

Mr.Anthony De Nonno
 Cinematographer, Artist, and Friend
 Through Whose Private Files
 We Were Able To Obtain Information
 As Concerns
 SR. ANTONIO MEUCCI
 With Special Thanks To Mrs. Theresa Cappicci
 Whose Kind Services Made Further Retrieval Of Meucci Documents Possible
 AND
 WITH ESPECLAL MENTION
 THE LATE HONORABLE MR. JOHN LA CORTE OF THE AMERICAN-ITALIAN HISTORICAL SOCIETY
 Whose friendship I had but for a brief moment Whose gallant life's work affirms
 SR. ANTONIO MEUCCI DISCOVERER OF PHYSIOPHONY THE TRUE INVENTOR OF TELEPHONY THE TRUE FATHER OF WIRELESS COMMUNICATIONS, DIRECTIONAL RANGE-FINDING UNPOWERED VOCAL COMMUNICATIONS FERRITES
 (1847)

IT IS NECESSARY TO GIVE JUST THANKS TO

M. Nese, G. Schiavo, and F. Nicotra For Textual Retrievals of the Meucci Court Proceedings, Meucci Diary Extracts, Personal Files, Models, and Photographic History

Vril Science studies eidetic meaningful communion. Vril Science examines communal transactions of meaningful content. Meaning and validity are the central attributes of the Vril Worlds. Meaning is fulfilled during Vril eidetic world transactions. Vril meaningful contact collimates, expands, and greatly intensifies Vril auric striations.

Primitive sensory examinations of inertial detrital haloes indicate that inertial portions are contractile during Vril transactions.Inertio-auric haloes of others contract and luminate intensely during Vril transactions with participants and communicants. Vril auric impacts in inertial space produces densifications and luminous condensations.

Vril activated aurae enlarge, modify, inflect, and permute innate Vril states. Vril contact envelopes participants. Vril thread eidetic contact is true and complete sensory experience. Vril conduction through the neurology enables viscero-eidetic experiential transaction.

Artificially activated aurae engage Vril densifications and expansions. Vril impacts create inertial entourage devoid of potential meaningful eidetic transaction. Displays incapable of engaging Vril communions are inertial. Inertial space is a
resistive principle possessed of limited active extent and reach. Vril responds to humanly arranged inertial interruptions for greater purpose. This Vril Law of sustenance is not mechanistic in action. Vril is personable.

Inertial technology forces Vril aurae to expand and contract. Vril intent matches and surpasses inertial presence to preserve organismic regional integrity. Native Vril states exceed all inertial empowerment. Vril insensate threads are sensed as prickling sensations when contact is not well-designed.

Mechanism does not enjoin meaningful experience. Vril is the energetic holistic presence which engages recipients in transforming experience. Vril threads enter synapses of ganglial centres in organisms directly. Vril viscero-eidetic transactions exceed inertial sensory impressments.

Objects and organisms conduct Vril striations. Aurae are Vril striated spaces. Acoustic exchange is fundamental auric exchange. Inertial entourage in air is minimal. Magnetic transactors give intensified viscero-idetic transaction when aurically stimulated via vocal utterance.

Human expressions are auric expressions in absence of
acoustic impulses. Vril undulations occurs among striations via Vril quality inflections; not through densifications and rarefactions. Vril modulations are not mechanistic in nature. Vril densifications permit richer contact with transacting communicants.

The frictive attributes of specific minerals and metals is a result of the proportion between organismic vril conductivity and inertial resistivity. Certain minerals and metals (during specific seasons) manifest auri-plasmic frictive effects in excess of mechano-frictive effects.Friction is the result of Vril inertial interactions.

The true intelligence of the universe is experiential: visceral and eidetic intelligence flood all materials. Contacts with matter is contact with the distributed intelligence of Vril space. Furtive material contacts transact lasting eidetic impressions. Short interrupted contacts deposit eidetic traces which are largely ignored. The universe of matter is an available continual transaction with Vril itself. Bright "clear sight" pathways are found just above the ground surface. Leylines are whitesheathed Vril threads. Vril aerial routes may be mapped. Persistent Vril display sites mark permanent Vril connections among insensate transactive space.

Vril generates the manifestations of eidetic node. Vril is pure consciousness. Vril is pure experience. Vril is revelation, eidetic content, and vision. Vril gives distant rapport and exotic experiences of unknown Vril Eidetics. Vril gives comprehension and understanding. Vril alters recipients to enter greater Vril Eidetics.

Vril threads appear glowing black. Vril threads flood space. Vril threads radiate experiential space. Vril threads enter synapses of ganglial centres in organisms directly. The Vril sensory system is the primary sensory mode of the human organism. Intuitions and visions are received directly into the Vril sensory system.

Vril connectivity extends experience and consciousness into the external and permeating Vril-ganglia of the universe. These are found distributed throughout the universe. One may connect with local Vril ganglia among the rocks and woods of near regions. One may interconnect despite the seemingly vast distances of physical space. Vril Eidetics remove experiential dimensions of distance.

Ferruginous and carbonaceous substances concentrate and collimate the pure eidetic of Vril threads in an organismically "soft" manner.

Atoms and particles are detrital discharge foci. They are found at sites where eidetic energy shears inertial space. Particles appear when matter is impacted. The sphericity of inertia is manifested only with motional components. Naturally appearing sphericities imply that expansive and contractile impacts are occurring throughout space. Vibrating objects acoustic sounds permeate the Vril environment. Human reactions to material arrangements were studied by the alchymysts and radionists. Inertial reactions without human regard were studied by the inertialists. Ferruginous and carbonaceous materials may be stimulated to release humanly sensed conditions. Ferruginous matter is Vril conductive in the human
organism. Not all elements and materials are humanly Vril conductive in the organism.

Vril tonal objects bring auri-acoustic Vril Eidetics. The human organism is sensitive to these regionally ringing sounds. Art objects of specific material bring Vril Eidetics into enclosed volumes of space. Vril Eidetics alter and modify the fundamental experiential tone of a building.

Certain persons are highly Vril conductive and summon surrounding minds into their activities. Certain persons can sense Vril Eidetics with great precision. These individuals are able to spontaneously select harmonies, tones, and pitches, melodies, phrases, and metaphors with inevitable accuracy. These codes and signals match the carved space whose eidetic node draws them.

Pitch is a humanly valuable term which describes spaceexperience. Pitches are found to describe very defined spatial directions. Pitch lines are localespecific. Pitch lines correspond with ray lines in the environment. Higher pitches verge toward space. Lower pitches verge toward the ground directly. Midrange pitches often assume lateral and angular orientations with respect to the stratification of earth and sky.

Hand held tuning forks may be used in wandlike manner to determine experiential spatial crystallography. Vril threadways are determined through human organismic sensitivity. Vril maps are constructed via hand held Vril wands of specially configured materials. Crystallographic axes of space determine experiential entrance and passage. Ideations proceed along locally fixed axes.

