricity across. The experiment, however, was deferred till I arrived in Washington; and on December 16, 1842, I tested my arrangenent amoss the canal, and with success. The simple fact was then
 ascertained, that electricity could be made to cross a river without other conductors than the water itself; but it was not until the last autumn that I had the leisure to make a series of experiments to ascertain the law of its passage. The following diagram will serve to explain the experiment.

Fic. 31.

A, B, C, D, are the banks of the river; N, P, are the battery; E is the electro magnet; 20 vo, are the wires along the banks, connecting with copper plates, f, g, h, i, which are placed in the water. When this arrangement is complete, the electricity, generated by the battery, passes from the positive pole, P, to the plate h, across the river through the water to plate i, and thence around the coil of the magnet, E, to plate f, across the river again to plate g, and thence to the other pole of the batterv, N. The numbers $1,2,3,4$, indicate the distance along the bank measured by the number of times of the distance across the river
The distance across the canal is SO feet; on August 24th, the following were the results of the experiment.

My Dear Sir-I send you, herewith, a copy of a series of results, obprained with fcur different sized plates, as conductors to be used in croesing fivers. The batteries used were six cups of your smallest size, and one Wis Miquid used for the same throughout. I made several other series of experiments, but these I most rely on for uniformity and accuracy. You will see, from inspecting the table, that the distance along the shores should be three times greater than that from shore to shore across the stream; at least, that four times the distance does not give any increase of power. I intend to repeat all these experiments under more favorable circumstances, and will communicate to you the results.

Very respectully,
L. D. GALE.

Professor S. F. B. Morse,

Superintendent of Telegraphs.

Series of Experiments on four different sizes of plates, to wit : 1st, 56 square inches; 2d, 28 square inches; 3d, 14 square inches; and 4th, 7 square inches.

Experiment 1st.—Surface of one face of the copper plate, 56 square inches; battery, Morse's smallcst, 6 cups.

Notr.-In all the experiments, f and g are stationary.

Experiment 2d.—Plates 28 square inches, conducted as above.

Distance from; Distance
bauk to bank. Is

3d Trial.	4th Trial.	0th Trial	6th Trial.
23°	29°	22	22°
31	31	31	31
35	35	35	35
34	34	34	34

3ishould have appeared to me to have some value, at a time when gutta-percha as an insulator was not imagined, or the ghost of a proposition for a submarine wire existed. At that time, too, it was with the utmost difficulty that efficient insulation could be maintained in elevated wires if they happened to be subject to a damp atmosphere.
"It was in the year 1845, and while engaged on the ionly long line of telegraph then existing in Eugland\leq London to Gosport - that my observations led me to question the accepted theory that currents of electricity, discharged into the earth at each end of a line of telegraph, sped in a direct courso-instinctively, so to say-through the intervening mass of ground to meet a current or find a corresponding earth-plate at the other end of it to complete号 the circuit. I could only bring myself to think that the enearth acted as a reservoir or condenser-in fact, receiving it and distributing electricity almost superficially for some - certain or uncertain distance around the terminal earths, - 1 and that according to circumstances only. A year later, 1 while occupied with the installation of telegraphs for Me: Mesgrs Cooke \& Wheatstone (afterwards the Electric Tele-
 In
J. W. WILKINS.
 with terminals dipping into the earth or sea, and as nearly parallel as possible to one another; ? and I suggested a form of telegraph instrument consisting of: 'coils of finest wire, of best conductibility,' with magnets to deflect them on the passage of a current of electricity through them, which I expected would take place on the discharge of : electricity through the circuits on either side of the water ; anticipating, of course, that a portion of the current would flow from the one pair of earth-plates-terminals of one circuit-to the other pair of terminals on the opposite shore.
 graph Company), a good opportunity offered of testing this matter practically upon lengths of wire erected on both sides of a railway. To succeed in my experiment, and detect the very small amount of electricity likely to be available in such a case, I evidently required the aid of a very sensitive galvanometer, much more so indeed than the long pair of astatic needles and coil of the Cooke \& Wheatstone telegraph, which was then in universal use as a detectur. The inlluence of magnetism upon a wire conveying an electric current at once suggested itself to me, and I constructed a most sensitive instrument on this principle, by which I succeeded in obtaining actual signals between lengths of elevated wires about. 120 ft. apart. This, however, suggested nothing more at the moment than that the current discharged from the earth-plates of one line found its way into the earth-plates of another and adjacent circuit, through the earth. Later on, I had other opportunities of verifying this matter with greater distances between the lines of wire, and ultimately an instance in 2 which the wires were a considerable distance apart, and with no very near approach to parallelism in their situation. Then it was that it entered my head that telegraphing without wires might be a possivility."

The following extracts from the letter in the 'Mining Journal,' above referred to, may now be reproduced with interest. I have slightly altered the phraseology with a view of making the writer's meaning more clear and connected : ${ }^{1}$ -
"Allow me, through the medium of your valuable
${ }^{1}$ Mr Charles Bright has reprinted this letter verbatim in Jour. Inst. Elec. Engg.,' vol. xxvii. p. 958, as containing " the first really practical suggestion in the direction of inductive telegraphy "; but, as we now see, it is not the frrst suggestion, and it is certainly not inductive. ments I have made havo shown nee) that when the poles of $a \cdot$ battery are connected with any extended conducting medium, the electricity diffuses itself in radial lines between the poles. The first and larger portion will pass in a straight line, as offering the least resistance; the rays will then form a series of curves, growing larger and larger, until, by reason of increasing distance, the electricity following the outer curves is so infinitesimal as to be no longer perceptible.
"These rays of electricity may be collected within a certain distance-focussed as it were-by the interposition of a metallic medium that shall offer less resistance than the water or earth; and, obviously, the nearer the battery, the greater the possibility of collecting them. I do not a apprehend the distance of twenty miles being at all too γ_{1} much to collect a sufficient quantity of electricity to be useful for telegraphic purposes. If, then, it is possible, as? I believe, to collect in France some portion of the electricity which has been discharged from a battery in

England, all that is required is to know how to deal with it so that it shall indicate its presence.
"The most delicate of the present telegraph apparatus, the detector, being entirely unsuited for the purpose, I propose the following arrangement: Upon one shore I propose R. to have a battery that shall discharge its electricity into the $\stackrel{H}{H}$ earth or sea, with a distance between its poles of five, ten, or twenty miles, as the case may be. Let a similar length in wire be erected on the opposite coast, as near to, and - iy parallel with, it as possible, with its ends also dipping into - the earth or sea. In this circuit place an instrument consisting of ten, twenty, or more round or square coils of the otherwise between, or in front of, the poles of an electro-, or permanent, magnet or magnets. Any current passing through the coil would be indicated by its moving or shifting its position with reference to the poles of the magnet. This would constitute a receiving apparatus of the most delicate character, for its efficiency would depend not so much on the strength of the current passing as on the power of the magnet, which may be increased at pleasure.
"I hope some one will take up this suggestion and carry it out practically to a greater extent than my limited experiments have enabled me to do. Of its truth for long as well as for short distances I am satisfied, and only want of means and opportunity prevent me carrying it out myself." ;íd

In a recent letter to the writer apropos of this early proposal, Mr Wilkins says :-
"I will just say that all thought of induction was absent in my first experiments. I modified my views in this respect a year or two later, but I did not attach sufficient importance to the matter to follow up my communication to the 'Mining Journal,' especially as at that time a cable was actually laid across the Channel, which I could not doubt would be a success, and a permanent one too. I rather a courted forgetfulness of the proposition. Whatever my opinion at the time was as to the source of the electricity that I discovered in the far removed and disconnected; circuit, the result was the same, and the means I used to obtain it the same in principle as those which make the matter an accomplished fact to-day-viz., elevated lengths of wire, and the discharge of electricity from the one on to a delicate receiving apparatus in the circuit of the other.
"As regards the form of receiving apparatus which I suggested for indicating the signals, I did then, and do now, attach great importance to tho happy idea.

THE "EARTH BATTERY BASE":

VRIL CONDUCTORS AND ACCUMULATORS

an account of vril saturation

THE PROGRESSIVE REMOVAL OF INERTIAL (IMPRESSED ELECTRIC) SIGNAL
FROM AN EARLY LINE

July 10: "This morning took a double circuit from the main battery, one for the main line and the other for the local."

July 12: Washington: "Went to the Capitol, made a diagram' or small model of the plan of the circuit. which worked well."

July 15: "Succeeded with experiment of 2 wires and grounds forming 2 independent circuits. It worked well."

July 20, Baltimore: "Have tried all my experiments upon the small plan upstairs, and find it succeeds well."

Julv 25: "Ascertained by experiments that the large battery could be dispensed with entirely, by using the galvanism of the earth."
"On the 25th of July, 1844, I used the galvanometer instead of our large receiving magnet, and with the needle of the galvanometer closed and broke the local circuit, thus operating the register magnet which was in the circuit, as is usually the case when using the receiving magnet.
(Signed) ALFRED VAIL:
July 27: Vail reports reducing the battery from 80 cups to 4 cups and succeeded well in sending from Baltimore to Washington.

July 27: "Commenced to refit my lever of the big magnet and 2 others, found that 4 cups would work the main line between Balt. and Washington very well."

July 30, 1844 : "Telegraphing with 20 cups, the lowest number used since we have been in operation. All worked well."

July 31: "Both of us (Vail \& Rogers) wrote independently of each other with only one battery of 20 cups between us.'

Aug. 2, "Fitting up a more delicate lever."
Aug. 3, "Tried the more delicate lever and it worked very very well, I find I can, with the East wire, this lever and only 2 cups, work it. Since, 2 cups have worked it very well.'

Aug. 3, Morse writes V'ail from New York that he ought to take $\$ 18,000$ cash for his shares.

Aug. 5, "W'ent to Havre de Grace, with Rogers, Avery \& Cleveland."
Aug. 6 \& 7, "Experimented across the Susquehannah River without wires, favourable results.'

Aug. 8, Vail writes Morse refusing to sell for less than $\$ 50.000$.
Aug. 9, . . . "I (Alfred lail) have discovered a plan of making a telegraph without the Electro-Magnet

Aug. S, Vail to Morse in N. Y.: "I was setting out for Havre de Grace to try the experiment of crossing there without stretching the wires, which re-
sulted very favourable sulted very favourable . . . but it needs still more experimenting have also got the telegraph to work for one circuit with only 2 cups

Aug. 13, Balt. "We reduced our battery to-day to 5 cups and telegraphed to Washington."

EZRA CORNELL, OF ITHACA, SEW YORK.

IMPROVEMENT IN THE MODE OF OPERATING ELECTRO-MAGNETIC TELEGRAPHS.

Sperification forming part of Letters Patent No. 4.318, dated Deceminer 2n, 18 tin.

To all rhom it may concern:
Beitknown that I, Ezra Cornell,of Ithaca, in the county of Tomplins, in the State of New York. hare inrented a new and improred mode of ad asting and using metallic wire for telegraphic purposes, by which telegrapu-instruwents at opposite extrenities of the sime or of a single trire, or located at distant points ou the same or a single wire, may be kept in constant readiness for use in conjunction with a galranic battery, without the necessity of keeping the galranic circuit closed when ueither instrument is at work, and by which dependent circuits are avoided ; and I do declare the following to be a full and exact tescription thereof, viz:

First, the tigures or drawings herewith submitted, and numbered 1 and $\stackrel{0}{0}$, represent Samuel F. B. Jorse's telegraphic instrument or register.

Any other instrument that has been or may be used in connection with metallic conductors is equally as well adjusted to my inrention, and may, for illustration, be represented in the place of the annesed drarrings.

In the annered drawings, $A^{\prime} A^{2} A^{3} A^{+}$rep. resent four copper plates buried in the ground, tro at each point or extremity of the wire Where telegraphic instruments or registers are to be used. Plates A^{\prime} and A^{+}are sererally connected by a metallic wire or condactor to one pole of a distinct galvanic batters; numbered A. A and a a. From the opposite pole of battery A A is a like couductor, that terminates in a point or button directly under the center of a metallic lever that is marked in Fig. 1 i. From a corresponding pole of battery a, a is a like conductor, that in like manuer terminates onder the center of a like lever that is numbered in Fig. $2 k$. The extreme right end of each lever, as representel, rests upon the point or terminatiou of a metallic conductor that is marked m, and which in its extent forms the helis of the magnet in each instrument, and thence passes to and adjoins the copper plate A^{2} in Fig. 1, and A^{3} in Fig. 2 . τ In the abore position of said lerers there is yo contact of either with the metallic point described as beneath its center. Each lever rests upon a fulcrum between such center, and Its extreme right end, before described. When
the extreme left end of either lever is pressed down by the fuger it is bronglt in contact with said central point beneath; but thereupon its extreme right end is lifted from a contact with the metallic point before lescribed, and upou trich its right extremity was before resting in contact. From near the center of each lever, on the under side, proceeds a metallic wire or conductor, the mhole distance through which telegraphic commonication is to be male, and connecting the two levers together. Said conluctor is marked h.

With each lever at rest in the position represented bey said tignres it will be perceivel that there is not from either battery, $1 \perp$ or a a, a continuous metallic conductor, wihich, in conjunction rith the earth, so connects the two poles as to produce the action of a galranic current, aul conserquently both biatieries are at rest or out of action. Thas tracing from plate A^{\prime} along the metallic conductor B through the battery A A, and thence along the before-described conductor that preceeds from the opposite pole, and there is a termination of the metallic conductor in the point beneath the center of the lever j. So tracing from plate A^{+}in like manner along its metal. lic conductor to the batters $a a$, and from the opposite pole along the adjunctive wire or conductor, and it terminates in the point beneath the center of lever k; but press the last-named lever dorn to a contact with the last described point beneath its center and the metallic conductor is made continuous from plate A^{+} through battery a a and said point and lever k, and along the maiu couductor h and along lever i, in Fig. 1, and the point with which the right extremity of that lever is in contact, and along the rire or conductor m that forms the helix of the magnet of the instrument, Fig. 1 , and thence by the conductor extending from said magnet to plate A^{2} in the ground. The continuons metallic line thus formed by pressing the lerer k in contact with the central point beneath it puts the battery $a a$ in instant action, and the galvanic current generated works the instrument at the distant point represented br Fig. 1. As soon as said lerer k ceases to be pressed into such contact the continuity of such line is destroged, aud the action of the battery is thereby instantly sus.

ORIGINAL MACHINE WHICH AT baltimore received the messace
" WHAT HATH GOD WROUGHT?" SENT FROM WASHINCTON, MAY 24. 1844

United States Patent Office.

WILLIAM E. DAVIS, OF JERSEY CITY, NEW JERSEY.
IMPROVEMENT IN ELECTRO-MAGNETS FOR TELEGRAPHY.

Specification furming part of Letters Patent No. 133,368, dated December 17, 1872.

To all chom it may concern:
Be it known that I, Wimliay E. Davis, of Jersey City, in the county of Hudson and state of New Jerser, hare inrented a new and Improved Telegraphic Instrument, of which the following is a specification:

Figure 1 is a side eleration, and Fig. 2 is a top viet, of ny improred telegraphic instrament.

Similar letters of reference indicate corresponding parts.

This inveution relates to a combination of one electro-magnetic coil and its magnets with tiro or more armature-levers which are simultaneously affected br the currents through the coil, thus utilizing the same electro-magnet for operating a suitable number of instruments at once.
In carrying the invention into effect I shape the magnets A and B at the ends of the coil C like crosses (see Fig. ${ }^{-2}$) or otherwise to obtain the desired extent and position of contact sarfaces $a b d e$ for the armatures $D D^{2}$ $\mathrm{D}^{3} \mathrm{D}^{4}$, Sc., which are shown by dotted lines in Fig. 2. When a current is passed through
the coil C and magnetizes the plates $A B$ the armatures mill all be attracted at once, and all will be repelled or withdrawn at the same time, if the current is arrested. By this means a suitable number of messages can be sent by one operation through several diverging lines, and nore power will be derived from the same electro-magnet than could be done where but one armature was acted upon by the same coil.

TLis in rention can be used in suitable posi-tion-vertical, horizontal, or otherwise-and with a continuous or dirided coil.

Haring thus described my invention, I claim as new and desire to secure by Letters Pat-ent-

The combination of an electro-magnet with two or more armatures which are simultaneously attracted by the same plates $A B$, as
set forth.

WIILIAME. DATIS.
Wituesses:
C. SEDGWICK,
T. B. Mosher. set forth.

United States Patent Office.