Pitches create complex Vril reactions. Pitches are projected eidetic transactions of struck materials. Projected pitch eidetic transactions give tonal experience, eidetic content, and context. Pitches stimulate physico-inertial pulsed movements. The humanly valuable portions of these events are discerned with respect to effects on consciousness and experiential sensation. Vril eidetic is experiential eidetic. Vril eidetic is not the inertial eidetic of mere movement.

Suspended materials each measure specific Vril orientations. Suspended wandlike measuring devices alter orientation when humanly approached. Materials define specific Vril indices in space. Materials are generated, oriented, crystallized, and thrust upward through Vril

Pitch and material orientations may be measured. Such measurements reveal Vril distributions of space. Regions are known and discerned by their attributes. Regional attributes intuitively delineates borders of conscious identity. Specific materials may be used as wandlike tuners. Wandlike tuners indicate surface Vril thread directions which traverse and underlie locales.

Vril conductive experience is the very fundamental synaesthesic space of being. Objects which have been moved and struck behave as special Vril transactors. Inertial dissolution is effected through the energy of the strike. The objects then connect the human consciousness with Vril Eidetics. Materials conduct and relate Vril eidetics to operators. Materials occupy specific Vril eidetics in which they were generated and remain sustained.

VRIL CONNECTION

Vril undulations are non-acoustic transactions and may be experienced directly through neural systems (Gray, Meucci). Vril visceral sounds provoke the human organism into deep experiential responses. Vril sounds are meaning filled because they herald the arrival of special and powerful deep Vril eidetic transactions. Visceral sensory experience exceed inertial sensory impressment. Viscero-eidetic sensory experience is meaningful, penetrating, sensually rich, holistically complete, and continuous.

Neural synapses are enjoined in the Vril thread continuum. Physical ganglia are apparent forms representative of more essential pure Vril organismic extensions and connectivities. In this sense organismic unity does not formally exist. Eidetic transactions with minerals and metals show the non-existence of individual organismic autonomy. Specific eidetic projector sites transact with such power that the eidetic experience often exceeds the apparent scene.

Elisha Gray made an independentre-discovery of Meucci's physiophony with frictive contacts. Inertially empowered glowing haloes expand Vril aureoles. Electrical activations irritate and expand aurae to increase consciousness (Reichenbach, Starr-White, Tesla, Kilner).

Increased auric intensities permit vastly expanded sentient transaction. Vril expands to match the irritation. Increased auric activity does not require electrical irritation. Extraordinary viscero-eidetic communications take place in specific systems. Electric activity does not destroy the natural Vril transactivity of systems. The use of magnets requires vocal utterance for stimulating the eidetic content of the lodestone. Forced electro-impulses greatly expand the aura (Tesla).Vril aurae are innately withdrawn and enfeebled as a result of inertal immersions.

Viscero-tonic effects of Vril capacitors are notable. Such actions are strongly implied in designs by Meucci, Rossetti, and Stubblefield. The inclusion of electrical strain among components is not necessary yet provides intriguing insight into the manner in which Vril and inertia interact. Certain of Gray's designs required the curiously reduced frictive effects which eidetically transactive electrical stress produced in the organism.

Spark gaps are intense inertial white raysheath reactors. Ordinary electrical tensions are accompanied by a mild whitish inertio-eflluence. Unidirectional high voltage pulses endraw white-inertial fibrils into the stressed area. Such stresses are dissolved; and the resulting black radiance which emerges in the surrounding volume of space is notably vitalizing. The black radiance is the presence of Vril. Viscero-idetic transactions take place in Vril blackness. Vril and inertia interact.

Static inertia is difficult to organismically penetrate. Moving inertia permits organismic ease of penetration by spacepermeating Vril. Electrical spark gaps pump inertial fibrils along their length. Fibrils which enter the spark-gap area are carried along the line and through their driving circuits as "charge". The anomalous appearance of"charge" in otherwise uncharged systems proves this action.

Wispy white inertial fibrils enter electrical stresses with no
original charge volume. These create the appearance of "sudden high charge volumes". Tesla noted this effect in Colorado. Such use of extreme electric stress alters human consciousness through specific Vril interactions which result. Extraordinary deep eidetic perceptions of one's surrounding district are received when exposed to mild electrical stresses. Surrounding tracts of land are eidetically experienced "as from a height". When mild low tension shocks are organismically applied inertial accretion and concentrations along the body discharge path becomes mobile.

The highly interrupted electrical stresses produced through Lahovsky's spark-gaps allowed the dissolution and motivation of inertia into the spark-gap. Exposure to such sparks removed organismic rigidified inertia by attracting it forcibly. The sudden spaced feeling after receiving an electric shock is due to the surficial removable of inertial with a resulting increased sensitivity to Vril eidetic trans.

Extraordinary deep eidetic perceptions of one's surrounding district are received when exposed to mild electrical stresses. Surrounding tracts of land are eidetically experienced "as from a height". When mild low tension shocks are organismically applied inertial accretion and concentrations along the body discharge path becomes mobile.

These actions were erroneously called "electrical" because of certain physiological sensations encountered when absorbing them. Vril may release inertial detritus (charges) in the flesh because of absorbed inertial space.

Mesmer and Galvani studied frictions which exist between protoplasm and special capacitors. Elisha Gray discovered the frictions which exist between the human organism and electrically charged surfaces. Tones were emanated from arrangements which enjoined hands and resonators. Gray investigated the behavior of transactive tones in end-terminated transmission lines. Gray developed Vril-ganglial transmitters. Empathic transmission among communicants is possible through transactive entunement of Vril signal threads.

The super-position of electric stresses alters friction (Gray).Moderate electric stresses reduce friction considerably by dissolving contact site inertia. Elisha Gray's organo-tonic systems powerfully transacted Vril eidetic experience. He examined the meaning-rich charge of harmonics and harmonic sequences. Bells in cathedrals are Vril resonators and capacitors even when not physically sounding.

Gray's ringer coils were prolific Vril transactors. Gray utilized line-tones to stimulate Vril transactions. Tones alone are frequently capable of surreptiously and mysteriously transacting entire intent and messages from the transmitter site. By what strange means do we often know who is calling us...through the mere sounding of a telephone signal? Telegraph operators were able to know their station callers by tone; and identified fellow operators by their "touch".

Gray's harmonic telegraphs are extremely sublime in concept and transactive ability. Tuning forks powerfully engage organismic Vril projections. Tones received engage recipients in eidetic transactions. Elisha Gray is the man who most appreciated and developed the eidetic transactions transmitted through tones. His designs "rang" with meaning-rich
$?$
tones. Tones selected were intuitively designed for the powerful stimulation of visceral ganglio-sensory centers.

There are inherent tones which ring out from every object as part and parcel of material existence in the Vril matrix. In absence of frictive contact or mechanical impulse all objects continuously ring in visceral-sensed harmonics. Objects represent and transact tones with us. This is especially true when objects are ground-connected.

Sounds carry two distinct signals: one a viscero-eidetic one and the other the acousto-inertial one. Lights also perform the same function and we will discuss the design of "cymoscopes" in a future volume. It is not rare to watch a flickering light or television display and suddenly (repeatedly) receive an intuitive thought which has nothing to do with the visual transmission.

Such tones become audible when transcendent Vrilsurges are monitored by organismic response. Telegraph poles became especially vibrant with a mysterious tone during the night. Observers reported these tones to arise "from the ground". Poles were conducting Vril transactive energies with space. The diurnal emergence of ringing tone is heard in every enclosure just after midnight.

Vril energy is more visceral than acoustic in these designs. Patents which bridge the gap between telegraph sounders and telephones (E.Gray) are notable Vril eidetic transactors.

Tones trigger meaning-charged thought sequences. Empathic transmission is possible through tones alone. Gray's organ-pipe switch differentiator. Other resonator switches are notable (Gower). Specific incoming resonances triggered specific switches. Such resonators permit meaningful exchanges with minimum code or use of speech in anomalous communications phenomena.

Elisha Gray re-discovered the physiophony of Antonio Meucci while working with charged metal surfaces and frictive contacts. Mr.Gray's patents are numerous and significant. We have several articles which indicate the extensive use of these nerve-induction phenomena in early experiments with people who are unable to hear. In many instances, the use of these instruments enabled the deaf to relearn the normal modes of speech.

Elisha Grey developed simple means for encoding terminated lines with eidetic content-rich tones. Such organically developed tones were conducted in Vrilladen iron wires. These tones suggested strongly empathic eidetic contents despite their low density of articulated code. Organic tones suggested tantaliving eidetic contents to those who engaged them. Vril eidetic contents surge through the ground and space. Vril eidetic contents enter tones and thread their way through distances and Vril Eidetics to make passageways through us.

Materials are not themselves the true source of sounds heard when their mass is struck. Objects receive and transfer Vril energies into the inertialized apparent world when struck. The apparent world is of itself dead. The strike momentarily dissolves and suspend inertial rigor. Eidetic tones are then communicated by these into the experiential space.

Viscero-telluricsounds are manifestations produced through Vril eidetic transactions. These are spontaneous emergent
tones which flood and resonated enclosures. They are possessed of an ability to enhance organismic transaction with very fundamental eidetic worlds. These sounds make their appearance after midnight (2-4 A.M.). These sounds are heard with ears closed and are much louder with ears closed than with ears opened.

A remarkable reflex-period occurs shortly after exposure to physiophonic music. Vril transacts organismic healing effects through discharges effected above the ground (latera). These proceed along the Vril channel. The physiophony of Meucci and Gray have a physiologically beneficial action on participants.

Organismic contacts with electrical negative terminals only occurs with vocal utterance. Musically pulsed negative terminals magnify Vril viscero-eidetic transactions. The experience of musically modulated electric stresses through the body. Physiophony provides much more than audible sounds at the finger contacts. Vril eidetic transactions proceeds from upper space down; and bathes the participant in a column of glowing black radiance. This vision resolves into a night-time aerial view of one's immediate local beyond the walls. Aerial views of velvet black treetops are not uncommon. Eidetic experience experiences views limited to the local Vril channel

ANTONIO MEUCCI

The actual remarkable ability of entraining organismic neurology to experience non-acoustic music and speech was the special realm of Antonio Meucci. Antonio Meucci was the true and original discoverer of physiophony in 1842.

Vril Conduction is something we must learn more about. It is definitely related to a group of phenomena discovered by Antonio Meucci in 1847; when dealing with contact communications. Sr.Meucci accidentally received a "nerve induction" signal through a long charged conductive wire which transmitted another man's voice. The transmitter was a simple copper tongue-depressor used in a medical "shock coil" setup.

In 1847, Antonio Meucci discovered that high voltage electrical conductors could be used to transmit audible sounds ... without microphones or diaphragms! His transmitter and receiver consisted of nothing more than 2 copper tonguedepressors and ground plates. Nevertheless with this arrangement (charged to a high potential) it was possible to clearly "hear" and speak across 80 feet of wire. These discoveries were made in Havana, Cuba; before Mr.and Mrs. Meucci emigrated to the United States.

Meucci's great discovery paves the way for viscero-eidetic (empathic) transmission systems. The Meucci caveat is the very first of its kind I have discovered in the scientific records. The means through which nerves can directly "speak" and "hear" is a Vrillic phenomenon. Meucci's later experiments in acoustic telephony predates Bell by some 15 years, and was an early victim of corporatesuppression.

Meucci discovered the reality of transmitting eidetic content and acoustic code (audible words) without batteries. Vril power in the ground was used by Meucci to transmit through great distances. Meucci discovered the transactive power of magnets when secured with grounded terminals. Meucci
employed batteries of magnets in place of electrolytic batteries. Rossetti and others also dispensed with batteries entirely.

There were those who developed systems for verbal transmission alone. These designs magnified the acoustic signal Vril supplies viscero-eidetic content irregardless. Metals are eidetic radiators. Metals are potent eidetic radiators when grounded. Galvani measured eidetic radiances through both human and animal organisms. Metals held in the opened mouth emit eidetic radiances which may be felt. Meucci discovered the empathic potential of a charged wire. Meucci transmitted eidetic messages without the use of acoustic artifice.

The nerve force (shout) of the man was transmitted to Sr . Meucci 80 feet away in another room. Meucci felt the shout in his body. The minor observation of an acoustic effect near the electrode was developed into an acoustictelephone. Physiophony is the major discovery of Meucci.

Antonio Meucci discovered that empathic transmission and eidetic transactions could be obtained through iron wire lines. Meucci's true, sensitive, and original genius recognized the significance of such transaction. The true origin of physiophony and nerve-induction telephony point to Meucci as their inventor. Physiophony is the transmission of meaningful messages and eidetic experiences via nerve-induction.

Meucci re-designed his primary discovery into the world's first audio telephonic system; and operated this system continuously for more than 20 years before Bell. Meucci's models were the world's first acoustic telephones. He developed several other astounding inventions in quick succession. Visceral transactions include audible sounds. Meucci detected sounds in lines where none could have been.

Meucci was the one to discover that telephonic signals could be transacted over single lines with ground-terminated ends. He then discovered that it was possible to dispense with electrical power entirely when using specific designs employing fine copper bobbins would about lodestone. These discoveries were later duplicated by several other inventors.

In his effort to improve this design, Meucci developed what later became known as ferrites. His use of exceedingly fine iron oxides were mixed with other minerals and metals (manganese, carbon). These proved to powerfully increase the clarity and power of non-electrically transacted messages through great distances.

Meucci was the very first to suggest and experiment with the possibility of trans-oceanic communication wirelessly. His plan included conduction plates which transacted signals through sea water directly. Placed at specific stations, Meucci experimented with both single ocean-immersion plates and double immersed plate-transactors in these early proposals with success. Symmetries used involved opened and closed parallel plates of various metals (similar and dissimilar).

He was the very first to suggest that contact between the English and North American coast be attempted; there being no theoretical limit to signals which were impulsed through the conductive medium of sea water. Special geomantic regard was to be carefully taken when establishing the stations themselves. Launching the impulses out across the sea required geological precision.