To all uhom it may concern:
Be it known that I, J. E. Smitr, of Poughkeepsie, in the county of Dutchess and State of Sew York, have inreuted a uew and useful Improrement in Electro- Magnetic Telegraphs; and I do hereby declare that the following is a full, clear, and esact description of the same, reference being had to the accompanying irawings, forming part of this speciticatiou, in which-
Figure 1 is a plan of the local circuit of a telegraph-line, illastratiug the application of my inrention. Fig. "s is a vertical section of the principal portion of the supplemental couductor, which constitutes the essential feature of ms iurention.
Similar letters of reference indicate correspouding parts in both figures.
This iuvention relates to all electro-magnetic telegraphs in which a local circnit is used. Its object is to prerent the magneto-electric current induced in the local circoit from darting through the air between the relay-points and thereby disrupting the metal from the siad points and transferring particles of it from one point to the other, and thas, by forming a Hexible conductor between the said points, keeping the local circuit closed after the main circuit has been opened.
The invention consists in the application to the local circuit of a supplementary conductor composed wholly or in part of some substance of feeble conducting power, as mater, through which but a rery small portion of the localbattery current will pass when the local circuit is closed, but throngh which the induced masneto-electric current will pass, rather than dart through the air between the relay-points, when the said circuit is open, said eonductor tonching the local circuit in two places, oue of which may be any where between oue of the opening and closing points of the relay and the register or sounder magnet, and the other between the other of the said points and the other side of the said magnet. By the ase of this conductor it less morement of the armature of the relay-magnet may be made eftiective, the armature may be brought closer to the poles of the magnet, and a finer adjustinent of the armature, and a weaker armature-spring may be used, and the line may be made to work with a weaker main battery ur better with a main battery of a given strength.
To enable others skilled in the art to make
and use my inveution, I will proceed to describe it with reference to the drawings.

Fig. 1 represents the several parts of the local circuit arranged not so much with a rien to practical courenience as to explain the application of ms in rention.

The arrangement of the parts is immaterial, so far as my invention is considered, and may be the same as is commonly adopted in tele-graph-offices, or ans other that is conrenient.
A is the relar-maguet: B, its armature; a and b, the opening and closing points of the circuit; c, the armature-spring; D, the resister; E, the local battery; aud al, the ordinary conducting-rires of the local circuit.

Fef is the supplementary couductor, which constitutes myinreutiou, consisting of a bottle of water, F, and two separate wires, eand f, passing through the cork and entering the water. These wires eand f are connected with the conductor d at the point 3 between the relay-point a and one side of the register-magnet, and at the point 4 between the relay-point b and the other side of the register-wagnet. Tbis conductor may be made more or less teeble by separating more or less the ends of the wires $e f$, which are in the water. When the main circuit is open aud the armature L is held back by the spring c, keeping the points ab separated, the induced wagneto-electric current in the local circuit takes the direction of the red arrows shomin Fig. 1 throush the couductor F ef f, and when the local circuit is chosed in the points a b by the attraction of the armature B , produced be the closing of the main circuit, the local circuit is formed, as asual, be the couductor 1, as indicated by the black arrorss in Fig. 1, a quite inconsiderable portion of the local-battery current passing through the couductor F e f :

I do not contine meself in carrsing out my invention to the use tor the purpose specitied of a conductor composed in part of water, as described, as ans other poor conducting substance may be substituted for water: but

I claim as my inrention and desire to secure by Letters Patent-

A supplementary conductor applied to the local circuit, to operate substantially as and for the purpose herein specified.
J. E. SMITH.

Witnesses:
F. H. Lawrence,

Hespy A. Reed.

x

hoses g. Farmer, of Salem, Massachosetts.

IMPROVED METHOD OF SENDING AND RECEIVING MESSAGES SIMULTANEOUSLY OVER THE SAME TELEGRAPHIC WIRE.

Specification forming part of Letters Patent No. 21,329, dated Aggast 31, 1 êze.

To all rhom it may concern:
Be it known that I, Moses G. Farmer, of Salem, in the county of Essex and State of Massacinusetts, have inrented an Improred Relar-Magnet and Key for Magnetic Telegrapiss of rhich the following is a full, clear, and esact description, reference being had to the accompanying drawings, making part of this specitication, in which-

- Fligure 1 is a plan of my instrameut; Fig. 2, an elevation of the same. seen from the point A of Fig. 1; Fig. 3, a section upou the line B B of Fig. 1, looking in the direction of the arror. Fig. 4 represents tro instruments in morkiug oriler at opposite euds of a line; Figs. 5. 6 , and \bar{i}, diagrams that will be referren to bereinafter.
receire messages simultaneously over the same wire and upon one instrument; and this I accomplish by the emplosment of an accessory magnet and an accessory batters to each instrument, in combination with the main batteries aud main magnets, and with a means of reversing the direction of the current of each of the main batteries, as mill be hereinafter more particularly described. My apparatus consists, essentialls, of tro parts-the key or transmitting apparatus and the relay or rerersing apparatus. The transmitting apparatos will tirst be described.
Therkes C (seen in plan in Figs. 1 aud 4 and in eleration in Fig. 3) is piroted at a to standards D, and is regulated in position horizoutally by screms b and c. It is raised from its auril E be the spring d, its motion in this direction being regulated by the adjusting scrers and nuts F. At its rear end the key carries three plation points, $e e^{\prime} e^{z}$, (seen dotted in Fig. 1,) beneath the springs H H^{\prime} H2. One of these points is seen in eleration at e, Fig. 3 , their distance from the spriugs being adjusted bs thamb-screms f. The center point, c^{\prime}, is in communication rith the key C . The ontside points, $e e^{2}$, are insulated. The key and the other details of the instrument are insulated by the mooden foundation G, except so far as thes are comuected with the batteries and with each other by wires, as will be hereinafter more fully described.
$\mathrm{H} \mathrm{H} \mathrm{H}^{2}$ are contact-springs which rest
upon the anrils $s s^{\prime} s^{2}$, Fig. 3, the height of which is adjusted by screws g. The outside contact-springs are for the purpose of reversing the poles of the main batters or the direction of the main carrents. The middle spring, H^{\prime}, is for the purpose of opening or closing what I term the "accessory circuit." The key and the springs are so adjosted as to close one circuit or make one contact precisely at or before the time of breaking or opening another circuit or contact, and this is effected by so adjusting the springs with referevce to the bey that when the key is depressed it shall make contact with the spriugs at the very moment of beginning to lift them from their stops or anvils.

The relay-wagnet is seen in plan in Figs. 1 and 4, and in eleration in Fig. 2.
I is the main magnet; K, the accessory wagDet. The tiro are precisely similar, and each consists of a spool of fine insulated wire, inside of which are the cores or magnets, which cousist of a round bar of iron armed at each end with a rectangular bar of soft iron, $m m^{\prime}$, Which mas be called the "armatures." The face of the onter end of each armature is inclined at an angle of nearly forty-five degrees, as seen in Fig. 2 , and the two are so arranged that when in contact they seem to form rectaugular bars across the poles of the magnets. The armatures m of the main ungnet are statiouary; but the armatures m^{\prime} of the accessors magnet, together with its arm L, are allowed to ribrate a short distauce under circumstances Which will be presently explained. The armatures $m m^{\prime}$ are separated from each other and the arm L drawn down by the spring i. When so drawn down the arm rests upon the platina point n, Fig. 2, and the local circuit is closed, the register (not shown upon the drawings) being thereby thrown into actiou. When the armature m^{\prime} is drawn doirn upon m the $\operatorname{arm} \mathrm{L}$ is carried up against the ivory point l, the points n and l being adjusted by the screws 0 and p, and the armatures m^{\prime} and $\operatorname{arm} L$ pivoting with the bar h^{\prime} upon the centers k.

From the abore description it is erident that when from ans cause the armatores $m m^{\prime}$ are attracted to each otber the arm L will be raised and the register of that iustrument will be thromn out of action; and when from any cause

the armatures are separated, as in Fig. 2, the arm L falls and the register is brought into actiou. If eitber one of the magnets be charged, or if they are both charged so that their armatares $\boldsymbol{m} \boldsymbol{m}^{\prime}$ indicate opposite polarities, the armatures are drawn together; but when both magnets are charged so that their armatures possess similar polarities, then the armatures repel each other and the register is set in action. The magnet I is included in the main telegraphic circuit aud the accessory magnet in the circuit of the accessory battery, as will now be more fally explained.

When the instrument is not iu operation, as in Fig. 5, the main circuit is closed, the positive current passing by the wire q to the screar$\operatorname{cap} \mathrm{M}$; thence by the wire r to the spring H; thence to its anvil s, and by the wire t to the screw.cup N ; thence by wire u to screw-cup 0 , from which, by the wire r, it passes to the wain magnet I; thence by wire $i c$ to screw$\operatorname{cap} P$ and ground-plate Z. From the corresponding ground-plate at the other station it passes through this machine in a direction the reverse of that just traced aud enters the main battery at the negative pole. From the positive end of this battery it passes by the wire j to the screw.cup Q; thence to the spring H^{2} and to its ancil s^{2}; thence by the scremcup R over the line-wire C^{2} to the instrument at the first station, which it re-enters by its screw-cnp R, and by way of the spring H^{2} and $\operatorname{cap} Q$ enters the negative pole of the main battery. The main magnets of both instruments are thus charged, and each register is held out of action by the eleration of the arm L. When the instruments are thas at rest the circnit of the accessory battery Y is broken, proceeding on the one haud by the wire x and screw-cap S to the hey C , and on the other by the wire y, screw-cup T, tbrough the magnet K ; thence by screw-caps C and ∇ to the con-tact-spring H^{\prime}. Here the circuit is broken, the spring H^{\prime} not being in contact with the key C , and consequently the magnet K remains uncharged and idactive.. Thus far the currents of the two main batteries have acted in anison, their poles being reversed with respect to their machines.

It now remains to be seen what will be the consequence of a depression of the key of either one of the instruments. Whenerer the key is thus depressed, as in Fig. 6, the contact of the springs is changed from their anvils to the points $e e^{e} e^{2}$ in the irory bar W apon the end of the kes. The carrent of the main battery of this instrument over the line-wire C^{2} is now reversed, as will be seen by tracing out the connections. Starting from the positive end of the battery X , it proceeds by cap M, spring H, point e, and wire a^{2} to anvil 8^{2}; thence through screw-cup R over the line-wire in a direction contrary to that which it took before the key was depressed. Entering the other instrument, it proceeds through the course already marted out for this current, bat in a reversed direction, and re-enters the first instra.
ment by its groand-plate Z; thence by the maguet I and screw-caps O and X to anvil s; thence by wire b^{2} to the insulated point e^{2} on the bar W; thence by spring H^{2} and screm$\operatorname{cap} Q$ to the negative pole of the battery. No change haring taken place in the direction of the current from the main battery of the other instrument, the two carrentsoppose each other, and their effect upon the main magnets of each instrument is neutralized, and these magnets are consequently both thrown out of action. Other and differing effects are also produced upon the two instruments. At that station where the key is not depressed, the main magnet ceasing to act, the armatures $m m^{\prime}$ are no longer attracted to each other, and the arm L drops, thus setting the register of this machine in action, as before explained, and this instrument receives the message sent. The main magnet of the transmitting - instrument is equally thrown out of action by the depression of its key; and it remaius to show in what manner its registering apparatus is kept quiet while the one at the other end of the live is in action. As the key is depressed the point e^{\prime} is bronght in contact with the spring H^{\prime}, by which the circait of the accessory battery is closed and the magnet K within this circuit is charged. By this means the armature m^{\prime} is magnetized and is attracted toward the armature m, by which means the arm L is retained elerated, and the register of this iustrument is not called into action on the depression of its key. The same state of things, howerer, does not exist apon the other instrument, as its accessory battery is not brought into actiou upon its magnet K .

It now remains to be seen what will be the result of a simultaneous depression of the keys apon both instruments, as in Fig. 7. By the depression of the first kes the currents of the main batteries were caused to more in opposite directions and neatralize each other and the accessory battery and accessory magnet of the first instrument were brought into action, whereby the register of this instrument is still kept from acting. If, now, the key of the other instrament be depressed, the direction of the current of the main battery of this instrument is also rerersed, and the united carrents from the main batteries of the two instruments will proceed together in a direction contrary to that which they took before either key was depressed.
It should be mentioned here that the strength of each accessory battery is such that its effect apon its magnet K shall be equal, or rery nearly so, to the effect produced upon the magnet I by the united currents of the two main batteries. The accessory batteries are so arranged with respect to their magnets K that the armatures m^{\prime} shall indicate similar polarities with the armatares m of the magnets I when the carrents of the tro main batteries are reversed by the depression of the keys of both instraments. A similar state of things now exists on each instrament. The armatares
$m \quad n^{\prime}$, being similarly magnetized, repel each other, the lerers L drop, and both registers are brought into action, and thus a message may be simultaneously sent and receired orer a single wire by means of the instruments described.
Figs. $\mathbf{j}, \mathbf{6}$, and $\overline{7}$ are diagrams which illus. trate the course of the carrents when the instruments are at rest or in operation. The right-Land portion of each of these diagrams, which may denote the instrument in Boston, corresponds to the left-hand instrument in Fig. 4 , and the left-hand portion of the diagrams. Thich may denote the instrument in New York, corresponds to the right-lhand in Fig. 4. In Fig. 5 neither instrunent is writing. The curreut from the positive end of the Dew York battery passes by the spring \mathbf{H}^{2} and line-wire C^{2} to the instrnment in Boston, aull by the spring H^{2} of this instrament to the ucgatire end of its battery. Learing the positive end of this batterr, it passes by the spring II tw the wagnet I; thence to the ground-plate Z. aud by the grouud to the corresponding plate of the jem Iork instrament; thence by the spring H to the negative end of the battery from which it tirst started. In Fig. 6 the New York Les C is depressed, and the current from its battery then takes the following course: Starting from the positire end, as before, it passes by spring H^{2} to the bey C ; thence by the rire ψ° of Fig. 4 and the anvil of spring H to the mag. net I, the ausiliary magnet K of this iustrument being brought into operation, as before explained, to hold the lever L up froun its anvil. From the magnet I and ground-plate it passes to the instrumeut at Boston, and from its mag. net It passes by spring H to the positire end of this battery; thence from the negative end of this battery, by the spring H^{2} and line-wire C^{\prime}, back to the Nem Yoris instrament, entering by the auvil of the spring H^{2}; thence by the ber C and spring π back to the negatire end
of the battery. The two carrents, moving in opposite directions, neatralize each other, as before explained, and the arm L of the Boston instrument sets the register-battery of this instrument in operation. In Fig. 7 the keys of both the New York and Boston instraments are represented as depressed, the currents of both batteries taling the following course: Starting from the positive end of the Yew York batters, the current passes by spring H^{2}, Ley C , and anvil of spring H to magnet I; thence by ground-plate to Boston, entering the maguet I; thence by anril of H , kes C , and spring H^{2} to the negative end of the battery; thence from the positive end of this battery to spring H, key C , and wire to the anvil of H^{2}; thence by maiu-line wire C^{2} back to New York, and by the anvil of H^{2} and wire to kes C, and by spring H and wire back to the negative end of the battery.
It is evideut that a branch of the main battery may be used as a sabstitute for an independent accessory battery without departing from the principle of $m y$ invention.
Thus far I have spoken of the employment of galranic batteries as a means of generating the electric carrent. Any other suitable means of generating this current may be employed; but this forms no part of my present invention and need not be further discnssed.
What I claim as mrinsentign and desivath secture by Letters Patent, is
The employment of an accessory magnet and an accessory battery to each instrument, in combination with the main batteries and main magnets, and with a means of reversing the direction of the current of each of the main batteries, in the wanner substantially as herein set fortb.

MOSES G. FARMER.
Wituesses:
SAM. COOPER,
Thos. R. Roach.