The observation of dark Vril channels across the sea has been a subject of much curiosity since the days of Marconi (E.Dollard, T.Brown). Experiments have shown that ainc configurations (rods ensheathed by zinc wrappings) project excessively intense viscerally sensed collimated beams (abdominal) when water immersed. These configurations have actually released significant sensate heat-flux across a volume of space. This beam of viscerally sensed energy increased with increasing distance and became sharply collimated when salt was added to the water. The operation of Meucci's designs were Vril transactive. Vril transactivity determines the "electrical activity" of systems.

Meucci described experiments in which wireless undersea telephonic communications could be established. Experiments were described with this concept in mind. Divers were to be equipped with small aerial-electrodes. Similar correspondent aerialelectrodes were immersed at the sea-surface with resulting vocal exchange made possible.

Meucci described experiments which were designed to enable ocean-going vessels to detect and range distantly moving ships. This design was also made to enable seatravellers the ability to discern shorelines. Sea communication between ships and shore were all described and demonstrated through conduction telephony.

Meucci was the very first to develop both empathic and acoustic telephony but in empathic telephony we find Meucci's greatest and most grand achievement. Tesla would later allude to these very developments.

Bell (working in the New York Telegraph Company) stumbled on the Meucci models which were given to the company for examination some years earlier. Meucci delivered these working models so that the Telegraph Exchange might develop them into an industry. The models were portions of modelseries which Meucci had been continuously developing through the decades since his initial discovery of physiophony. In laying claim to his true and original discovery Antonio Meucci realized himself part of the company of discoverers which included Gray and Reis. Meucci recognized the entire significance of the court proceedings. He deliberated in order to irritate the paid court. Meucci calmly and dispassionately rode out his claim for the sake of the historical record, himself confident and sure that "the invention belongs to me...nothing can dissuade my knowledge of this fact". Examination of the proceedings reveals the outrageously mocking treatment of this "immigrant" by the court.

The all too frequent discovery and rediscovery of sense transmission through nerve induction was known from the time that Meucci discovered its principle of action in 1847. Others would follow along in pulse after pulse of similarly amazing such discoveries. All of these discoveries involved the instantaneous transfer of psychic energies (emotive and mental) across great distances. These frequently would involve the astoundingly simplistic artifice of "single-wire transmission".

The pattern which is observed in telephonic designs of Meucci, Rossetti, and Stubblefield involves the use of organic vocal energy to raiseVril thresholds. Organic energy is Vril energy. The human organism conducts and directs Vril through-
out its expressions of intent. Stimulating ground Vril with organically permuted Vril threads heightened sufficient energy to make startling communications. Vril was the energy which provided the powerful transfer of intent through great distances.

The absence of electrical power sources did not interfere with the powerful transmission of message and eidetic content despite great distances. In certain instances the bilocational experience, distant viewing, and empathic communion among conversants is effected through ground connections. These are not electrical phenomena. Such effects would later be investigated by later researchers (Tesla, Murgas, Shoemaker, Abrams, Drown, Hieronymus, Moray and others) when examining distant intelligence, diagnostics, and location. Bilocational rapport was one pre-eminent feature which numerous early wireless (crystal) researchers mentioned.

In several telephonic patents we see the use of isolated permanent magnets as Vril reactor sites. Dr.A.G.Bell found that permanent magnets and iron diaphragms did not provide powerful enough signal strength to transmit through even small distances with electrical power. Meucci discovered that lodestones and special ferruginous powders of exceeding fineness could produce telephonic transmissions of exceptional clarity in absence of power sources twenty years before Bell. The nature of the ground connection was the key toward rediscovering Vril Technology.

Clarity of signal requires presence of eidetic content. Several of these devices gave reportedly better response to code (acoustics). Others gave better response to eidetic content. Acoustical signals represent eidetic emanations. Human speech is eidetic undulation. The detrital products of such expression is measured as pressure waves. Code without eidetic content is not communication.

Telephonic devices responded to eidetic presence and eidetic undulations. The mere presence of a sentient organism causes these to respond. One "knows" that someone is "on the other end" in the utter absence of sound. Speech and human expression is a Vril phenomenon. Telephone receivers mediate several orders of eidetic interaction and transmit eidetic intent. Telephone receivers and transmitters conduct Vril continually.

Vril maintains conductive communion with sensitives through telephone lines in absence of human use. Vril empowers these superior eidetic transmitters in providing access to recipients. Other researchers had (falteringly) taken the chatlenge of developing Vril Communication Technology for eidetic transmission. These doorways yet remain wide and opened for you to seek out. The Bell Telephone Company absolutely vilified Mr.Meucci, Mr.Gray, and Mr.Reis for their startling claims of prior discovery. Mr.Meucci (an immigrant) held a prior caveat (1871) to the acoustic telephone; though having actually employed the use of both forms (nerve and acoustic) for conversations between himself and his ailing wife at least a decade before this date.

Through the use of legislative manipulation, bureaucratic stone-walling, and financial momentum, these true and noble pioneers were systematically eliminated from the public record.

Mesmer and Galvani studied frictions which exist between
protoplasm and special capacitors. Elisha Grey discovered the frictions which exist between the human organism and electrically charged surfaces. Tones were emanated from arrangements which enjoined hands and resonators. Grey investigated the behavior of transactive tones in end-terminated transmission lines. Grey developed Vril-ganglial transmitters. Empathic transmission among communicants is possible through transactive entunement of Vril signal threads.

Special materials permit differentiation, conductive passage, and experiential translation into Vril Eidetics. Vril threads enter synapses of ganglial centres in organisms directly. The Vril sensory system is the primary sensory mode of the human organism. Intuitions and visions are received directly into the Vril sensory system. Vril connectivity extends experience and consciousness into the external and permeating Vril-ganglia of the universe. These are found distributed throughout the universe. One may connect with local Vril ganglia among the rocks and woods of near regions. One may interconnect despite the seemingly vast distances of physical space. Vril Eidetics remove experiential dimensions of distance.

Code and eidetic content are two separate entities. telegraphy makes extensive use of code. Telegraphic systems were empirically developed to maintain the comprehensive flow of eidetic content despite the reliance on impulses. Telegraphy is an unnatural form of communication. Telegraphy is a case study for discerning differences between code (signal) and eidetic content.

The true purpose and function of every Vril Technological component is to transmit modified consciousness in human operators. Vril Science studies Vril and its potentials in order to collate knowledge of Vril reactivities.

The pattern which is observed in telephonic designs of Meucci, Rossetti, and Stubblefield involves the use of organic vocal energy to raiseVril thresholds. Organic energy is Vril energy. The human organism conducts and directs Vril throughout its expressions of intent. Stimulating ground Vril with organically permuted Vril threads heightened sufficient energy to make startling communications. Vril was the energy which provided the powerful transfer of intent through great distances.

The absence of electrical power sources did not interfere with the powerful transmission of message and eidetic content despite great distances. In certain instances the bilocational experience, distant viewing, and empathic communion among conversants is effected through ground connections. These are not electrical phenomena. Such effects would later be investigated by later researchers (Tesla, Murgas, Shoemaker, Abrams, Drown, Hieronymus, Moray and others) when examining distant intelligence, diagnostics, and location. Bilocational rapport was one preeminent feature which numerous early wireless (crystal) researchers mentioned. In several telephonic patents we see the use of isolated permanent magnets as Vril reactor sites. Dr. A.G.Bell found that permanent magnets and iron diaphragms did not provide powerful enough signal strength to transmit through even small distances with electrical power. Meucci discovered that lodestones and special ferruginous powders of exceeding fineness could produce telephonic
transmissions of exceptional clarity in absence of power sources twenty years before Bell. The nature of the ground connection was the key toward re-discovering Vril Technology.

Meucci discovered the reality of transmitting eidetic content and acoustic code (audible words) without batteries. Vril power in the ground was used by Meucci to transmit through great distances. Meucci discovered the transactive power of magnets when secured with grounded terminals. Meucci employed batteries of magnets in place of electrolytic batteries. Rossetti and others also later dispensed with batteries entirely. There were those who developed systems for verbal transmission.

Meucci developed the art of creating excessively powerful auric transactors with magnetic powders of extreme fineness. Meucci discovered that the addition of other material powders could increase the magnetic density of lodestone. Meucci developed and experimented with wireless undersea communications. Meucci was the very first to suggest that wireless sea communications be established between Europe and America. Meucci describes experiments which tested his sea-ranging and detection apparatus on behalf of distant ocean-going vessels.

His importance cannot be under-rated. His achievements can never be ignored. Antonio Meucci stands a giant in the world of invention and discovery. The kind eyes and gentle manner speak to us a world of restful and quiet dignity.

IMPROVEMENT IN ELECTRIC TELEGRAPHS FOR TRANSMITTING MUSICAL. TONES.

Specification forming part of Letters Patent No. 166,006, dated Joly 27, 1e75; application filed

Januars 19, 1875.

Case 1.

To all whom it may concern:
Be it known that I, Elisha Gray, of Chicago, in the connty of Cook and State of Illinois, have invented a new and useful Art of Transmitting Musical Impressions or Sounds Telegraphically, as well as certain new and useful Improvements on Apparatus for so Transmitting such Impressions or Sounds; of which art and apparatus I hereby declare the follow. ing to be a full, clear, and exact description.
Mr invention relates to a novel art of transmitting musical impressions or sounds telegraphically; which impressions or sounds may be utilized as siguals for the transmission of intelligence.

My invention is based upon the rell-known law of acoustics that bodies vibrating with different jrapidity produce tones of different pitch; and upon my own discovery that such vibrations can be transmitted through a telegraphic circuit and reproduced in a musical tone or note of a pitch corresponding with that originally transmitted, by including in the circuit animal tissue or other equivalent substauce, which will cause a slight resistance to the electrical current at the point of contact between such animal tissue and some resonant conductor of electricity:

My improvement consists in a new and useful art of producing musical impressions or sounds at the transinitting end of a telegraphic circuit, by causing interruptions in the electric currents of sufficient frequency to produce musical tones, transmitting said tones through an electric circuit composed in part of animal tissue, and reproducing them at the receiving end of the line by means of a resonaut body, which is also a couductor of electricity.
My improvement further consists in a new and useful apparatus for carrying out the objects of my invention; which apparatus consists of the combination of a telegraphic circuit, composed in part of animal tissue; a cir-cuit-breaker capable of producing a nusical tone; and a receiver capable of reproducing that tone at the receiving end of the circuit.
My inprovement further cousists of the combination, in au apparatus such as described, of
a series of circuit-breakers capable of producing musical tones of different pitch, and a series of keys for simultaveously or successively throwing the circuit-breakers into or out of operation, whereby sereral tones simultaneously or successirely may be transmitted through a single wire.

The snbject-matter claimed will hereinafter specifically be designated.

In the accompanying drawings, Figure 1 represents a plan or top view of a portion of the transmitting apparatus. Fig. 2 is a front elevation of the same, and Fig. 3 a diagram, showing an arrangemeut of parts and circuits which advantageously may be employed in working my invention.
The transmitting apparatus is mounted, as usual, upon a base-board, A. An inductioncoil, B, is provided with primary and secoudary helices of the usual construction. A common vibrating electrotome, C , having its cir-cuit-breaking spring a of such length, thickness, and adjustment that its vibration produces a musical tone of a certain pitch, forms part of the circuit.
It is obvious that the apparatus may be worked with a single electrotome, the pitch of which may be varied by adjustment; but where a series of tones of different pitch is desired, I prefer to employ a series of electrotomes having different rates of ribration.

Two electrotomes, $C C^{\prime}$, of identical construction but differing in pitch, are shown in the drawings, but I propose, under some circumstances, to use a series of electrotomes which will give tones extending through one or more octaves. These electrotomes are, by preference, placed in the primary circuit of the induction coil, and, when in operation, induce secondary currents or impulses in the secondary circuit of said coil equal in number to the vibrations of the circuit-breaking spring of the electrotome.

An ordinary telegraph-key situated in the primary circuit opeus or closes the conuections of the battery. Dach electrotome must have a corresponding key. In the dramings, tro keys, D D', are slown, both of which, as well
as the electrotomes, are situated in the primary circuit, which is divided or branched in order to pass through them.

Fig: 3 shows the arrangement of the circuits. The primary circuit F connected with the battery E passes through the keyes $\mathrm{D} \mathrm{D}^{\prime}$, the magnets of the electrotomes, and the primary circuit of the induction-coil B. One terminal of the secondary circuit G extends from the induction-coil to the receiving-station through animal tissue to a suitable resonant conductor of electricity, which is, in this case, a hollow metallic cylinder, H, which is connected with the ground; the other terminal, I, of the induction-coil passes directly to the ground in the ordinary way.

The animal tissue interposed between the wire and the resounding receiver to complete the circuit is shown in the drawings as consisting of the body of the receiving operator, who must be insulated from the ground; but other substances miay be employed, which must possess the specific characteristics of being conductors of electricity; of being yielding and elastic; and of having a surface of greater electric resisting capacity than its interior.
These characteristices are found in the skin of the human body; in leather moistened with acidulated water; in animal flesh covered with a nembraueous conting; in bacon-rind; in pork-skin, especially pieces taken from the ear or tail; in kid gloves; and in other substances which need not be enumerated, as they do not operate so perfectly as those above given.