$4 \mathbb{Z}$

 States Patent Office．

 States Patent Office． c．BARNEY，OF WASHINGTON，ASSIGNOR TO FRANKLIN STEELE， OF GEORGETOWN，DISTRICT OF COLUMBIA．

IMPROVEMENT IN TELEGRAPHY．

Specification forming part of Letters Patent No．123，441，dated February 6， 1872.
 ghot of Tele raphy，invented by Willuas c．放位mis，of Washington city，in the District （2）Columbia．
2nthe intention will first be fully described gend then clearly pointed out in the claims．
嶨㱛igure 1 represents an electro－chemical tel－ ＊egrajli，that marks the message by passing the Thalranic current through chemically－prepared xpaper and dissolving the coupound employed然hereou．Fig． 2 is a view of the Morse tele－敂要这h，sufficiently changed to operate in con－ 8 Sectiou with my invention．Fig． 3 is a riew of Whac modification which，by convecting the pos－掏tire pole direetly with the ground，enables the Stonim current to be employed before the elec－ Hatrofuid has made a transit of the wire．
UELA rypresents battery；α ．wire that leads from suegative pole thereof into the earth；and a^{\prime} ，弱隹e wine that leads to the transmitter．B is繁能保 transmitter．C represents the live of con－ 6aditing－wire between any trio points，as New 27of and Washingtou．D is the receiver to薮 hich said line of wire reaches，and d the wire 5hhich leads from it into the ground．E is the ground－line，which makes the circuit complete．
 Pruperty which not ouly belongs to all bod－ Kazin a greater or less degree，but it was also多 Whadr which possessed this property to such嗢 cegree that a perfect circuit could readily be Gumen by including it as one of the interme－ diate conducting bodies．Up to the present gutae，however，the ouly practical use to which ghis discovery has been applied is that same sore not only fireshadowed，but fully described，

 keppreciated the great inconrenience and loss
tor time in repeating messages to verify their Wumectucss．As now performed，the wire must CTonusconted at thed with the battery at one end and ghavor，and aractither．After much thought， Stered that practical experiment，I hare discor－隹家 to overcome this current may be utilized so
筙qlu drawing it rill of time and money． Whiterposed an it rill be observed that \dot{I} hare

the negative pole of the battery and the ground plate c ．
The mode of operatiou in an electro－chenical telegraph，which I have repeatedly reritied，is as follows：The current of electricity，passing from the positive pole of battery through wire a^{\prime} to transmitter B，performs its function in this manipulator．It then passes orer the wire C to receiver D and marks the nessage．It theu nores across the ground－line E ，through wire a ，to the receiver F ，and repeats the mes－ sage．The message is thus repeated and reri－ fied at the initial point from which it started， and by the same current or messenger which delivered it at its ultimate destination．I will now show how it may be applied to the Morse system of telegraphing．

In Fig．2，G represents the Morse hand－lerer for breaking or completing the circuit．g is a bar of iron，which is placed between two elec－ tro－magnets，H H^{\prime} ．At the other end is placed the platinum point y^{1} ，which connects with and leads to the wire－line C ．At the end of wire－ line is a maguet，J ，which operates lerer G^{\prime} ． The carrent passes from positive pole a^{\prime} through manipulator B ，and maguet H drams the end g of lever ap and connects end g^{1} with plati－ num point g^{2} and wire－line C ．The current now passes to maguet J ，operates lever G^{\prime} ，and leares the message at receiver D ．Thence it passes throngh wire d into the ground，across to wire e ；then to the magnet H^{\prime} ，which oper－ ates lerer G aud causes it to repeat message at F ．
It will be observed that in these two figures of the drawing there is a manipulator at each end，as rell as a receiver．The manipulator which is placed at the end where it is intended to receive message，（or the appropriate signal，） is closed down to complete the circuit，while the other is placed at liberty to enable oper－ ator to close aud break it intermittently．Thus a message is repeated at the same end of line from rhence seut，or another brought fiom the other eud by the same battery and by the same receiver F ，arranged as las been specified．
In Fig． 3 it will be seen that the positive electricity，after going through the manipulat－ or B ，passes directly from wire a^{\prime} into the ground at e^{\prime} ；thence across to d^{\prime} ，up wire d to
\square

4 Sheets--Sheet 3.
M. G. FARMER.

Duplex Telegraph Apparatus.
No. 160,581.

WITNESSES.
INVENTOR.
Ghardos Arwell
Howestanne
Seo At. Stowele

MOSES G. FARMER, OF SALEM, MASSAC日C゙SETTS.

IMPROVEMENT IN DUPLEX-TELEGRAPH APPARATUE.

Specification forming part of Let:e:s Patent No. 160.581, dat. d March 9, 1-7is; applicativn filed September $\mathrm{i} 0,17 \mathrm{~F}: 2$.

To all ıchom it may concern:
Be it known that I, Moses G. Farner, of Salem, in the county of Essex and Commonwealth of Massachusetts, have invented certain Improvements in Telegraphic Instruments for Double Transmission, of which the following is a specitication:

In attempting to send two messages simultaneously over the same long telegraphic wire in opposite directions, by means of a divided corrent-one part passing throngh a coil in the wain circuit aud the other part passing through an accessory or equating coil or cir-cuit-the phenomenon of charge makes its appearance, and the tro coils upon the relary, which rould completels neutralize each other's influence upon the arinature in a short line. do not seem to do so on a long line, for the tirst rush of current throngin that coil or portion of the relay which is in the main circuit for an instant orerpowers the action of that portion which Hows through the equatingcoil and rheostat, and canses a sudden and momentary jump of the armature. The reason of this action is this: A long line of telegraph is ass a Leyden jar, the nire being the immer coating and the earth beneath the wire acting like the outer coating. Such a line has a detinite static or charere capacity, depending upon its diameter, its leugth, and its height from the ground. If it be insulated and buried in the ground or sea, its charge-capacity is still greater, and this momentary rusin so much the greater. Atter this tirst rush is orer the two currents or branches of the current nentralize each other's action upon the armature, if the rheostat has been properly adjusted. This sudden notion of the armature may be hindered in two principal ways: First, by attaching a condenser, or Leyden jar, to the equating coil or circuit, which condeuser shall hare a charge-capacity approsimately equal to that of the main line. This has been alrealy accomplished on land-lines. Second, by inserting the secondary wire of a common induction-cuil into the main circuit, and so adjusting the time and mode of interrupting the primary circuit that, at the instant when the main-battery current is applied to the line, a sudden stroke shall be induced in this secondary coil by the opening of its primary, and the direction of
this secondary stroke shall be opposed to the direction of the battery-current in the wain line, and shall be equalls porerful, and simultaneous with the suddeur rush due to the charirecapacity of the line, and shall subside at tho same time. Another war is to put this iuduc-tion-coil into the equatiug-circuit and canse the direction of the instantineous stroke to be coincident \boldsymbol{w} ith the direction of the current in the equating wire or coil, thas momentarily adding to the strengrth of the equating-curreat. It is evident that induction-coils may be inserted both into the main and into the equating circuits, and both induction-strokes be cansed by the interruption ot a single primary circuit. which embraces both of the prinary coils; only this must be attended to-that the induc-tion-stroke in the main circuit numst tend to hinder the development of the battery-carrent in the coil which is in the main line, and the inductiou-stroke in the accessory or equating circuit or coil mast tend to help the development of current in that brauch. Since an in-duction-stroke is developed in the secondary wire of a double helix, upon closing as well as upon opening the primitry circnit, it is best to insert these secondary coils into such portions of the main or equating circuits as are open when the primary wire of the induc-tion-coils is closed. For this purpose it is r ell to make use of either the three-point ker described and tigured at Fig. 1 of my Patent No. $21,3: 9$, of Augnst 31, ls.js, or else of the twopoint ker tigured in my L'atent No. S1,45.j. of August $\overline{2.5}, 186 S$.

Io work this ine invention I make use of a rem? arteostat; onc or more miluction-coils, and a transmitter.

Fig. 4 shows the complete three-point trans. mitting-key with three secondary levers, the induction-coils, a portion of the rheostat, and a portion of the relay.
Fig. 3 shors a side elevation of the transmitter and the induction coils.

Fig. 2 shows an eud view of the transmit-ting-key, the induction-coils, and the relay.
Fig. 1 shows a gromed plan of the trausimit. ting-key with one of the secondars levers omitted. It shorss also the induction-coils, the relar, and the rheostat.

The relay is like those in common use, ex.
cept that there are tro independent wires coiled on each of the cores of the electro-magnet. One of these wires is to be included in the circuit of the main line. The othar wire is to be included in the accessory or equating circuit. These tro wires may be coiled simultaneously into one coil, or one wire may be coiled onto the core first, and then the other outside of it; or, thirdlr, one rire may be made into a coil by itself, not occunying the Whole length of the core, while the other wire is made into another coil, occupsing the remainder of the core. This Jarter method I do not consideras good as either of the tro others. Each leg of the magnet is provided with a similar double coil.

I make use of a transmitting key or device which differs from those in common use for single transmission in this particular respectthat it provides for preserring the continuity of the main circuit. It is also provided rith means for opening and closing the accessory or equating circuit, and likewise opens and closes the primary circuit of the inductioncoils T W.

Tiro methods of operating the primary circnit of the induction-coils are shown, one of them in Fig. 1, the other in Fig. 4. In Figs. 1 and 4, the transmitting key or lever $c x$ is represented as operated by an electro-magnet, λ, and its armature x. This is for the purpose of repeating from one circuit to another. The lever to x might be operated directls bs the finger when situated at a terminal station; but it is more convenient, and less rearisome to operate it by the interrention of an independent circuit, into rbich it is included by the screr-cups E and F.
I use, also, a rheostat, to aljust the strength of the equating current, so that its magnetizing effect on the cores of M shall be equal to and nentralize the wagnetizing effect of the mainline current throngh the other coil or wire 32 $3:$ of the relay M. Also, a rheostat may be used to modify the antion of the primary circuit of the induction-coils.
The key $u x$ operates the main-line circuit through the intervention of an ausiliary lerer, 18 , pivoted at k, as seen in Figs. 1 and 2. The outer end 1 of this lerer is limited in its upward motion by the adjustable screw 21 in tiue post 2. Its inner end 8 receires a dorrnward tendency by the spring 10 , as seen in Fig. 2. The end v of the lever $x x$ is situated underneath the inner euds of the levers 18,53 , and 10 11, seen in Fig. 4, and also underneath the inner ends of the short lerers 18 and 3 5. (Seeu in Fig. 1.) This end v of the lever $0 x$ is provided with three insulated pieces of platinum, 6,7 , and 9 , in Fig. 4, and with two pieces, 6 and 7 , in Fig. 1. These pieces of platinum on the upper side of the end of the lever $\boldsymbol{c} \boldsymbol{x}$ serve to make contact with similar pieces on the under side of the inner ends of the levers $18,3 \mathrm{i}$, and 1011. The lever 3 j , pivoted at l, is used to open and close the accessory circuit at $\overline{5} 6$ in Figs. 1
and 4. By proper adjustment of the screirs $\because 0$ and 21 the closing of the accessory or equating circuit at 56 can be made sinultaneous with the closing of the battery onto the naiu circuit at 78 , and this act is simultaneous with, or precedes, the remoring of the main circuit from its ground-conuection at 121.

I rill nars proceed to describe-themode of counecting up the inductioncons-and 4 , and inserting them into their proper circuits. They are constructed substantially as induc-tion-coils ordinatily are, having a bundle of soft-iron wires, which can be thrust into them to a greater or less distance, according to the strength of the induction-stroke required. The secondary wire of W is inserted into the main circuit; the secondary wire of T into the equating circuit, as follows: The outer end of the secoudary wire of W at t is connected by wire 37 to screw-cup H, rhich cup) receires one pole (say, the positive or copper pole) of the main battery, the other or zinc pole being to earth. The inuer end of this secondars wire s is connected bs wire 1% to the platinum piece 7 on the eud v of the lerer $u x$.

The outer end h of the secondary wire of the coil T is connected by wire 16 to the platinum piece σ on the leser ic x, mhile the imner end m of this secondary wire is connected br mire $\because \because$ to the screw-cup G, and this, bs wire 93, to screw cup) C on the relay. This cup C is one terminal of the equating coil or circuit of the relas, the cup D being the other terminal.

The primary circuits of the coils T and $I T$ are conuected in Fig. 4 as follows: The asis b of the secondary lever 1011 is connected by wire 39 to the outer end n of the primary or coarse wire of the helis T. The inner end p of this primary wire is connected by mire 40 to the outer end q of the primary of W, and the inner end r of this primary is connected bs wire 41 to the scren-cup 5 . This wire 41, at u, makes a junction by the wire $4 \pm$ to the platinum piece 9 on the end of the lever ic x. The post or cock 12 is connected bs wire $4:-$ to the screrrcup U. The cups \mathbb{U} and I receire the poles of the primary batterr, which operates the iuduction-coils ir and if simaltaneously. The circuit is broken and closed by the motion of the ausiliary lerer 1011 , be$t w e e n$ the point 11 and the screw 43 .

The use of the wire 44 is to prolong the duration of the secondary currents in T and W, as more fully shown in me patent of May 14, 1s72. It is not always necessary to make use of this device, nor alimass needful to bare the ansiliary lever 1011 , and the primary: battery at \mathbb{U} and \boldsymbol{X}, so another method of operating these primary circuits is shown in Fig. 1, where the whole or a portion of the equating - battery is used to operate these primaries, wheu not used in the equating-circuit. Its connection and mode of action are wore fully shown in Fig. 1. Thus: the cup I is connected by wire 34 to the outer end n of the primary wire of T, the iuner end p is connect-

Abstract

ell by wire 40 to I as before, while r is connected by $3 \bar{j}$ to screw-cup \bar{F}, which receives one pole of the equating-battery. The cup I is counected by wire 46 to post 4 , so that the primary circuit of T Wis broken at 320 by the motion of the ausiliary lever $3 \mathbf{j}$. The asis l of the lerer 35 is connected by wire 33 to sererr-cup K, which receires the other pole of the equating-batters. The axis K of the lever 15 is connected by wire 26 to cup L , and this by wire $2 \bar{j}$ to cap B, one of the terminals of the main circuit of the relar. A is the other terminal of this main circuit, and receires the line-wire. The post 2 , carrying the scretr 21 , is connected by wire 36 to cup J, mhich receives the ground wire.

Supposing the equating-battery to be properly connecterl-sar, its positire pole to \bar{F} and its negative to K , while the positive of the wain battery is at H-there will be two ditferent paths open for the main circuit. accorning as the armature x be up or down. The course of the currents and the action of the apparatus will be as follows in Fig. 1: The circuit of the main battery will be interrupted at $\mathbf{3} 9$. (if the armature x be up,) the equatingcircuit will be interrupted at 56 , but the primary circuit of T Will be closed at $3 \geq 0$. If, $n o \pi$, the armature x be depressed, the end ic of the lever $x x$ will lift the anxiliary levers 3 j and 18 , closing the main circuit at 87 . the equating-circuit at $\overline{5} 6$, and braking the primars circuit at 320 . The main-bittery current, starting from H, will tow by wire 3 \% into the secondary coil of W at t, pass out at s, and by wire 17 to platinum-piece 7 , thence to the end s of lever 1 s , thence from k by wire 36 to L , and by $\mathbf{\Omega} \overline{0}$ to B , where it enters the main-circuit wire of the relay Mr. It emerges at A, and enters the main line and proceerls to the other station, where it enters a similar instrument, as at A. The course of the effuating-current in Fig. 1 will be as follors : The equating-circnit being closed at 5 6 , from the cup Y it proceeds by 46 to cup S of the rbeostat R. Leaving it at \dot{Q}, it passes b . wire 24 to cup D on the relas, and tors throngh the equating- π ire in such contrary direction as to neutralize the effect of the main current on the cores of M. It emerres at C , passes by ns to G, and br oin to m, where it enters the secondary coil of \dot{T}. Learing this at h, it gows to 6 , and thence to 5 , with which it is in contact ; passes thence by l and 33 to h , where it re-enters the equating-battery.
The primary circhit in Fig. 1 of T and W is brokeu at $3 \cong 0$ at the same time that the equat-ing-circuit is closed at 56 . So the equatinghattery at $\mathrm{K} \overline{\mathrm{F}}$ is coustautly employed either in charging the equating or the primary circuit, and care should be taken to properly proportion the resistance of the two circuits so as properls to accomplish the results desired, the manner of doing which is familiar to skilled electricians.
From the abore it will be seen that at the instant of depressing the armature x, a sudden
stroke is gremerated in the two secondaries of T and W, and if they are properly connected the stroke in \mathbf{T} will help the equating-circnit, and the stroke in W will hinder the main-battery current at the instant of closing. A rbeostat for modifying the action of the primary circuit mar be inserted into it, sar, in place of the rire $3 \dot{4}$ in Fig. 1, or $: 2$, Fig. . 2. The coils of these rheostats may have iron cores mithin them, so as to contribute to the strength of the induction-stroke.
The scheme shorn in Fig. \pm possesses some advantage over that in Fig. 1, since, by varying the adjustment of the screm 43 , the induc-tion-strokes of the coils T and W can at pleasure be made to precede or follow the closing of the main and equating circuits, while, by the plan in Fig. 1, the induction-strokes cannot be made to precede the closing of the equatingcircuit.

I will trace out the course of the primary current in Fig. 4. Commencing at U, passingr be wire $4:$ to the post $1:$, it gors by screw ± 3 to the end 11 of the lever 1011 ; thence trom anis r, by wire 39 , it enters the primary coil of T at n. Emerging at p, it passes by wire to to 2 , where it enters the primary of WF°. It emerges at r; passing by the junction u. amd wire 41, it arrives at the other pole x of the primary batters.

The nse and action of the wire 44 , in Fig. 4 , is as follows: The armature x being up, this primars circuit is closed at 1143 . If the armature x be depressed the contact 910 is malle before that at $11+3$ is broken.

The energy which is stored in the primaries $n p$ and $q r$, instead of appearing in the form of a spark at 1143 , will be expended in prolonging the time of the subsidence of the nangnetism in the cores of T and W, and, of course, will prolong the duration and modify the intensity of the induction-strokes of the secondarr coils of T and W. This will be of especial ase in lines that have large static capacitr, as, for instance, short cables or long landlines.

Hiving thas fully described the construc. tion of mrinrention and its mode of operation, I will show briefly, by Figs. 5 and 6, bor it may be applied to or cowbined with my inrentions patented August 31, 1858, and Norember $1 \overline{0}, 1550$. The lettering in these two fontres will correspond, so far as couvenient, with the lettering in those specifications.

In Fig. 5 , the springs or levers H^{3} and H^{4} are similar to $\mathrm{H}, \mathrm{H}^{1}$, and H^{2} in Letters P'atent No. $21,3 \div 9$. These tro levers serre to connect the primars battery P with the kes or transmitter C , and to afford the means of rerersing the direction of the current in the primary circnit of the indaction-coil W. There is a rheostat, K_{1}, in this primary circuit for the purpose of iucreasing or diminishing the streugth of the primary current. There is also a rheostat, R, in the equating-circuit, for the purpose of modiffing the strength of the equating.current. So induction coil is shown in
improvement in methods of sending and receiving messages simultaneously over the SAME TELEGRAPH-WIRE.
Specitication forming part of Letters Patent No. 21,329, dated Angast 31, 1858; extended seven years; reissue No. 6,296, dated February 16, 1875; application filed February 18, 1873.

To all whom it may concern:
Be it known that 1, Moses G. Faryier, of Salem, in the counts of Essex and Commonwealth of Massachusetts, hare inrented an Improved Apparatus for Transmitting Simultaneously Two Messages orer the same Telegraphic Wire, of which the following is a full, clear, and exact descmption, reference being had to the accompanging drawings, making part of this specitication.

In the cominon mode of working the Morse telegraph for single transmission it is customary to work what is callell a closed circuitthat is, a circuit having one or more batteries located at some one or more points in the cir-cuit-and the circuit is kept closed mhen not in use, so that the operator at ans station upon the line may have command of the current when he wishes to transmit a message. This act he performs by alternately opening and closing the circuit by raising and depressing his key, and mhile so doing every receiv-ing-instrument in the circuit, his own included, responds to the motion of his key; but, if two of the stations should attempt to send messages at the same time, confasion would ensue, for while one station had the main circuit open it would do no good (or, rather, make no signal on the line, if rell insulated) for any other station to manipulate his key. As soou, however, as the circuit is closed at all stations except the oue transmitting, immediately all the receiring-instruments begin to respond to the working of this single key.

Since the operation of transmitting is asually perforned by working the key ap and down-the circuit being usnally open when the key is up, and closed when it is domnif it be desired to trausmit messages simultineously, say, from the tro terminal stations, some means must be prorided at each of these terminal stations so that the act of raising the ker may not open the main circuit, jet such must be the effect of this operation that this act shall somehow-express itself at the other end of the line-that is, somehor affect the receiving-instrument at this distant sta-tion-and means must also be provided so that this act of raisiug or depressing the ker at this trainsmitting-station shall not cause
the receiring-instrument at this station to respond to the morements of this key.

I accomplish the desired result in this invention in the following mauner: By the use of two coiled wires upon the relay or receiv-ing-iustrument, one of which is in the main circuit, and the other in the eqnating or accessory circuit, as I term it, and by the use of an equating carrent in the equating coil, I an thas enabled to neutralize the effect of the main current on the relay, so that the rork-; ing of the key up and domn does not cause its associate relay to respond to its movements, as rill be hereafter more fally shomn.

In the ordiuary plan of single transmission the function of the key is simply to open and close the main circuit.
In this plan of double transmission the function of the key is to shift the course of the main circuit from one path to another without opening the main circuit at all. It also performs an additioual function, viz., that of opening and closing the accessory circuit. This accessory circuit may be operated by a separate and independent battery, or by a brauch of the main battery. In the drawings before us it is represented as operated by a separate accessory or equating battery.

The norelty of the inrention lies principally in the key or transmitting device. This instrument is constructed rery much as tele-graph-kess or circuit-closers ordinarily are, with the exception that it has one or more auxiliary key springs or levers, as represented by $H H^{1} H^{2}$ in the drawings.
Of the dramings, Sheet 1 shotrs, in Figure 1, an eleration of the relar, in Fig. 2 an elevation of the key. Sheet 2, Fig. 3, shors a plan vien of the relay and key, with their respective connections, at two terminal sta-tions-as, for instance, Now York and Boston. Sheet 3, at Fig. 4, shows a skeleton of the apparatus and connection at Boston and Nerr York, neither instrument being in the act of transmitting. Fig. 5 exhibits New Fork as transmittiug, and Boston as receiring, while Fig. 6 show's each station as both transmitting and receiving. Sheet 4, at Fig. 7, shows an enlarged plau vier of both relay and kes mith their mutual counections.

$$
\begin{aligned}
& \frac{14}{3} \\
& 9 \\
& \text {-9,996 } \\
& \text { I will first briefly describe the relar. It has } \\
& \text { two coils of wire, I and K, Fig. 1. The coil I } \\
& \text { is in the naiu circuit, the coil } K \text { in the acces- } \\
& 80 r y \text { circuit. Each coil has a central core of } \\
& \text { soft iron, terminated at each end with arms } \\
& \text { me } m^{1} \text { of the same material. The ends of the } \\
& \text { arms are sloped at } l^{\prime \prime \prime} \text {, so that when in contact } \\
& \text { the iron cores with their arns form, as it were, } \\
& \text { a parallelogram. The core of the coil I is sta- } \\
& \text { tionary; that of } \mathrm{K} \text { is capable of being rotated } \\
& \text { tbrough a small are around its axis. To the } \\
& \text { core of } \mathrm{K} \text { is attached a stirrup or joke, } 2394 \text {, } \\
& \text { carrying an arm or lever, L 40. A spring, } i \text {, } \\
& \text { tends to depress the end } 40 \text { of the lever against } \\
& \text { the platinum-point } n \text { of the screw } p \text {, while the } \\
& \text { attraction of the arms } n^{-1} m^{1} \text { for each other, } \\
& \text {-caused by a carrent of electricity in cither or } \\
& \text { both of the coils I K, would lift the end } 40 \text { of } \\
& \text { the lever } L \text { against the insulated point } l \text { of } \\
& \text { the screw } o \text {, of course stretching the spring } i \text {. } \\
& \text { There are screw-cnps P O UT } 2527 \text { on the } \\
& \text { relar-platform for the purpose of making con- } \\
& \text { veniently the proper connection with the tele- } \\
& \text { graphic circuit with the key and with the bat- } \\
& \text { teries. One end of the wire composing the } \\
& \text { coil I is counected by wire } v \text { to the screrrenp } \\
& O \text {, while the other end of the coiled wire is } \\
& \text { connected by } w^{\prime} \text { to cup } P \text {. This cup is con- } \\
& \text { nected by the ground-wire } g \text { to the ground- } \\
& \text { plate Z. (See Fig. 7.) Oue end of the wire } \\
& \text { of the coil } K \text { is conuected by } 31 \text { to cup } T \text {, } \\
& \text { While the other end is connected by } 32 \text { to cup } \\
& \mathrm{U} \text {. The core of } \mathrm{K} \text { is connected by } 30 \text { to cup) } \\
& 25 \text {, which receires the mire } 29 \text {, leading to the } \\
& \text { local or register circuit. The cock supporting } \\
& \text { the screws } o \text { and } p \text { is con ected by the wire } \\
& 26 \text { to the cup } 27 \text {, which reseires the wire } 98 \text {, } \\
& \text { also leading to the local battery of the regis- } \\
& \text { ter-circuit. The cup } T \text { is connected by wire } \\
& y \text { to one pole of the accessory battery Y. The } \\
& \text { cup } U \text { is conuecter }{ }^{\text {b }} \text { by wire } 35 \text { to cup } V \text { on } \\
& \text { the ker-platform. Likewise the cup O is con- } \\
& \text { nected by wire } u \text { to the cup } N \text { on the key: } \\
& \text { platform. } \\
& \text { The key (shown on an enlarged scale in } \\
& \text { Figs. } 2 \text { and 7) has a bent lever, } 0 \text {, like an } \\
& \text { ordinary telegraph-key. It has a thumb- } \\
& \text { piece, } T \mathrm{~T} \text {, an axis, } \mathrm{D}^{1} \text {, supported in a cock, } \\
& 1 \text {; also, a small spring, } d \text {, to press it up from } \\
& \text { the anvil } E \text { uutil the back screw } F \text { rests on } \\
& \text { the base of the key-frame. In addition to } \\
& \text { this ordinary lever } C \text { there are one or more } \\
& \text { (in this instrament three) anxiliary lerers, } \\
& \text { springs, or kejs, } \mathrm{H}_{\mathrm{H}}{ }^{1} \mathrm{H}^{2} \text {, supported at } 20 \\
& 212 \div \text {, and teuding normally to rest on screms, } \\
& \text { anvils, or supports } S S^{i} S^{2} \text {, unless when raised } \\
& \text { by the points } e e^{1} e^{2} \text { of screws } f \text {, which are in- } \\
& \text { serted into the ivory bar W, which is rigidly } \\
& \text { attached to the hinder end of the independ- } \\
& \text { ent key-lever C. The screw } f e^{2} \text { is in metallic } \\
& \text { connection with the key-leser } \mathrm{C} \text {, but the screms } \\
& f e \text { and } f e^{2} \text { are insulated therefrom by the bar } \\
& \text { W of ivors or other insulating material. The } \\
& \text { ker-platform } G \text { has on it the screm-cups } M \text {, } \\
& R, V, S^{3}, R \text {, and } Q \text {. The cup } M \text { is connected } \\
& \text { by the wire } q \text { with the pole } P^{1} \text { of the main } \\
& \text { buttery } X \text {, while its other pole } \mathrm{N}^{1} \text { is connected } \\
& \text { by tie wire } j \text { to the cup } Q \text {. The cup } M \text { is } \\
& \text { connected by the wire } r^{\prime} \text { to the end } 20 \text { of the } \\
& \text { anxiliary lever } H \text {. The } \operatorname{cap} Q \text { is connected } \\
& \text { by wire } r^{\prime \prime} \text { to the end } 29 \text { of the anxiliars lerer } \\
& \mathrm{H}^{2} \text {. The anvil } \mathrm{S}^{2} \text { is connected by the short } \\
& \text { wire } a^{2} \text { to the screw } f e \text {; also, bs wire 34, to the } \\
& \operatorname{cup} R \text {. The anvil } S \text { is connected by wire } b^{2} \\
& \text { to the screm } f e^{2} \text {; also, by wire } t \text {, to the cup N. } \\
& \text { The supporting-cock D of the key-lever } C \text { is } \\
& \text { connected by wire } 33 \text { to cup } S^{3} \text {, and this, bs } \\
& \text { wire } \mathrm{N} \text {, to the other terminal of the accessory } \\
& \text { battery } I \text {. The end } 21 \text { of the auxiliary lerer } \\
& \mathrm{H}^{\prime} \text { is connected hy wire } 41 \text { to the cup } \mathrm{V} \text {, while } \\
& \text { the anvil } S^{1} \text { is insulated. The cup } R \text { receires } \\
& \text { the main-line wire } C^{2} \text {. } \\
& \text { I have thns minntely described the con- } \\
& \text { struction of the instruments, as exhibited in } \\
& \text { Figs. 1, 2, and } 7 . \\
& \text { I do not limit myself to the particular con- } \\
& \text { struction of either the relay or kes as here de- } \\
& \text { scribed, but rould use any other known form } \\
& \text { of either, so long as ther should perform the } \\
& \text { same function in substantially the same man- } \\
& \text { ner. } \\
& \text { I will now describe their proper arrange- } \\
& \text { ment and counection with a line of telegraph, } \\
& \text { referring therefor to Sheet } 2 \text {, Fig. 3. In Fig. } \\
& 3 \text { the letters and figures on the New York in- } \\
& \text { strument are the same as those on the Bos- } \\
& \text { tou instrument, with the exception of haring } \\
& \text { a subscript mark thas }{ }_{1} \text {. } X_{1} \text { represents the } \\
& \text { main battery at New York, while } X \text { repre- } \\
& \text { sents the main batters at Boston; and there } \\
& \text { is this other difference that the poles of the } \\
& \text { main batters at New York are in a position } \\
& \text { the reverse of that at Boston. The scren: } \\
& \text { cups } R \text { aud } R_{1}{ }^{1} \text { on the key-platforms at Boston } \\
& \text { and Ner Iork serre to receive the ends of } \\
& \text { the main-line wire } \mathrm{C}^{2} \text {. } \\
& \text { I will next trace out the conrse of the main } \\
& \text { circuit. When the keys } \mathbf{C} \text { and } \mathbf{C}_{1} \text { are ap,' } \\
& \text { commencing at the ground-plate } Z_{1} \text { at New } \\
& \text { York, its course is as follows: By wire } g_{1} \text { to } \\
& \mathrm{P}_{1} \text {, vial wire } x_{1} \text {, coil } \mathrm{I}_{1} \text {, wire } x_{1} \text {, cup } \mathrm{O}_{1} \text {, wire } u_{1} \text {, to } \\
& \mathrm{N}_{1} \text { on ker-platform ; thence by } l_{1} \text { to anvil } \mathrm{E}_{1} \text {; } \\
& \text { via } H_{1}, \underline{2} 0_{1}, r_{1}, M_{1} \text {, and wire } q_{1} \text {, to the cup } \Sigma_{1}{ }^{1} \\
& \text { of the Neir York main batters } \mathbf{X}_{1} \text {. Emerging. } \\
& \text { from } P_{1}{ }_{1} \text { it passes by wire } j_{1} \text { to screw-cup } Q_{1} \text {; } \\
& \text { thence by wire } r_{1}^{\prime \prime} \text { to the ausiliary lever } H^{2} \text {; } \\
& \text { thence to } S_{1}{ }^{2} \text {, and by wire } 34_{1} \text { to the cup } K_{1} \text {, } \\
& \text { Where it enters the main line } \mathrm{C}^{2} \text {. Passing orer } \\
& \text { it to the Boston instrument it enters at } \mathbb{R}_{0} \text {. } \\
& \text { Passing by wire } 34 \text { to anvil } \mathrm{S}^{2} \text {, thence by } \mathrm{H}^{2} \text {, } \\
& 22, r^{\prime \prime}, Q, \text { and } j \text {, it enters the Boston main bat- } \\
& \text { tery at } N^{\prime} \text {. Emerging at } P^{\prime} \text {, it goes by } q \text { to } \\
& M \text {; thence by to } 20 \text {, along } H \text { to } S \text {; thence } \\
& \text { by mire } t \text { to } N \text {; thence by } u \text { to the relas at } O \text {. } \\
& \text { Here it enters the main-circuit coil } 1 \text { by the } \\
& \text { Wine } r \text {. It emerges by } a c \text {, goes to the cuj } P \text {, } \\
& \text { and thence by wire } g \text { to giound--jlate } Z \text {, com- } \\
& \text { pleting the circuit, viil the earth, to Ner Fork. } \\
& \text { It will be seen that the currents from both } \\
& \text { main batteries } X_{1} \text { and } \lambda \text { are in the same di- } \\
& \text { rection, and of course the electro-motive force } \\
& \text { active in the main circuit is that due to both } \\
& \text { the bitteries } \Sigma_{1} \text { and } \Sigma \text {, and is, therefore, equal } \\
& \text { to their stum. }
\end{aligned}
$$