The operation of the apparatus is as follows: The closing of either of the keys completes the primary circuit from the battery through the electrotome connected with the key depressed, and the circnit-closing spring of said electrotome will immediately be thrown into rapid ribration, and a musical tone of a certain pitch dependent upou the length, thickness, and adjustment of the spring will be given forth, while at each vibration the current in the primary circuit of the induction apparatus will be interrupted. These interruptions produce correspondingsecondary currents or impulses in the secondary circuit of the induction apparatus, and these secondary induced carrents or impulses are transinitted to the receiving station. Thus, for example, if the circuit-breaking spring of the electrotome vibrates one hundred and twenty-eight times per second, the tone given forth is that known as the "fundamental C," while one hundred and twenty-eight terminal secondary currents or impulses will be induced in the secondary circuit of the induction apparatus, and transmitted through the animal tissue above mentioned, forming part of said circuit, to the resonant receiver, and will, from some cause not understood or explicable in the present stage of the art, vibrate the same syuchronously with the transmitting-electrotome, and thus give forth a musical tone of the same pitch.
A metallic plate stretched by metallic strings
above a sounding. board, such, for instance, as the body of an ordinary violin, may be used with good effect to receive the vibrations, instead of the hollow cylinder above described.

From the foregoing description it will be seen that musical tones produced at the trans. mitting-station can simultaneously be produced at the receiving station however distant. When two or more keys are simultaneously or successively depressed, corresponding tones will simultaneously be transmitted, thas producing harmony or melody.

The interruptions in the primary circuit, which cause the induced secondary currents or impulses, may be produced by a mechanical circuit-breaker having the requisite rapidity. of motion, such as a revolving wheel or revolving brush; or they may be produced by providing the vibrating reed or reeds of an organ with contact-points, so that, as the reed vibrates, it will transmit impulses corresponding in number per second to the number of vibrations per second of the notes sounded by the organ-pipe.
I prefer to use the impulses of the induced secondary currents as the transmitting medium, as such use affords the most convenient way of obtaining electricity of high tension, which is that best adapted for penetrating a slightly-resisting medium, such as the animal tissue hereinbefore mentioned.

The secondary coil is not essential, as the secondary circuit iuduced in the primary coil may be utilized for transmitting the signals.

My improvement enables me to operate with a very slight amount of current, as the battery power required to produce and transmit the vibrations is less than one-hundredth part of the battery power now required to transmit signals over long laud-lines.

My improved method can advantageously be substiluted for the Morse telegraph-alphabet now in general use, as an alphabet can be constructed on the principle of using tones of different pitch for the different letters, which will admit of great rapidity of transmission.
By means of my improved apparatus not only may a tune be transmitted by a single operator to a distant point, but the different parts of such tune simultaneously may be reproduced at a common point from different places, a separate part of the tune being played at each place.

The apparatus can also advantageously be employed in studying acoustics and the physical theory of music.

The combination, with a main line, of an intermittent circuit-breaker, or a series thereof, each adapted to throw upon the line a definite number of electrical impulses per unit of time, and a key or keys, one for, and controlling, each such circuit-breaker, are not broadly claimed herein, as they constitute a part of the subject-matter of another application for Letters Patent of the United States, filed by me February 23, 1875.

I claim as my invention-

1. The hereinbefore-described art of transmitting musical impressions or sounds telegraphically, by producing musical impressions or sounds at the transmitting end of a telegraphic circait by causing interraptions in the eiectric currents of safficient frequency to produce masical tones, transmitting said tones through an electric circuit composed in part of animal tissue, and reprodacing them at the receiving end of the line by means of a resonant body, which is also a conductor of electricity, substantially as set forth.
2. The electro-harmonic telegraph appara: tus, hereinbefore set forth, consisting of the combination of a telegraph-circuit, composed in part of animal tissue, a circuit-breaker capable of producing a musical tone, and a reso-
nant conductor of electricity capable of repro: ducing that tone at the receiving end of the circnit.
3. Thè combination, substantially as hereinbefore set forth, of a telegraphic circuit composed in part of anima! tissue, a resonant receiver, which is also a condactor of electricity, a series of circuit-breakers capable of producing mosical tones of different pitch, and a corresponding series of kess for throwing the cir-cuit-breakers into or oat of operation, whereby several tones simultaneously may be transmitted through a single wire.

ELISHA GRAY.
Witnesses:
Wh. J. Peyton,
E. C. Dafidson.

Specitication fosming part of Lettera Putent No. 173,618 , dated Febrasry 15, 1876 ; application filed January 27, 1876.

To all whom it may concern :

Be it known that I, Elisha Gray, of Chiengo, in the county of Cook, and State of Illinuis, have invented a new and useful Art of Producing Musical Impressions or Sounds and Transmit ting said Sounds Telegraphically, as well as iuproved apparatus for so transmitting said sounds, of which the following is a specification:

In Letters Patent of the Toited States granted me July 27, 1875, and numbered, respectively, 106,095 and 166,096 , I have shown and described methods of trausmitting musical impressions or sounds telegraphically.

Mr present inyention rolutes to means Théfory tures wiy be plased by a single operator, and reproduced, if desired, at a distant station los apparatus described in the patents above mentioned, or in other ways, for which applications for Letters Patent filed by we and now pending.
My incention nrimpaly-eomoistg in a noyel art of producing musical impress:ons or sotituds by means of a series of properly-tunel vibrating reeds or bars thrown into actiou by means of a series of keys opening or closing electric circuits. It also consists in a novel art of transmitting tunes so produced through an electric sircuit and reproducing them at the receiving end of the line. My improvements further consist in novel apparutus for the production and transmission of such tunes. The subject-matter claimed will hereiuafter specifcally be desiguated.

In the accompanxine drasings Figure 1 shows R"phit or top view of so tinucr oury of my improved apparatus as is necessary to illustrate the sulyject matter herein claimed; Fig. 2, a vertical transverse section therethrough on the line $x x$ of Fig. 1; Fig. 3, a vertical transverse section therethroughon the line $y y$ of Fig. 2; Fig. 4, a bottom-plan view of the instrument ; and, Figs. 5 and 6 repre. - sent views in perspective of certain details of the mechanisu.

The drawiugs show an electrical organ of a single octave embodsing my inprorements in the best way now kuown to me; obviously, however, the number of the kejs may be increased, and the details of construction of the instrument may be varied in many well-known
ways without departing from the principle of iny in rention.

The mechanism is shown as inclosed in a bux or frame A. A series of vibrating reeds or electrotomes, $1,2,3,4,5,6,7,8$, each tuned to produce a note of differeut pitch, is shown as mounted in a bar, B, secured upon a stout frame.
The method of constructing and operating these reeds is fally shown and described in Letters Patent No. 165,728, granted to me July 20, 1875, and need not, therefore, be recapitalated here. Each vibrating reed forms part of an electric circuit which is opeued and closed by its respectire key $1^{n}, 2^{n}, 3^{n}, 4^{4}$, $5^{-}, 6^{\mathrm{n}}, 7^{\mathrm{a}}, 8^{\mathrm{a}}$, which takes the place of an ordinary Morse key. Each key works on a pivot c, (see Fig. 2,) and has a guide-pin, c^{1}, to keep it steady. A spiral spring, σ^{2}, holds the key up and keeps the circuits normally open. When a key is depressed, both the main and local circuits are closed by springs, D E, on the under side of the key, which forin part of the circuit. The keys are in other respects like those of an ordinars melodeon.