It will be noticed, also, that the negative pole N_{1}^{\prime} of the New York battery is toward the earth, and the positive pole, P^{\prime} of the Boston battery is to earth. Hence the main-circuit coils I and I_{1} will be charged, and their cores magnetized, to an extent due to the strength of this maiu-circuit current, and to the uumber of turns of rire in each coil. Of course the arms $m m_{1}$ will become magnetized, attracting the arms $m^{\prime} m_{1}$, and tending to lift the levers L and L_{1} against the force of the springs i and i_{1}.
Suppose, now, the kes C_{1} at New York be depressell, as in Fig. 4, Sheet 3. The depressiou of the thumb-piece $T_{1} T_{1}$ will bring the surew-points $e_{1} e_{1}^{1} e_{1}^{2}$ against the ausiliary levers $\mathrm{H}_{1} \mathrm{H}_{1}{ }^{1}-\mathrm{H}_{1}{ }^{2}$ and lift them from their anvils $S_{1} S_{1}{ }^{1} S_{1}{ }^{2}$, closing the circuit of the auxiliary battery Y_{1} at $e_{1}{ }^{1} H_{1}{ }^{1}$, reversing the direction of the current from the main battery X_{1}, putting its positive pole $P_{1}{ }^{\prime}$ to earth, so that the current from the battery X_{1} will tend to neutralize that of the current from the main battery X; and if the two batteries be equal, and the line well iusulaterl, will do so completely, so that the cores of I_{1} and I rill becowe demagnetized: but, since the accessory baittery Y_{1} has its circuit closed at $e_{1}^{2} B_{2}^{1}$, the coil K_{1} will be charged, its core magnetizel, and its arms $m_{1}{ }^{\prime}$ will attract the arms m_{1}, and prevent the lever L_{l} from being drawn down by the spring i_{1}. Not so, horever, with the lever L, because the coil K is not chargen, the key C uot having been depressed. Hence the lever L will drop, and thus give a sign that C_{1} is depressed.
If, now, while C_{1} is depressed, we should also depress C , we should reverse the direction of the current from the main battery \mathbf{X}, and close the circuit of the accessory battery Y; and since, when the accessory circuit Y is closed, and the direction of the current from the main battery X resersed, the polarities m and m^{\prime} are similar, of course L will drop, closing the local circuit of the register at $40 n$.
It is the same rith m_{1} and $m_{1}{ }^{\prime}$. When the kes C_{1} is depressed, the direction of the carrent from X_{1} tends to produce in m_{1} a polarity similar to that produced in m_{1}^{\prime} by the closing of its accessory circuit I_{1}.
The case mhere both kess are simnltaneonsiy depressed is shorn at Fig. 6, Sheet 3.
1 will your go back and trace the course of the current through the New York instrument when the key C_{1} is depressed. None of the comnections are changed except between N_{1} and K_{1}. Starting from N_{1}, the circnit is, ria t_{1}, to S_{1}. Since the depression of C_{1} has lifted H_{1} off from S_{1} by the contact of e_{1}, the onls alternative for the main circuit is by following aloug the short wire $b_{1}{ }^{2}$ from S to e_{1}^{2}. There it euters $\mathrm{H}_{1}{ }^{2}$, goes, by $22_{1}, r_{1}{ }^{\prime \prime}, \mathrm{Q}$, and j_{1}, to the main batters \mathcal{X}_{1}, which it eutersat $P_{1}{ }^{\prime}$, emerges at N_{1}^{\prime}, passes, bs q_{1}, to M_{1}, thence, by $r_{1^{\prime}}^{\prime}$, to $\mathrm{H}_{{ }^{\prime}}$, which it enters at 20_{1}, passes along to contact e_{1}; thence, bs wire $a_{1}{ }^{2}$, to $\mathrm{S}_{1}{ }^{2}$, and thence, by wire 34_{1}, to R_{1}, where it enters the main line C^{2}.

It will thas be seen that the path of the main circait is different when the key is depressed from what it is when the key is ap. When the key C_{1} is depressed, the short wires $a_{1}{ }^{2}$ and $b_{1}{ }^{2}$ are included in the main circait; but as they mas be made so short and large as to offer no resistancs of any account, compared with the resistance of the whole circuit, the circuit resistance may be considered as practically equal in either position of the key. Another and vital point is worthy of notice. It is this: if the anvil-screws $S_{1} S_{1}{ }^{1} \cdot S_{1}{ }^{2}$ are properly adjnsted with reference to the anxiliary levers $H_{1} H_{1}{ }^{1} H_{1}{ }^{2}$ and points $e_{1} e_{1}{ }^{1} e_{1}^{2}$, the continuity of the main circuit remains unbroken during the mamipulation of the key, for, though, at the instant when the points e_{1} and S_{1} are both in contact with the lever H_{1}, as also $e_{1}{ }^{2}$ and $S_{1}{ }^{2}$ with $H_{1}{ }^{2}$, the main circuit is shortened by the cutting out of the main battery X_{1}, Fet as this lasts only for an instant, its effect is not felt on the coil I_{1} of the relay, especially if the internal resistance of the main battery X_{1}, including its lealing wires j_{1} and q_{1}, be of considerable magnitude, so as to prevent the appearance of much spark at the instant when H_{1} and $H_{1}{ }^{2}$ rise from S_{1} and $\mathrm{S}_{1}{ }^{2}$.
It is manifest that, without departing from the priuciples of my invention, I may reverse the location of the serews o and p, so that the insulated point shaill be below the lever L ; and also reverse the connections of the main battery at, say, Boston, so that its negative pole N^{i} shall be to carth. Then, if the two main batteries be equal and the line well insulated, there will be a neutral current, so to speak', or rather there will be no current ou the main line, and the coils I and I_{1} will not be charged when the keys C and C_{1} are up. But then the direction of the accessory battery connections at Boston must be roversed likewise, and it is easy to see that the instruments will work equally well in this mamer, and there will be this advautage, when the instruments are not at work, that the consumption of materials in the main batteries will be lessened.
It is obrious that way-stations, proviled only with instruments suited for single transmission, cannot hold double communication with either terminal station. Neither can a way-station, with ordinary instraments, understand what is passing between the terminal stations when both are transmitting, nor yet mhen one only is transmitting by the use of the double transmitter-key, because the wasstation hears only a short break when the double transmitting-key is depressed or raised. But if a way-station should work bis key iu the ordinary manuer both terminal stations will recognize his movements, and understand his writing, if both the main batteries be arranged in the manner first described, and if the points of the contact-screws p and o be arranged in the second manner described. Either terminal station can execute single transmission to the other terminal station, or to any may-station, by manipulatiug

CLEJIENT ADER，OF PARIS，FRANCE．
TELEGRAPHY．
SPECIFICATION forming part of Letters Patent No．377，879，dated February 14， 1888.
Application fleal Juls 1，1887．Serial No．243，124．（No model．）Patented in England Mas 19，1se7，So．7，2as．

To all ucTloni it maty concern：
Be it known that I，Clement ADER，a citi－ zen of the French Republic，residing in Paris， France，hare invented certain new and useful Improvements in the Art of and Means for Electric Signaling or Telegraphing，of which the following is a specification．

This invention has been patented in Great Britain by Pateut No．7，265，dated May 18， 1857.

This inrention relates，principally，to the method of receiving telegraphic or other elec－ tric signals，whereby they are rendered an－ dible．

I will proceed to explain the principle upon which mg invention is bascd with reference to Figures 1，2，3，aud 4 of the accompanying drawings，which are diagrams illustrating graphically the electric currents as transmitted and received over electric circuits．

Let us assume that intermittent currents are trausmitted over an ordinary telegraphic cir－ cuit by means of the usual key．We may then represent the current emitted from the send－ ing－station by a mark， \bar{X} ，in Fig．1，of uniform thickness，and if the circuit is relatively short or presents but little resistance the intermit－ tent currents arriving at the receiving－station will present substantially the same form，and nay be represented by the mark X＇in Fig． 1. If，howerer，the line is long or presents a high resistance，the current undergoes a change of form during its transmission and reaches the recciving－station not as a series of sharply－ defined pulsations，but as an undulatory cur－ rent of varying intensity，such as may be rep－ resented by the undulatory mark X^{\prime} in Fig． 2. Thus，in telegraphic transmission according to the Morse alphabet，there is received at the receiving．station a series of andulatory pul－ satious of rarying intensity and of different length，which may be represented by undula－ tory tracings，as shown at \boldsymbol{X}^{\prime} in Fig．3．This is the result of the ordinary method of tele－ graphic transmission over long circuits or Whe those of high resistance．Mach difficulty is continually experienced in the reception of messages thus transmitted，since a very accu－ rate adjustment of the receiving－instrument Sat rate adjustment of the receiving－instrument多 m ust be varied from time to time to correspond空复 With the varying conditions of the line．It is
theobject of my invention to provide a method of reception which shall avoid this difficulty．

It has been proposed to receive telegraphic signals by means of a receiving telephone，the diaphragm of which should be vibrated in consonauce rith the variations in the intensity of the currents．This method is impractica． ble，for the reason that if the number of vibra－ 6 c tions produced by the current is not such as to produce a sound or note perceptible to the ear the message cannot be read by listening in the telephonic receircr．My invention over－ comes this difficulty by meaus which I will 6_{5} now describe．

Let us suppose that one intercalates in the circuit at the receiving－station and at a point traversed by the current before it reaches the telephonic receiver an apparatus．Thich sab－ divides the undulatory current into pulsations succeeding ove another regularly and con－ tinually and with great rapidity，as denoted in Fig．4，their velocity being such that the num－ ber of pulsatious per second corresponds to the number of vibrations uecessary for pro－ ducing a sound or note perceptible to the ear． The current thas subdivided being received in the telephōne produces therein a continuous sound or note of uniform pitch；but as the car－ 8 rents which form the telegraphic signals are undulated the sound that is heard in the tele－ phone is wore or less loud or intense．This sound thus becomes an exact reproduction of the transmitted signals．It is possible in this 85 manner to receive electric signals acoustically at great distances under the form of undu－ latory sounds．It is only necessary that the siguals which arrive in the form of undulatory electric currents or impulses shall be sub－ 90 divided into rapidly－successive pulsations，the number of which corresponds to an audible sound or note．Sach is the priuciple of my invention，to which I hare giren the name of the＂phono－signaling＂system．
It will be understood that by neans of this system the transmission of electric signals over long lines is rendered mach more rapid than by those heretofore in use，since it is no longer necessary to discharge the line between 100 the successive emissions of the signals．
The principle of my invention being thas ụderstood，I will now proceed to describe the means which I have devised for practicing it．

\square
commutator at the receiving station. .This commatator may be either rotary or vibratory, many different constructions of each kind being well known in the art. As an example of 3 one construction that may be used, I would make reference to Fig. 8 , which shows a vibratory commutator vibrated by a rheotomic magpet, B, as in Figs. 6 and 7. For the sake of clearness, the contacts and local battery pertaining to this rbeotome are not shown. Its vibratory armature e carries two contact-buttons, l and l^{\prime}, which are insulated from each other and constitute the opposite terminals of a loop or branch, c, of the circuit, in which loop the receiving -telephone t is intercalated. On one side of the armature are two contacts, m and n^{\prime}, which are touched by the contacts l and l^{\prime} when the armature recedes from its mag. net, and on the opposite side are two contacts, n and n^{\prime}, which are touched by the contacts on the armature when the latter approaches its magnet. The line circuit is divided into two branches, one of which terminates at tre contact m and the other of which terminates at the contact m^{\prime}. The earth-mire is likewise divided into tro branches, one of which terminates at the contact n and the other of which terminates at the contact n^{\prime}. When the armature is retracted from its magnet, the current of the line enters at m and follows the path indicated bs the arrows $x x$, flowing through the loop c and passing out at n^{\prime} to the earth. On the opposite vibration of the armature the line-current enters at m^{\prime} and passes through the 5 loop in the direction indicated by the arrows $x^{\prime} x^{\prime}$, passing out at n to the earth. These alternatious of direction of the current passing through the telephone produce the same effect as the subdivision by interruption or bifurcation.

The same result may be accomplished withont the employment of a current-alternating commutator by the arrangement shown in Fig. 9. The magnet-core of the telephone t is here 5 wound with two coils, which areintercalated, respectively, in the tro branches c and c^{\prime} of the circuit. The current is subdivided betiveen these branches by bifurcation through the mediam of the rotary commutator A, as first de50 scribed, and the respective coils o o^{\prime} are connected in inverse order in the two branches in such manner that when the current is passing through the branch c it flows around the tele-phone-coil in the direction denoted by the arroms $x x$, whereas when the current is flowing through the branch c^{\prime} the current flows around the telephone-coil in the opposite direction, as denoted by the arrows $x^{\prime} x^{\prime}$. Thus the telephone is influenced by currents flowing in aloc ternately opposite directions.

It is not necessary that the commutator for subdividing the current be arranged in the line-circuit, as it may be placed in a derivation thereof. Fig. 10 shows such an arrange5 ment. The line-circuit is divided into two组 branches, $c c$; at the receiving-station, in each of which one of the receiving telephones t is
intercalated, and outside of these branches is a short circuit or shant, p, in which is intercalated a current-interrupting commatator, q. When the shunt-circuit is broken by the commutator, the entire curreat passes for an instant through the telephones t; but when the shunt is closed the greater portion of the carrent passes to earth through the shunt, thereby avoiding the telephones. This constitutes what I call "subdivision by derivation."
If necessary, condensers may be interposed in the circuit at the receiviug-station, as is so done with electric submarine cables. This is shown in Fig. 11, where J desigrates the condenser.
My system may be worked inductively, if desired, by providing an iuduction coil at the 85 receiving station and passing the line-current threugh the primary wire thereof to the earth, while the secondary wire thereof is joined in a local circuit, which is provided with a cur-rent-subdividing commutator and rith receiv-ing-telephones. Fig. 12 shows such an installation, I being the induction coil, A the commutator, and $t t$ the telephoucs.
My "phono-sigual" system is applicable not only to aerial telegraph-lines and sabmarive cables, but also for electric transmission along or across rivers, lakes, arms of the sea, and other bodies of water wherein the mater constitutes the sole conductor in licn of a line-wirc. Fig. 13 illustrates such a circuit. In this case it is necessary to arrange in the water, both at the receiving and transmitting sides thereof, floats D D, provided with metallic conductingrods $r \boldsymbol{r}$, which spread out in all directions, in order to distribute the current to a very large surface of the liquid, so as to conduct the current to the latter and collect it therefrom with the least possible resistance and loss, whereby the liquid may be utilized as a conductor. At the transmitting side of the body of water is a short metallic circuit containing the battery and transmitting key, and at the receiring side is another short circuit containing the commatator A and the telephones. Both these circuits terminate in earth - connections, which are by preference made through the medinm of plates $\mathrm{D}^{\prime} \mathrm{D}^{\prime}$, which radiate in all directions. In this case it is preferabie to arrange at the receiving - station condensers or inductioncoils, as above described.
Fig. 14 shows an application of my news system for the purpose of reading the siguals transmitted over a telegraph-wire without interrupting their transmission to their destination. For this purpose a rire, s^{\prime}, is strung between tro telegraph-poles parallel with and in prosimity to the line-wire, in order that upon the passage of currents orer the latter these currents, which are cither intermittent or more or less nudulatory, shall induce corresponding $13=$ currents in the wire s^{\prime}, and these induced currents are read by means of telephones t, between which the carrent is subdivided by a com nutator, A, as alreat juescried. Finally;

[^8]70 \square

[^9]

\square 95
Ico
1 C 5

IIO

\author{[^10]}

115

$$
\begin{aligned}
& \frac{114}{8} \\
& 377,879 \\
& \text { this system enables slow oscillations or vibra- } \\
& \text { tions, asin the case of subterranean noises, earth- } \\
& \text { tremblings, and noises made under water by } \\
& \text { steamboats or torpedo explosions and the like, } \\
& 5 \text { to be detected. These noises or concussions } \\
& \text { are transmitted by means of a battery or mag- } \\
& \text { netic telephone. My system is applicable for } \\
& \text { the reception of signals of similar character } \\
& \text { where undulatory currents are sent over the } \\
& \text { ro line emanating from electric transmitters. It } \\
& \text { is necessary in such case to construct the trans- } \\
& \text { mitter appropriately to the special use for } \\
& \text { which it is destined. } \\
& \text { Fig. } 15 \text { illustrates the arrangement of a traus- } \\
& 15 \text { mitter for the observation of subterranean } \\
& \text { sounds or concussions. For this purpose the } \\
& \text { transmitting-instrument is buried in the earth } \\
& \text { at a suitable depth, and should be of such con- } \\
& \text { struction as to be sensitive to the slow vibra- } \\
& 20 \text { tions which it is to transmit. Fig. } 17 \text { shows } \\
& \text { its preferred coustruction. It consists simply } \\
& \text { of a magnetic telephone the ribrating dia- } \\
& \text { phragm of which carries a weight, } E \text {, which } \\
& \text { increases its inertia. If the soil is subjected to } \\
& 25 \text { vibratory movements, the transmitter is dis- } \\
& \text { placed with it; but the diaphragm, tending to } \\
& \text { remain in place by reason of its inertia, is not } \\
& \text { moved so quickly as the electro - magnet, so } \\
& \text { that they mutually recede from and approach } \\
& \text { reuts, which are sent over the line, and which } \\
& \text { upon their arrival at the receiving station are } \\
& \text { subdivided and received acoustically in the } \\
& \text { telephonic receirers. } \\
& \text { Fig. } 16 \text { illustrates the arrangement of a } \\
& \text { transmitter for the observation of subnarine } \\
& \text { sounds or vibrations, the transmitting-instru- } \\
& \text { ment being suspended beneath a float. The } \\
& \text { preferred construction of this instrument is } \\
& \text { manner as to prevent a sudden increase of } \\
& \text { pressure from forcing the diaphragm against } \\
& \text { the poles of the electro-magnet. To this end } \\
& \text { I inclose the apparatus in a box, one of the } \\
& 45 \text { sides of } \text { which is a diaphragm, H, to which is } \\
& \text { fised a rod, } u \text {, which projects in wardly to ward } \\
& \text { a similar rod, } u^{\prime} \text {, which is fixed to the dia- } \\
& \text { phragm } F \text {, which latter diaphragm is the one } \\
& \text { which is disposed closely adjacent to the poles } \\
& 50 \text { of the magnet G. A tube, } v \text {, having its ends } \\
& \text { split, embraces the rods } u u^{\prime} \text { and connects them } \\
& \text { together in such manner that the vibrations of } \\
& \text { the diaphragm } H \text { are transmitted through it to } \\
& \text { the diaphragm } F \text {; but if an excessive pressure } \\
& \text { thereby pressing the latter inward, the tube } v \\
& \text { yields without injuring the apparatus, and the } \\
& \text { vibratious continue to be transmitted and con- } \\
& \text { sequently to induce undulatory currents apon } \\
& 60 \text { the line. } \\
& \text { My phono-signal may be combined with du- } \\
& \text { plex and other telegraphic systems. } \\
& \text { The velocity of subdivision of the current, } \\
& \text { which I have hereinabove stated to be constant, } \\
& 65 \text { is not necessarily or essentially absolately con- } \\
& \text { stant, but is preferably so, in order that the } \\
& \text { masical note heard in the receiving-instru- } \\
& \text { ment shall not be subject to variations of pitch, } \\
& \text { which would confuse or annoy the listener. } \\
& \text { The speed of the commutator may vary from } \\
& \text { time to time without departing from } \mathrm{my} \text { in- } \\
& \text { vention. } \\
& \text { I claim as my invention my improved sys- } \\
& \text { tem of and apparatus for the transmission and } \\
& \text { reception of telegraphic and other electrical } \\
& \text { signals, presenting the following-defined novel } \\
& \text { features, substantially ashereinabove specified, } \\
& \text { namely: } \\
& \text { 1. The reception of electric signals by sub- } \\
& \text { dividing the electric current into pulsations } \\
& \text { succeeding one another at a constant velocity } \\
& \text { which corresponds to the vibrations of an andi- } \\
& \text { ble note, and passing the subdivided current } \\
& \text { through a telephonic receiver, thereby produc- } \\
& \text { ing in the latter a sound of uniform pitch, the } \\
& \text { intensity of which varies according to the un- } \\
& \text { dulations of the subdivided current, whereby } \\
& \text { the electric signals are acoustically transiated. } \\
& \text { 2. The transmission of electric signals by } \\
& \text { sending a succession of electric impulses over } \\
& \text { the line, subdividing the resulting undulatory } \\
& \text { current at the receiving-station into pulsations } \\
& \text { succeeding one another at a constant velocity } \\
& \text { which corresponds to the vibrations of an andi- } \\
& \text { ble note, and passing the subdivided current } \\
& \text { through a telephonic receiver, whereby the } \\
& \text { electric signals are acoustically translated. } \\
& \text { 3. The combination, with an electric signal- } \\
& \text { ing-circuit, of a commutator at the receiving- } \\
& \text { station adapted to subdivide the currents ar- } \\
& \text { riving over said circuit into pulsations suc- } \\
& \text { ceeding one another at a velocity correspond- } \\
& \text { ing to the vibrations of an andible note, and a } \\
& \text { telephonic receiver through which the subdi- } \\
& \text { vided current is passed. } \\
& \text { 4. The combination, with an electric signal- } \\
& \text { ing-circuit divided into tro branches, of a com- } \\
& \text { mutator adapted to direct the currentinto said } \\
& \text { branches alternately and to shift it from one } \\
& \text { to the other with a frequency corresponding } \\
& \text { to the rapidity of vibration of an audible note, } \\
& \text { whereby the current is subdivided into rap- } \\
& \text { idly successire pulsatious in said branches, } \\
& \text { and with a telephonic receiver intercalated in } \\
& \text { one of said branches. } \\
& \text { 5. The combination, with an electric signal- } \\
& \text { ing-circuit divided into tro branches, of a com- } \\
& \text { mutator adapted to direct the current into said } \\
& \text { branches alternately and to shift it from one } \\
& \text { to the other with a frequency corresponding } \\
& \text { to the rapidity of vibration of an audible note, } \\
& \text { whereby the current is subdivided into rap- } \\
& \text { idly successive pulsations in said branches, } \\
& \text { and with telephonic receivers intercalated in } \\
& \text { said branches. } \\
& \text { 6. The combination, with an electric signal- } \\
& \text { ing-circuit and a telephonic receiver, of a com- } \\
& \text { mutator at the receiving station adapted to } \\
& \text { subdivide the current arriving over said cir- } \\
& \text { cuit into polsations succeeding one another at } \\
& \text { a constant velocity corresponding to the vi- } \\
& \text { brations of an audible note, and circuit-con- } \\
& \text { nections between said commutator and the } \\
& \text { telephonic receiver, substantially as described, }
\end{aligned}
$$

W. E. FROW.
means for transmission of intellioence. APF!LIOATIOI FILED JUIE 10, 1010.
1,016,003.
Patented Jan 30, 1912.

WIILIAME.FROW, OFIISBONFALLS, MAINE,

MEANS FOR TRANSMISSION OF INTELLIGENCE.
1,016,003.
Speciacation of Letters Patent.
Patented Jan. 30, 191\%. Applleation Aled June 10, 1910. Serial No. 566,236.

To all whom it maỳ nunecrn:
lie it known that I. Whsam E. Fiouw, a citizen of the C"nited sitates, residing at Lisbon Falls, in ilee cominty of Androscoggin
5 and State of Maine have invented a new and useful Menns for Trammission of Intelligence, of which the following is a specification.

This incention has reference to improve-
10 ments in muna for transmission of intelligence and it: object is to provide for telegraphic or telephonic intercommunicntion without the use of line conductors or aerial transmission.
15 In aererdance with the present invention there are provided at each station separated ground conneetions between which the transaitting and receiving instruments are included and these ground connections are
20 so related one to the other at each station and at the communicating station that communication is solely through the ground. Furthermore provision is made for changing the relation of the grounds at a receiving
25 station to bring these gromends into proper relation to the sending station so as to obtain the best results.

The invention will be heet understood from a consideration of the following de-
30 suription taken in connestion with accompanying laravings forming a part of this specification. in which drawings, the figure is a diagram illnetrating a means whereby the ground connections at a receiving station
35 may be brought into the best relation with a he sepding station.

Referring to the drawings, the sy:tem is Nhowa with the recciving station arranged for presing up, any of the several divergent
40 cullying stations. The station is shown as equipped with a series of radial ground phates 20 each connected at one point to a conductor 21 terminating at a binding post 22 or other suitable means of permitting the
45 ronnection of another conductor thereto. At varying ilistances and in different relations to the ground plates 20 are othor ground comnertion: 23 which may be of various types such as metal plate or strancis of wire,
50 sunk inte the diunp earth, and either already exi-innt or purposely installed. In the drawings the watlying stations are simply inicieated at 34,25 , 26,27 without any uttemipt to thow the installations thereat, but
55 it will be understood that each of the out-
lying stations may be equipped like the receiving station both fortransmission and reception and it will be understood that the re. celving station will also be provided with suitable transmitting apparatus. In the 60 equipment care is taken that the grounds 23 either already existent or which may be installed when the station is installed, shall be sufficiently divergent. There is provided a conductor 28 including a receiver 29 , and this may be indicative $a s$ bath receiving and transmitting apparatus, and this conductor is capable of being connected at one end to any one of the binding posts 22 and at the other end to any one of the grounds $2: 3$ and since these grounds 23 may be at varying distances from the gromals 20 , the conilus:tor 28 may be long enough to reach from any one of the binding past.is 2.2 to the nost remote grounds 23 at the particular station.
It has been found in actual experience that unless the grounds 20 and $2: 3$ at the receiving station be in proper relation to the transmitting station: usually in a plane to coincide with the lines of current flowing, that the reception of the messages is muterially less distinct or loud than they are when the relation is properly estublished. The arrangemeat provides a ready means for establishing this relation in a minimum of time since an operator un picking up a messuge from a sending station may quickly establish the best relation to such station by comnecting the conductors 28 to a proper one of the binding posts 22 and grounds 23 . 9 This connecting up of the grownds at the receiving station may be facilitated be having ench ground 23 connected by a condurtor 30 to a binding pist 31 adjncent to the binding posts 22 sio that the conductor 29 which may then be quite short may be readily conipled up between the upper binding posts 22 nad al and the desired rehation of the grounds to the sending station may thus be "yuickly established with a minimum of tronble for the operator may quic:kly pass around the entire series of binding posts with the terminals of the conductor 28 to thereby extalisish the proper relation onsthe ground.
In the arrnageniment shown. all the inner grounds 20 may be coupled togrether as one ground and ail the witer grounts 3 man the coupled together as the wher ground, when necessary or desirable.

$\sqrt{7}$

\qquad -an |lV/

s. HOGA, W. P. PIGGOTT, AND S. BEARDMORE, OF THE COUNTY OF MIDDLESEX, ENGLAND.

IMPROVED MODE OF GENERATING AND APPLYING ELECTRIC CURRENTS IN TELEGRAPHING.

Specification forming part of Letters Patent No. 25.016, dated Angnst 9, 1859.

$=$ To all chom it may concern:
Be it known that we, Stavislas Hoga, gentleman, Williay Peter Piggott, electrician, and SEptijucs Deardmore, civilengineer, all of the countr of Miduleses, in that part of the United Kinglom of Great Britain and Irelaud called "England," bare inrented a new and Improved Mode of Producing, Using, and Transwitting Electric Carrents for Telegraph Purposes; and we do herebr declare that the following is a full aud exact description thereof, reference being had to the accompanging drawings hereto aunexed and made part of this specification, in rhich-

Figure 1 presents a simple arraugement for producing the currents. K-K shows a plan of the earth or natural bods of water A D, in rhich are placed plates of zine or other positire metals ; B E, plates of iron or other netal which is negative to zinc, but positire to C F, plates of platiuum or other metal which is also negative to $A \mathrm{D}$. H is the conducting-wire, which, mhen counecting A or C at oue end with E at the other, or D or D or F at one end with B at the other, produces the currents required.
Fis. 2 eshibits more particularly the mode of morkiug an electric-telegrapl instrument. A B may be supposed to be laud on either side of C, D representing rater. Nos. 1 and 10 represent telegraphic instruments or simple galyanometers at each station; 2 and 9 , levers or handles, each insulated in tro separate places; 3, ziuc or other positive metal placed near دo. 1; 4, iron or other metal negatire to No. 3, but positive to No. $\overline{\text { J }}$, representing platinum or other metal negatire to both the others. Nos. 67 S represent similar metals as Nos. 3, 4, aud 5 , and are placed in a similar manner near No. 2,6 being zinc, τ iron, and S platinum. Nos. 11, 12, and 13 are Fires connecting 3, 4, and $\overline{5}$ with the haudle No. 2 , and 14,15 , and 16 comnect 6,7 , and S with the handle No. 9. 17 represents the conducting-wire, insulated at either end.

The current of electricity operating ou telegraphs has beeu hitherto generated at either end of the line by means of local batteries, made by placing.the negative and positive ele-
trants in justaposition in a cell or cells, and transmitted over the line-wire, returning bs the earth, while the rererse current is obtained by changing the poles of the local batteries.

Our improvement, which fur the parpose of designation is termed the "globe-telegraph," consists in creating the current in the manner hereiuafter described, and in transmitting it directly through and by means of the earth or natural body of water, using the line-wire only for the return-carrent.

To obtain the current we place in the earth, or in a natural body of water near each of the stations for communication, in the form of plates, the three substances 3 , 4 , and $\overline{5}$, possessing the relations to each other as above mentioned. These metals or substances are not counected with each other, bat can be connected with the insulated wire or wires E, Fig. 1, or No. 1í, Fig. n, transmitting the retum-current. By the alternate action of the zinc and platiuun or similar positire and nergative substauces at one station rith the iron or similar substance at the other the required current is obtained, and with it the signals are effectel. It is to be observed here that althongh iron is cousidered by the best authorities to be negrative to zinc, yet we have found it, when much osidizen, to be positive in relation to that metal.

We consider a vers important part of the invention to be the adjastment and size of the plate-surface to the distance of transmissiou. This is regulated by the following rule: Haring ascertained the size or amount of platesurface required to work an instrument at a giren distance, the same instrument can be operated at any other distance by increasing or diminishing the amount of surface in proportiou to the square root of the distance. Thus, if two square feet of zinc at one end of an insulated conducting. rire fifty miles long, at the other end of mbich is a piece of platinum of the same size, prodices sufficient electromotire force to rork the instrument, then four square feet of the same metals, similarls placed two lundred miles distance, will produce the same effect.

The mode of operatiug the globe-telegraph may be described as follors: If L_{y}-wonrentional arrangement the parts $b c$ of the handles 2 and 0, Fig. 2, are placed in coutact, the oue or the other with the instruments 1 or 10, the operator at \mathbf{B} will, in order to operate on the iustrumeuts, break contact with d and instrument No. 10. A current rill thereby flom from 6 through the earth to 4 , and thence

ALL THE OVERHEADS CONVERGE ON THE WESTERN UNION BUILDING SHOWN AT LEFT.
EXAMINATION OF THE DETAILS REVEALS THAT SOCIAL ALIGNMENTS Fyom

sintil
Hin
里变
AND NOTABLY COLLIMATED ALONG THESE GUIDEWAYS.

St

,

VRIL THREADS ARE NOT OBEYED WHEN PROJECTS EMPLOY THE INSENSITIVE
$\frac{4}{4}$
TELEGRAPHIC AND TELEPHONIC LINES OFTEN CROSSED VRIL THREADS $=-8-20$
y

(a)

wires which a telegraple-pole has nsually to support. As regards the insulating properties of the cap, it rill be at once admitted that it is equal if not superior to the wire-holders hitherto used.
My improved insulator and holder possesses the further ad rantage of maintaining the top of the pole in an invariably dry condition.
I claim as my iuvention and desire to secure by Letters Patent-

An insulator and holder inade of terra-cotta,
earthenware, or equivalent substance or sabstances, adapted to a pole and formed for the reception of the wires, substantially as set forth.

In testimony whereof I bave signed my name to this specification in the presence of two sabscribing witnesses.

JAMES HOLLAND.
Witnesses:
Ceras. Datrs,
James Mattiens.

J. M. MERRICK, Jr.

Insulator for Electric Conductors.
No. 87,487.
Patented Feb. 23, 1869.

rrizuesses
Byron Pose
 Gomel Nerreak

Cinnited §tates 据atent ©ffict.

 JOHN M. MERRICK, JR., OF BOSTON, MASSACHUSE'ITS.Letters Patent No. 87,187, dated Pebruary 23, 1809.
DNPROFED COMPOBITION-DITSULATOR FOR TELTGRAPE ANT OTEHR EHFCTRIC CONDUCTORS.