To counteract the tendency of one reed to be thrown into sympathetic vibration by auother when sounded, I mount a series of stops, f, each on its respective lever F, rocking ou a pivot F^{\prime}, and provided with a spring, f^{2}, by which each stop is normally pressed agaiust the eud of its vibrating reed after the manuer of the dampers of a piano. The stop is withdrawn from the reed whenever its key is depressed, by means of a lever, G, rockiug on a fulcrum, g, and actuated by a pin, G^{\prime}, on the key. The vibration of the reed is thus instantly stopped as its circuit opens, and is promptly released the moment before the circuit closes to throw it into action again. The method of running the main and local circuits in this instance is similar to that showu in my patent No. 165.728, abovo ineutioned.

By the mechanism above described, the operator is enabled to play any desired tune, which will be audible at the spot where plased and which may be reproduced audibly at a distant station by means of the mechanism described in the Letters Patent of Jaly 27, 1875, hereinbefore mentioued, as well as by other mechanism which forms the subject-

Fig1.

WITNESSES

Him Qdrinkls
oielictt

By kis Attornay
INVENTOR
Bilisíce Gícey.
WMO. Baldum

114 $\%$ United States Patent Office.

ELISHA GRAY; OF CHICAGO, ILLINOIS.

IMPROVEMENT IN TELEPHONIC TELEGRAPH APPARATUS.

Specification forming part of Letters Patent No. 175,971 , dated April 11, 1876; application Aled January 8, 1876.

To all whom it may concern:
Be it known that I, Elisea Grat, of Chicago, in the county of Cook and State of Illinois, hare invented certain new and aseful Improrements in the Art of Transmitting Musical Sonnds Telegraphically, as well as certain new and useful improrements on apparatus for so transmitting such sounds, of which art and apparatus the following is a specitication:

My invention relates to electro harmonic telegraphs of the class shown and described in Letters Patent of the Uuited States granted to me July 27, 1875, and respectively numbered 166,095 and 166,096, and iu an application for Letters Patent filed by me February 23, 1875.
The object of my inventiou is to dispense with local batteries and sounders, and all adjustment at the receiving end of the line, - which end I attain by means of an apparatus Which analyzes composite tones transmitted electrically through a wire, whereby the operator is enabled to read directly from the tone transmitted.
The subject-matter claimed hereinafter specifically will be designated.
In the accompanying drawings, which show so much of my improved apparatus as is negessary to illustrate the iurention herein claimed, Figure 1 is a plan or top view, aud Fig. 2 a side elevation, partly in section, of one of ms improvel sounders or receivers. Fig. 3 is a diagram, showing my improved transmitting and receiving apparatus as adapted to tie trausmission of several tones simultaneously.
A resonant-box, A, such as used for intensifying the sound of tuning-forks, is shown as closed at one end. A screw-bolt, D, or other suitable support secured upon this box, sustains an electro-magnet, B, of well-known construction. A vibrating tougue or reed, C , of steel, is also fastened upon the support D, and is united with oue pole of the magnet B. The free end of the reed passes close to, but dues nof touch, the other pole of the mag. net. •
For conveuience of remoral or replacement, all the parts of the apparatus may be auited by means of a common bolt and nut, \mathbf{E}.

The box is tuned to produce a maximam resonance of the desired tone, and the reed is accurataly tuned correspondingls. Consequeutly, as the reed vibrates, the sound of its fundamental tone is intensified by the resouance of the box in accordance with wellknown laws of acoustics.

If, now, the electro-magnet be connected in a telegraphic circuit in the same was as one of my analyzers described in the application aforesaid, and the note be transmitted bs meaus of oue of my trausmitters described in said application for Letters Patent, the note will sound in the box, provided the tone transmitted corresponds with that of the box; otherwise the note will not be heard. Should a second analyzer be similarly placed in the circuit and tuned to a difterent pitch, and a second note of corresponding pitch be transmitted, it will sound in the bos of corresponding pitch without affecting the other. The same rule holds with a larger number.

I hare in practice thus analyzed and reproduced as many as eight different tones siunaltancousls transmitted through a single wire; and, as I have demoustrated, by using the Morse signals eight messages can simultaneonsly be sent over each wire as rapidly as each operator can transmit with the common telegraphic key, the adrantages of my iurention are obvious.
I beliere it, howerer, to be practicable simultaueously to transmit a uumber of messages even greater than that above mentioned.

The reed C is made of a stcel bar with parallel sides, the tuning being done by cutting away the sides near the fized ends, as shown in the drawings. I find this construction, in practice, to obviate the tendency of the reeds to break into nodes, or to respond to notes other than their own, as has been the tendeucy of other forms of reeds tried bs me.

I clain as my inrention-

1. The hereinbefore described art of transmitting musical sounds telegraphically by reproducing such somuls at the receiving end of the line by means of a vibrating reed and a sounding-box of corresponding pitch.
2. The combination, substautially as hereinbefore set forth, of an electro-maguet, a vibrating reed, and a sounding-bos of corre-
sponding pitch, united at the receiving end of an electric circuit.
3. The combination, substantially as hereinbefore set forth, with an electric circuit, of a series of electro-magnets, a series of vibrating reeds, producing musical tones of different pitch, and a series of correspoudingly. trned sounding.boxes, whercby. each box is camsed to sound its orn note mhile rejecting all others.
4. The vibrating reed, coustrueted as here-
inbefore set forth, with parallel sides, and with recesses near its fixed end, whereby its tendencs to vibrate in unison with toues other than its own is prevented.

In testimons whereof [have hercinato subscribed my uame.

ELISHA GRAY. ャ

Witnesses:
Enos M. Barton, Geo. A. Bliss.

E. GRAT.

EIECTRO-EARMONIC PRINTING TELEGRAPES.
No.179,549.
Patented July 4, 1876.

E. GBAY.
ELECTRO-HARMORIC PRINTIMGTELEGRAPES.
N ง. 179,549.
Patentadjuly 4, 1876 .

WITNESSES

Hom A Ofinintls or Chis

E!! kí .Attorne!!

INTENTOR
Elisha. Gray.

 Friy 18 Fiy 18 Fig $\boldsymbol{2 0}$易
R

UNITED States Patent Office.

 elisha glay of chicago, iml., assignor, by mesne assig nments, to

 elisha glay of chicago, iml., assignor, by mesne assig nments, to THE HARMONIC TELEGRAPH COMPANY, OF NEW YORK CITY.

 THE HARMONIC TELEGRAPH COMPANY, OF NEW YORK CITY.}

IMPROVEMENT IN ELECTRO-HARMONIC PRINTING-TELEGRAPHS.

Specification forming part of Lettors Patent No. 179.549, dated July 4, 1876; application Giled
April 12, lis7.