To all whom it may concern:

Be it known that I, Johs M. Merrice, Jr., of Boston, in the county of Sulfolk, and State of Massachusetts, have invented a new and improved Insulatur fir Practical Telegrapby; and I do hereby declare that the following is a full, clear, and exact description thereof.
The gature of uny inveutiou consists in making the non-conducting portion of insulators, by which the tele-graph-wires are supported upon the poles, and by which the escape of the electric current at the points of support is prevented, of a new and recently-discorered composition of matter, possessing remarkable resistance to couduction, to moisture, and dirt, as well as baving the repuisite strength and uniformity.
To evable others skilled in the art to understand ms invention, I will proceed to describe its construction and operation.
Itthough I do not claim auy novelty in the configuration of the insulators made by me, I annex a drawing, to illustrate the manner in which the insu-lating-portions are attached to the metallic or sup-porting-portious of the insalator.
In the draming -
Figure 1 represents a view of one form of insulator in perspectire, and

Figure 2, a sectional viem.
In the form of insulator shown in the drawing, there is represented as spike of metal, provided, at one end, with a buok, for holding the wire, and a screw, of a non-conductiug substance, at the other end, for entering the post, or the rooden attachment by which the insulator is fastened to the post.
The non-conducting material surrounding the metallic spike is represented at \mathbf{A} in fig. 2.
The method of construction which I adopt, and the rauterials used, are as follows:
The insulating-material which I ase is one for which I have received Letters Patent, numbered 85,018 , and dated December 15, 1868, said material being known in the trade as diatite.
This material is composed, and prepared, and applied, to form the insulator, is follows :
Prepared silica, in the utmost possible state of division which can be obtained, or, what I prefer, the siliciuns tarth, known as diatomaceous or infusorial depusits, maturally in a state of great division, is mixed with gum-shellac in a dry state, or any siwilar gum, in eyntal proportions, by weight.
The mixed material is brought to a semi-plastic state thruugh heat applied to it by means of a steam-store.
The material is then takell out, and pressed between steam-rollers, such as are used in rolling India rubber. It is pasised repeatelly through these rollers, until the ingredients are pertectly incorporated.

The compound, while stili Lot, and in a plastie state, is presserd intor a metallic die; and upon this material ther purtion of the spike to be covered with the iasu-latiog-material is placed.

The die is su constructed as to give the impression of the desired forin which the exterior of the insulator shaill have.

Another die, to make an inpression of the other side of the insulator, is placed upon the former die and the material which it contains.
Both dies are then heater, and placed in a powerful press.
The requisite smoothness -is given by the polished surface of the die.

The insulator thus moulded, upon being removed firom the die, is found to be perfectly finished for use.

The enveloping-material adieres perfectly to the metallic spike, and the cod, spirally grooved, may be screwed into auy wooden pust or support, without separating the eureloping-material.
I have described and shown only ene form in which the insulating-material above mentioned may be applied.
It may be used without metallic supports, in any desired form, or may form parts of compound insulators.
Having fally described the method of construction of my insulator, and the nature of the material of which the non-conducting portions are made, I will atate the peculiar advantages which this insulator poosesses, and the novel resuits from this peculiar application which malie it a distinct invention in the art of practical telegraphy.
With the vast and increasing extension of telegraphic lines, the possession of an insulator which approaches perfection is of vital importance.
Improvements apparently slight become important, from the extent to which they may be alopted.
First. The first requisite of an insulator is its resistance to conduction. The material of which it is made should be a relatively bad condnctor.

Second. As the resistance of insulators is almust purely a question of surface, and, in insulators similar in other respectis, the largest in dianneter will conduct the best, it is desirable to lave a non-conducting material with sufticient collesive properties to secure an insulator of the smallest possible dianneter cousistent with strength.
Thinl. The insulator should have little aftinity for moisturc, or porter to attract dampness.
Fourth. The material should uot deteriorate at its surfice, through age or exposure, so as to become rough, and therefore liable to retain dirt.

Fitth. It should be chealp.
I clain that my insulator possesses all these requisites to a degree never before attained.
The insulating-qualities are giren by a gum ranking at the very heightit of the list of non-couductors, and almost identical with amber or electron, the non-conducting properties of which gave electricity its uame-:
Be the process usel in the preparation of diatite, each microscupic particle of diatomaceous earth orsilex, itself is bal couductor, is coated with the gum, while

Gunted States latent (bffite.

ROBERT BRECKENRIDGE BAKER, OF PHILADELPHIA, PENNSYLVANIA.

Letters Patent No. 103,122, dated May 17, 1870.

IMPROVEMLETT IN INSULATORS FOR TELEGRAPEIC WLRE.

The Schedule referned to in thece Intters Pateat and makive part of the came.

I, Robert Breckentidge Baker, of Philadelphia, county of Philadelplia, State of Pennsylvania, have invented an Improvement in Insulators for Telegraph Wires, of which the following is a specification.

Nature and Object of the Inzention.
My invention consists in the combination with, or application to, telegraplic wires, of metallic oxide as an iusulating inediam.

Description of the Accompanying Draving.

Figure 1 represents a vertical section of an insulated wire-holder, to illustrate one mode of carrying out myinvention; and
Figure 2 a section of another insulated wire-bolder, illustrating another mode of carrying out my invention.

General Description.

I have discovered that metallic oxides, which lare huretofore been looked upon as conductors of electricity, are actually the noost effective non-conductors.
My invention of applying metallic oxides to the insulation of telegraphic wires mas be carried into effect in a variety of ways, but I have not deemed it necessary to illustrate inore than tivo such applications.

The wire-bolder shown in fig. 1 coisists of an inverted cup, A, of cast-iron, fitted to an ege in a screnrol, B , by which the insulator may be connected to a pole, the cup A containing the suspension-rod D, the double hook at the lower end of which supports the telegraph-wire.

Wire-holders of this class have long been in common use, but their rods D have been Leretofore confined to the cups A by sulphur, as a non-conducting medium, glass being sometimes used in conjunctiou vitil the sulphur, and sometimes paraffine, or both glass and paraffine being used as insulating mediums.
My insulating medium is a metallic oxide, red lead, for instance, which, when applied as shown in fig. 1, I mix with sulphar, the proportions of the sulpiuar and oxide being about equal.
The sulphur is melted and the oxide thoroughly mised with it, and the composition, while in a semithuid state, is poured into the open end of the cup A.
while the latter is in a position the reverse of that shown, While the suspension-rod \mathbf{D} is beld within the cup.

After the composition becomes thoroughly land, the rod D will be firmig held in its place, and the holder effectually iusulated and ready for use.

In the modified wire-holder, shown in fig. 2, the stem d is fitted in the arm of a telegraph-pole, and the telegraplh-wire is coiled in the groove b of the cap F, which is screwed onto the casing A^{\prime}. . Further description of this modification will be unnecessary, as telegrapli-liolders of this clnss are well known.
Auy of the metallic oxides, oxide of iron or oxide of zinc, for instance, may be used in place of red lead; and other solidifying substances, asplialtum, fur instance, may be used in place of solphur or textile material.

Although I have selected two styles of wire-lıolderis with the view of illustrating modes of carrying ms inrention into effect, it shoald be distinctly understood that my invention may be applied to any of the wireholders in use, my invention being, in fact, the application of metallic oxide as an insulating substance to any wire or wire-holder, whether the oxide be used in conjunctiou with any suitable material or substance simply as a medium of increasing the insulating properties of any wire-holders, or as an ingredient by which the suspension wires are retained, in the manner doscribed above.

Those familiar with the construction of wire-holders can readily understand, without further explanation, how metallic oxides can be generalls applied in a variety of ways to the insulating of all wire-holders, or to underground retainers of wires.

Claim.

The combination with, or application to, telegraplwires, of metallic oxide as an insalating medium.

In testimony whereof I lase signed my name to this specifieation in the presence of two subscribing witnesses.

ROBERT BRECKENRIDGE BAKER.
Witnesses:
Frany B. Riciards,
Harry Smite.

H. READ.

Improvement in Insulators for Telegraph-Wires. No. 115,521.

Patented May $30,-1871$.

Fig:

Fig:2.

Inventor:
Witnesses:

Morati Meal

HORATIO READ, OF JERSEY CITY, NEW JERSEY, ASSIGNOR TO HIUSELF AND B. B. HAGERTY, OF BROOKLIN, NEW YORK.

IMPROVEMENT IN INSULATORS FOR TELEGRAPH-WIRES.

Specification forming part of Lettors Patent No. 115,521, dated May 30, 1871.

To all whom it may concern:
Be it known that I, Horatio Read, of Jersey City, in the county of Hudson. in the State of New Jersey, have invented a new and aseful Improrement in Insulators; and I do hereby declare the following to be a full, clear, and esact description thereof, which will enable those skilled in the art to make and use the same, reference being had to the accompanying drawing forming part of this specification, in which drawing -

Figure 1 represents a vertical central section of this invention. Fig. 2 is a transverse section thereof.

Similar letters indicate corresponding parts.
This in rention consists in the arrangement of a metal screw-socket in the interior of a giass insulator, in combination with a corresponding supporting-screw, in such a manner that said insulator can be secured to telegraphpoles or to buildings, or wherever it may be desired, in any position, with the greatest ease and facility.

A represents a glass insulator, such as is commonly used for the purpose of insulating telegraph-wires or conductors of electrical carrents. In the interior of this insulator I secure a metal socket, a, which is fastened by cement or by pressing it into the glass, or in any other desirable manner, and which is provided with an internal screw - thread, as shown. This screw-thread may be longer or shorter, and if desired onls a portion of the thread may be
used, so that half a turn would be sufficient to fasten the insulator to the desired spot. The screw-thread in the socket fits on a thread cut on the end of a pin, B, which serves to support the insulator. This pin is secured to the tele-graph-pole or building, or to any other place where the insulator is to be attached, and it will be readily seen that, by means of my screwsocket, the operation of attaching a glass insulator is materially facilitated. It will be seen that the insulator is firmly supported on the pin B. The screw-socket a is placed at the base of the opening, which receives the projecting pin so that the plain or nathreaded part of this pin bears against the sides of the opening or carity, and serres to support the insulator, while the screw-socket prevents its displacement. These two featnres are necessary in consequence of the great strain upon the insulator.
Having thas described my invention, what I claim as new, and desire to secare by Letters Patent, is-

A telegraph-insulator, A, prorided with a smooth socket, in the inner part of which is secared a metallic screw-thimble, a, to screw on the supporting-pin, while the outer portion of said socket forms a guide for the body of the supporting-pin, substantially as described.

HORATIO READ.
Witnesses:
W. HAUFF,
E. F. Kastenhuber.

United States Patent Office.

MOSES G. FARMER, OF SALEM, MASSACHUSETTS.

IMPROVEMENT IN TELEGRAPH-INSULATORS.

Specification forming part of Letters Patent Mo. 124,199, dated March 5, 1872.

Specification.

To all urhom it may concern:
Be it known that I, Moses G. Farjier, of Salem, in the county of Essex and State of Massachusetts, hare invented a new and useful Improvement in Insulators for Telegraph Wires; and I do bereby declare the following to be a full and correct description of the same, reference being had to the accompanying drawing, in which the tigure represents a central lougitudiual section of my insulator.

This invention relates to an improvement in insulators for telegraph wires; and consists, tirst, of a rulcanite body made with a shank or taug on which a screw-thread is formed, and having a deep recess surrounding a central portion in which an ordinary metal hook is inserted; and, second, in saturating or coating the insulator with the misture described in an application which 1 have made even date with this for Letters Patent for the same. The object of this invention is the production of an insulator, which shall be as neariy as is possible in an exposed delicate device a perfect non-conductor, which is so hard as to be broken only by the most violent blow, and which is of such shape as to ward off stones and other missiles thrown thereat. This I accomplish as follows:

In the draring, A may represent the insulator as a whole. The parts a and $b I$ form in one piece, of rulcanite, and upon the shank or tang a is formed a screm-thread, whereby the insulator is readily inserted into an auger-hole bored in the pin or bracket B. The part b is provided with a deep carity, c, surrounding
the part d, in which latter an ordinars zincplated hook, e, is firmly inserted. By means of this cavity the wire is more perfectly insulated than if the part b ras made solid. As is well known, rulcanite is bot a poor condactor of electricity, and hence its ralue as an insulator: but, in order to render its property in this respect still greater, I immerse the insulator constructed after this plan in a melted misture of rosin, bees-iras, spermaceti, or paraffine, with or without oil, as described in my application referred to. A swall percentage of the misture is absorbed by the vulcanite, and the whole insulator is erenly and nicely coated by the mixture; or, instead of this mixture I simply coat it with paraffine.

Rosin, bees-mas, spermaceti, \&c., all hare Ligh insulating powers, and by thus combining them with vulcauite an almost perfect insulator is produced. Being preferably round, it is protected in a great measure from missiles thrown at it, and of itself is not easily broken, as its elasticity will break the force of the blow.
Having thus fully described my inrention, What I claim, and desire to secure by Letters Patent, is-

An insulator for telegraph-wires, formed of vulcanite, in the manner described and represented, and supporting the ordiuary wire-carrying book, as and for the purpose set forth.
The abore specitication of my said inrention signed and witnessed at Boston this 18th day of August, A. D. 15 F 1.

MOSLS G. FARMER.
Witnesses:
Charles Stotell,
Geo. 1. Stowell.
 what I claim, and desire to secure by Letters Patent, is-
A telegraphic insulator composed of earthen, stone, or biscuit-ware, or other suitable or porous and plastic material, molded, threaded, and prepared, substantially in the form and manner described, and saturated with the insulating compound specified, or other suita-
ble insulating mixture, for the purposes set forth.

The abore specification of my said invention, signed and witnessed at Bostou this 13th day of August, A. D. 1871.

MOSES G. FARMER.
Witnesses:
Cifarles Stotwell,
Geo. A. Stowell.

UNITED
 States
 P
 ATENT Office.

FRANCIS BOFD, OF NEWBCRG, NEW YORE.

IMPROVEMENT IN METALLIC TELEGRAPH-POLES.

Specification forming part of Letters Patent No. 125,716, dated April 16, 1872.

Specitication describing a new and Improved Metallic Telegraph-Pole, inrented by Fravcis Bord, of Sewburg, in the county of Orange and State of New York.

My in rention relates to improvements in metallic telegraph-yoles; and consists in constructing such a pole with collars for supporting horizontal arms which carry the insulators, in the means of connecting it with the base-piece, and in the arrangement of a lightuing-rod or conductor.

Figure 1 is an eleration of my inprored pole, with some parts sectioned. Fig. \because is a crosssection on the line $x x$. Fig. 3 is a transrerse sectiou on the line $y y$. Fig. 4 is' a section of the common rood pin and glass insulators for the wires, and Fig. 5 is a section of a solid India-rabber insulator which I propose to use.

Similar letters of reference indicate corresponding parts.
\mathbf{A} is the cast-metal tube; \mathbf{B}, the step; and C, the arms thereof, for bedding in the earth to support the pole; D, the ears for the braces E, said ears being cast on the pole and the braces being fitted through them, with screennuts F above for straining them to adjust the pole to a rertical position. Said braces may be made fast to the arms, or pass through them and be secured by nats G below. H is the collar or ring cust on the pole for holding the lowermost ring; and I, shoulders for the other arms, formed by successive reductions of the size of the pole for the other arms. K represents the arms, which may be made of metal bars, with a large hole at the center to fit on the pole snugls above the shoulders, each arm having its hole corresponding in size to that of the pole above the particular shoulder whereon it is to rest, said arms either being made in
one piece and pat on orer the top of the pole; or it may be divided in two parts longitudinally and verticalls, and bolted together by bolts I. M is the lightning-rod, and X the insalating. tube. Said rod will project abore the top of the pole, as at 0 , being insulated by an Indiarubber cap, P, fitted water-tight on the top of the pole, and the hole through which the rod passes being packed tightly to prevent the water leaking out. The said arms will hare holes for holding the wood pins Q or Indiarubber insulators R, which may screw into the holes of the solid arms, and they may either screw into the divided arms, or they may be made larger below the arms and be held by such enlargements when clamped by said divided arms.

The arms should be galvanized; the parts below ground should be coated with coal-tar, and the parts of the hole above groand should be scaled and primed with red lead.

Having thus described my invention, I claim as new and desire to secure by Letters Pat-ent-

1. A tubular cast-metal telegraph-pole, haring the collar H and shoulders I for supporting the arms, formed in the manner described.
2. The said cast-metal pole, provided with ears D, and stepped in and braced to a metal bed-piece, B, with arms C, by adjusting braces E, substantially in the manner described.
3. The lightning-rod M , insulating-tabe N , $\operatorname{cap} P$, and extension 0 , all combined and arranged with the pole, substantially as specified.

FRANCIS BOYD.
Witnesses:
Louis S. Sterrit,
Jas. B. B. Brundage.

United States Patent Office.

FRANCIS BOYD, OF NEWBERG, NEW YORK.
IMPROVEMENT IN METALLIC TELEGRAPH-POLES.

Specification forming part of Letters Patent No. 125,716, dated April 16, 1872

Specitication describing a nem and Improved Metallic Telegraph-Pole, invented by Fravcis Bord. of Newburg, in the county of Orange and State of New York.
Mr iurention relates to inprovements in metallic telegraph-poles; and cousists in constructings such a pole with collars for supporting horizontal arms which carry the insulators, in the weans of connecting it with the base-piece, and in the arrangement of a lightuing-rod or conductor.
Figire 1 is an eleration of mrinproved pole, with some parts sectioned. Fig. 2 is a crosssection on the live $x x$. Fig. 3 is a transrerse section on the line y. Fig. 4 is a section of the conmou rood pin and glass insulators for the wires, and Fig. $\overline{5}$ is a section of a solid India-rubber insulator mhich I propose to ase.
Similar letters of reference indicate corresponding parts.
A is the cast-metal tube; B, the step; and C , the arms thereof, for bedding in the earth to support the pole; D, the ears for the braces E, said ears being cast on the pole and the braces being fitted through them, with screennuts F above for straining them to adjust the pole to a rertical position. Said braces may be made fast to the arms, or pass through them and be secured by nuts G below. H is the collar or ring caist on the pole for holding the lomermost ring; and I, shoulders for the other arms, formed by successive reductions of the size of the pole for the other arms. K represents the arms, which may be made of metal bars, with a large hole at the center to fit on the pole suugly abore the shoulders, each arm having its hole corresponding in size to that of the pole above the particular shoulder whereon it is to rest, said arms either being made in
one piece and pat on orer the top of the pole; or it may be divided in two parts longitudinally and verticalls, and bolted together by boits L . Y is the lightning-rod, and Y the insulating. tube. Said rod will project abore the top of the pole, as at 0 , being insulated by an India rubber cap, P, fitted water-tight on the top of the pole, and the hole through which the rod passes being packed tightly to prevent the water leaking out. The said arms will hare holes for holding the wood pins Q or Indiarubber insulators R, which may screw into the holes of the solid arms, and they may either screw into the dirided arms, or they may be made larger below the arms and be held by such eulargements when clamped by said divided arms.
The arms should be galranized; the parts below ground should be coated with coal-tar, and the parts of the hole above ground should be scaled and primed with red lead.
Having thus described my invention, I ulaim as new and desire to secure by Letters Pat-ent-

1. A tubular cast-metal telegraph-pole, naring the collar H and shoulders I for supporting the arms, formed in the manner described.
2. The said cast-metal pole, provided with ears D, and stepped in and braced to a metal bed-piece, B, with arms C, by adjusting braces E, substantially in the manner described.
3. The lightning rod M, insulating tabe I, cap P, and extension O, all combined and arranged with the pole, substantially as specified.

FRAYCIS BOYD.

Witnesses:
Louis S. Sterrit,
Jas. B. B. Brendage.

114
 TrivITED STATES PaTENT OFFICE．
 thomas jemingg mocarver，James athey，and berrymay jen－ SINGS，OF OREGOX CITY，OREGON．
 IMPROVEMENT IN TELEGRAPH－POLES．

Specification forming part of Letters Patent No．139．593，dated June 3， $187::$ ：application filed May 18,1 cit．

To all whom it may concern：
Beitknown that we，Thoyas J．McCarver， Jayes Athey，and Berryicay Jennings，of Oregon Citr，in the countr of Clackamas，and State of Oregon，hare in rented a new and useful Improrement in Telegraph－Poles：aud we do hereby declare that the following is a full， clear，and ezact description of the same，ret－ erence being had to the accompanyiug draw－ ing forming a part of this specitication，in mbich－

Figure 1 is an eleration of a sectional tele－ graph－pole made of angle－iron．Fig． 2 is a view of the inverse side of a part of the up－ per portion，showing the arrangement for at－ taching insulators for the mires．Fig． 3 is a cross section of Fig． 1.

Our invention consists of sectional tele－ graph poles of angle－iron，either cast or rolled， as hereinafter described．

The telegraph－posts are made in sections， and tapering from the base to the top，and when made of cast metal the ride flanges hare long openings or slots b ，in rhich pius may be inserted to adjust the wires．The
cross－pieces \boldsymbol{c} may be cast in the augle between the wires by which to climb．

These sections are connected togetluer by clips d on the end of oue section，between which aud the end of said section the end of the other section will be fitted by sliding in endwise，as clearly shorn in Figs． 1 and 3.

Sinuilar clips or dovetailed－rrooved clips f ， mill be applied to the upper ends of the top sec－ tious for reception of the insulators for hold－ ing the wires．
The posts of this form are cbeaper and more durable than those of ans other form before used．

Haring thus described my iurention，what 1 claim as nerr，and desire to secure by Let－
ters Pateut，is－
A telegraph－pole made of metallic sections， constructed substantially as described．

THOMAS JENSIズGS McCARVER．
JAMES ATHEY．
BERRYMAN JENIINGS．
Nitnesses：
ARTHCR WARNER，
William Pitt Beress．

United States Patent Office.

HIRAM DODGE, OF BEATER DAM, WISCONSLS, ASSIGNOR OF ONE-HALF HIS RIGHT TO COLCMBES GERMAIN, OF SAME PLACE.

IMPROVEMENT IN TELEGRAPH-POLES.

Specification forming part of Letters Patent No. 140.255, dated Jure 24. 1873; application filed
May 24, 18:3.

Fo all chom it may concern:
Be it known that I, Hirdy Dodge, of Dearer Dam, in the country of Dodge and in the State of Wisconsin, have in rented certain yew and useful Improrements in Telegraphpoles: and do berebe declare that the following is a full, clear, and exact description thereof, reference being had to the accompanying drawings and to the letters of reference marked thereon, making a part of this specideatiou.

The nature of my invention consists in the construction aud arrangement of a telegraphpole, as will be hereinater more fully set forth.

In order to enable others skilled in the art to which my inrention appertains to make and use the same, I will nor proceed to deseribe its construction and operation, referring to the annexed draming, in which-

Figure 1 is a side eleration, and Fig. 2 a vertical sectiou of my telegraph-pole.

A represents the ground-support or base, made either of wood or cast-iron, and firmly placed in the ground in the same mamuer as telegraph-poles usually are put down. If this base A is made of rood it should tirst be immersed in hot coal-tar, so as to obtain a perfect coating of the same to preserve the wood. Atter it is firmly placed in the ground the pole B is placed on around the top of the same and fastened by a band, a, being firmly driren doirn, crossing a slot, b, in the lower end of the pole. The pole B is made in cylindrical or conical form, of galvanized iron,
sheet-iron, or other suitable metal, made impervious to the effects of water or the weather by being, while heated, submerged in coal-tar. On the upper end of the pole B is a cap, C, constructed as shomn in Fig. 2, so as to keep out the falling rain. and at the same time act as a rentilator far the dampness that may collect inside of the pole. On the pole B are collars or rests D D, for securely fistening telegraph-wires to the pole. Through arms d d projecting from said collars or rests are apertures for holding the wooden plags, on which rest the glass insulators usually used on the old style of rooden pole. Around the pole B, and through the collars $D \mathrm{D}, \mathrm{I}$ intend to place rubber bands or collars for the purpose of prerenting the contact of the wire with the metallic pole in case of accident or breakage of any of the parts.

Haring thus fulls described my inrention, what I claim as ners, and desire to secure by Letters Pateut, is-

The combination of the base A, pole B, baud a, cap C, collars D D, with perforated arms d d, and rubber collars, as described, all constructed and arranged substantially as and for the purposes herein set forth.

In testimony that I claim the foregoing I have hereunto set my hand this 26th day of July, 18 İ.

HIRAM DODGE.
Witnesses:
J. E. Hosmer,

Juhy Thomas.

114

 UNITED STATES PATFNT OFFICE.

 UNITED STATES PATFNT OFFICE.
 WALTER C. JOHNSON AND SAMUEL E. PHILLIPS, OF CHARLTON, ENGLAVD.
 IMPROVEMENT IN INSULATORS FOR TELEGRAPH-WIRES.
 Specification forming part of Letters Patent No. 201,615, dated March 26, 1878; application filed Augnst 22, 1877.
 To all uchom it may concern:
 Be it known that we. Walter Claude Johyson and Samiel Edyund Phillips, of Charlton. Kent, England, have invented Improrements in Insulators for Telegraph-Wires, of which the following is a specitication:
 The object of this inrention is constructing telegraph-wire insulators that they may contain a quantity of insulating hydrocarbon fuid, such as paratine-oil, which will not support a film of moistrure or dust on the surface, whereby we produce a better and more uniform insulation, especially during foggy and rainy reather.
 We are arrare that insulators have hitherto been made with inside cups or receptacles, containing parafine-wax or other similar solid matter, and we make no claim thereto, our inrention being limited to employment of the oil, or equivalent insulating tuid. By the use of the fluid instead of a solid, we secure a more perfect and permanent insulation, and aroid the danger of the insulation being destroyed, which is liable to occur in the erent of the solid cracking or shrinking, or of dust setting on its surface and forming an absorbent for the moisture of the atmosphere.
 The insulators, of porcelann, glass, or other suitable material, may hare the Huid-receivers within themselres, the insulator acting as a cover, to shield the liquid from dust and dirt; or a separate receirer mas be arranged under or within the insulator; or a metallic or other cover may be arranged above the tluid-receiver, which cover may be stationary or be caused to rotate by the action of the wind, whereby any web or filament may become broken.
 The inrention is clearly represented in the annexed drawings.
 Figure 1-disan insulator, of porcelain, of ordinary form exteriorly, the wire being fastened around or to the groore B, as is usual. This insulator is hollow, and has an internal lip, C, turned up, by which a receirer or reservoir is
 formed for containing hydrocarbon or other insulating flaid D. E is the stem or bolt by which the insulator is secured to the post, building, or other structure.
 Fig. 2 shows a half-sectional riew of an insulator, \mathbf{A}, as a cover to a separate fluid-receirer, F, which is thus protected from dust and dirt. The insulator has a ring, G, dipping in the fluid for the perfect insulation of same.
 Fig. 3 represents a half-sectional view of an insulator, by which a wire can be suspended in the usual manner. This insulator has its upper part recessed, to form a receiver or reservoir for the insulating-fluid D, and a cover, H, is fitted above, upon which, in some cases, we affix vanes or fan-blades I, as in Figs. 3 and 4, so that the wind may revolve it from time to time, aud thus break any web or filament which might otherwise conuect the insulator to the cover, and so to earth.
 We claim as our invention-
 1. In an insulator for telegraph-wires, a nonconducting fluid contained in a suitable cup or receptacle, and cutting off the surface connection between the wire and the exterior of the insulator, substantially as shown.
 2. A telegraph-insulator having paraffineoil or similar non-conducting fluid mounted therein, substantially as and for the purpose described.
 3. A telegraph-insulator having a rotating cap, provided with a rane, substantially as shown, foc the purpose of causing the wind to move the cap and break the continuity of any surface film of moisture which may form upon the insulator.
 WALTER CLAUDE JOHNSON. SAMUEL EDMUND PHILLIPS.
 Witnesses:
 Join Suri, Charlton.
 Joнi Neas, Charlton, Kent.

Applying the Glaze

The glaze ingredients, be they raw or fritted, are powdered and mixed with water and clay into a mixture called a slip. Then the pieces to be glazed are either sprayed with or dipped into the slip. Too fluid a glaze causes sticking, or bubbles and blisters in the coat; too viscous a glaze causes other faults, such as "crawling," or failure to smooth out. Somewhat rarer methods of application involve dusting or painting the pieces with the glaze ingredients.

Colored Glazes

Glaze is a smooth, glassy coating. Often it is colored; it can be glossy or dull in finish; or spotted with crystal specks. Special ingredients are responsible for the colors and textures of glazes. Compounds of certain elements, many of them metals, give color to ceramic melts. For instance, red is produced by gold, uranium, selenium, or combinations of chromium and tin or of chromium and aluminum. Cadmium and vanadium compounds give yellow. Green is produced by copper or chromium, blue by cobalt, purple by manganese, brown by iron or nickel.

In addition, colors can be altered by the conditions of firing. Instead of green, copper can be made to yield blue or red. Iron can produce green, blue, or red; uranium, black; cobalt, pink or purple; vanadium, purple. The ceramist adjusts the firing so as to make the pigments produce either normal or "transmutation" colors. To illustrate this point, consider a bottle that is colored brown by iron. The same iron under different conditions is responsible for a beautiful light green, called "celadon," seen on Chinese plates and vases.

Whenever red or gold colors are desired in combination with other colors, an additional firing is required because these colors burn out at high temperatures.

White glass, such as milk glass, the white glazes that cover toilet porcelain, and the white enamels that coat refrigerators and stoves contain a white pigment called an opacifier. Compounds of tin, antimony, zirconium, and phosphorus are the usual opacifiers.

Unusual Effects with Glazes

There are beautiful, crystalline glazes that have feathery, colored crystals embedded in them. These glazes contain ingredients that induce crystallization during cooling. Manganese compounds, for example, promote crystal growth. Bismuth compounds produce an iridescence that gives a glaze of mother-of-peari luster. Other compounds produce metallic lusters. In all cases the glaze reflects its composition and its heat treatment, be it bright or dull, opaque or clear, uniform or speckled, smooth or rough.

[^0]: * An Apologie or Declaration of the Power and Providence of God in the Government of the World, 1630.
 \dagger Spectator, No. 241, 1711, and Guardian, No. 119, 1713.
 \ddagger The Pleasures of Imagination, 1744
 § The Student; or, the Oxford and Cambridge Missellany, 1750.

[^1]: - Philosophia Magnetica, \&c., chap. x. A brief letter from a young Oxomian to one of his late fellow pupils upon the subjoct of Magwetiom, Oxonian to one of his late fellow pupils upow the subject of Magwetism,
 London, 1697, contains, at page 10, a "draught " Which illustrates very well the arrangement of magnetic lines of force, and which differs
 but little from the graphic representations of the present day. The? very well the arrangement of magnetic lines of force, and which differs
 but little from the graphic representations of the present day. The curious little pamphlet is one of many gems in Mr. Latimer Clark's
 library.

[^2]: * See Notice de la vie et des facrits de Grorge-Louis Le Sage de Genive, \&c., par Pierre Prévost, 8vo., Genève, 1805, pp. 176-7. All writers on the Electric Telegraph, copying Moigno (Traitt de Taltgraphie Electrique, Paris, 1849 and 1852), say that Le Sage actually established his telegraph at Geneva in 1774-an assertion for which we have not been able to find any authority.

[^3]: * Mr. Sabine appears to have studied Izarn, yet he writes thus, at p. 23 of his History and Progress of the Electric Telegraph, and edit., London, 1869 :-" After explaining the way to prepare the apparatus, which consists simply in putting a fredy suspended magnet needle paralled and close to a straight metallic conductor through which a galvanic current is circulating, he describes the effects in the following words," \&c. The words that we have italicised are altogether misleading.

[^4]: * Our translation is made from the reprint at p. 8 of Govi's \rightarrow Romagnosi i IElettro-Magnetismo.

[^5]: ${ }^{1}$ For the use of the earth circuit before Steinheil's accidental discovery, see my ' Hiatory of Electric Telegraphy,' pp. 343-34.5.

[^6]: *Gilbert's Ann. der Physik, vol. xiv. pp. 26 and 385 ; and Hamel's Historical Account, \&ce, p. 17 of Cooke's reprint. Fechner, of Leipsic, after referring to Basse's and Erman's experiments in his Lehrbuch des Galvanismus (p. 268), goes on to explain the conductibility of the earth in accordance with Ohm's laws. As he immediately after alludes: to the proposals for electric telegraphs, he has sometimes been credited with the knowledge of the fact that the earth could be used to complete the circuit in such cases. This, however, is not the fact, as we learn from a letter which Fechner addressed to Professor Zetzsche on the 19th February, 1872 (Zetzsche's Geschichte der Elehtrischen Telegraphic, p. 19).

[^7]: - Sturgeon's Annals of Elctricity, vol. iii. pp. 450-2. Dr. O'Shaughnessy (afterwards Sir Willian O'S. Brooke), the organiser of the East Indian telegraphs, claims to have independently discovered the earth circuit, and points for evidence to his paper in the fournal of the Asiatic Sociely of Bensal, for September 1839, pp. 714-31. See his Electric Telegrapłh in British India, London, 1853, p. 21.

[^8]: \square

[^9]:

[^10]: 15