To all ehome it may concern:
be it known that I, lilisina Gray, of Chicago, in the eonnty of Cook and State of Illinois, have invented a new and usefal Art of Electro-Ifarmonic Telegraph.Printing and an Improved Electro-Itarmonic Telegraph-Printing Apprametns, of which the following is a speceilicution:

My present invention is bised ayon a sfs-ten-atedectro-fitrminnte telentiapliy described in sumbry Letters l'atent of the United States granted to me within the past year, and in rations applications for Letters liatent of the United States mate by me, and now pembing.
The objects of invention are, tirst, to adiapt my ehector- fitmonic system of tefegitipy to the printing of a message by means of independently-movable trpee, and by means of meehanism thrown into action by the depression of a key at the transmitting-station, withont necessitating the employment of isochtononsly moving type-wheds, or of waiting for mechanism to register accomately before printing; secoud, to print abessarge on a letter-sheet, typewriter tishion, by the direct operation of keys at the tramsmittingrstation controlling local batteries actaating the printing mechanism; third, to tramsmit it series of tomes of difterent piteh throngh an electric cirenit, each tone imlepembently aretuating a local battery, to print a letter, sign, or chatace te: corresponding with that of the particular key controlling the tone ; form, to determine, in adhannce, through the action of at local battery, which one of it series of letters, mumbers, or chanacters, actuated by a common motor, shali he printed; fifth, to determine, in adrance, the point on the letter-shere at which the printing of the messinge shall begin; sixth, to move ab purticular type to the point at which the printing is done, and there to make its impression mpon the paper ley means ot mechanism thrown into action by the move. mont of the type itsedf; seronth, to feed the paper upon which the message is printel, by mechanism thrown into operation by the printing of the preceding letter; eighth, to determine, in ahsance, what particular letter of a series shall be printed, to actuate the printing mechanism by the morement of the
particular type selocted, and to actuate the feerling mechanism by the type thus selecterl; innl, ninth, to control the printing mechauisn by meuns of a compound migguet constitating, in fact, at single one.

These objects I attain by certain novel appparatus heremafter-sety forth, eite novel construction and combinations of which apparatus form a portion of the subject-matter of my invention, which is hareinafter specifically dessignated.

The-weempun ying druwing represent an apparatus embodying all my improvenents in the best way now known to me. Obrions15 , hoverer, the iletails of construction of the apparatus may be greatly varied in rarions ways withont leparting from the priaciple of my invention; and some of my improvements may be insed withont the otbers, and in apparatus differing in construction from that heroin shown.

My improved apparatus consists of two main portions-a thansmitter and a receiver.

Figure 1 represents a plan or top vien of the tramsmitter, with portions of the censing removed, to show the internal construction more clearly. Fig. 2 represents a vertical longitminal section through the transmitter, on the line 11 of Fig. 1. Fig. 3 is a bottom plan view of the transmitter, showing the method of ruming the circuits. Fig. 4 is a back view of one set of transmitting-reeds. Fig. \bar{J} is a diagram showing the method of ruming the main and local circaits through as singte tramsmitting-key and vibnating reed of a serits. Fir. 6 is a plam or topl view of the receiving apparatus, on the lime 22 of Fig. 10. Fig. 7 is a bottomplan view of the top plate of the receiver. Fig. s is as rertical lon ritulinal section therethrough, on the line $t t^{\circ}$ of Fig. 7. Fig. 9 is a transicrse section on the line 5 of Eig. S. Fig. 10 is a vertical longitulinal section on tine line 33 of Fig. 6 . Fig. 11 is at top riow of the appazaths for carrying the piaper, ind Fig. $11^{* i}$ is as vertical transrerse section therethrough on the line $\dot{d} \dot{6}$ of Fig. 11. Fig. 12 is is detail view of a portion of the local circuit-breaking mechanism which releases the paper carrying meedmism. Fig. 13 is a similar view of anothor

mentioned the paper cam be fed along so as to leave a space between cach uessage to permit of their being separated abd delivered without rewriting.

I am thas enabled bs ing invention not only to print a telegraph-message without the use of a type-wheel, and without the use of syn-chronously-moving step-by sten (or steadilyrerolving) mechanism such as has heretufore been unirersally emploged, so firr as my knowledge extends, and thus save the time necessary for the type to come into position, the operator's ability to transmit being thus, by my inrention, the ouly limit to the speed of the apparatus.

I am also enablet by iny invention to print messages in the form of a page or letter-sheet in contradistinction to printing it in a single line and on a narrow strip, as heretofore has been the case.
I ain further euabled to determine in aulvance, by the transmission of one tone, which one of a series of type shall move to make its impression, by throwing it into connection with mechanism actuated by the tone appropriated to the particular type to be printed.
 harmonic telegraph- p triwtivg, which consists in printing each letter at the receiving-station by the direct and instantancous action of a local battery coutrolled by a bitent the trans-mitting-station corresponding with sabid letter.
2. The hereinbefore-described art ef electroharmonic telegraph - pimeiug, which eousists in printing a messagre on a letter-sheet, typewriter fastion, by the direct operation of hers at the tramsmitting - station controlling foent batteries actuating the printing mechanisn.
3. The hereinbetofe-describedantor eledtrohamonic telegraporintinas, which consists in transmittin! tonest litferent pitch throngh等 electriverarcuit by wrans of corresponding
 ceming station as a veans of actuating local batteries controlling printing mechimism, Which prints a letter corresponding with that of the key controlling the particular tone which throws the local battery into operation.
4. The hercinbefore-deseribed art of electroharmonic telegraph-printing, which consists in detemining in atrance, throngh the action of ome lucal battery, which one of a series of letters, numbers, or characters shall be printed by mechanism actuated by another local batter.
5. The improved art of electro- harmonic telempuphrinting, which consists in determining in atrinte, by means of one local battery, the point at which the printing of the message, by another local battery; shall besin.
15. The hereinbefore-described art of electrohammonic telegrapherinting, whic consists in throwing forward a partiendar the to be pinted by one lucal battery, and mithing an
impression by that particular typ hy another local battery antomaticulty thrown into action by the moveruent of the type.
7. The hereinbefore-dederibed art of electroharmonic telegraph-printing, which consists in feeding forward the pader upon which the messinge is printed by mechanism thrown into operation by a local battexy controlled by the printing of the preceding letter.
s. The hereinbefore-described art of electrobarmonic telegraph-printing which cousists in tunching a key which traysmits a particular tone, by whtch one local battery determines in idvance what particunar letter shall be printed; carries furward the fype selected, which, in turu, actuates another wount battery Which makes- the impression and centrols the feeding mechauism.
9. The combination, substantially as hercinbefore setf forth, of a reciprocating type urov:ッh in one direction by the armatime of ting electio. magnet, and in the other by a spring
10. The combination, sulistintiallj as hereinbefure set forth, of the armature of the magnet, the endwise-fnoring firme, the the piroted thereou. and the retuacting spring atteched directly to the tspe.
11. The combination, substantially as heroinvefore set forth, of a series of thec, mbratble radially relatively to a common center, a shipper acting upon one of the sefies, and a series of electro-magnets, which control the action of the shipper.
12. The combination, substantialy as liereinbefore set forth, of a series of ctive a car-: rier or shifter bar acting ajon cither one ot said type, a series of electio mathets which control the selection of the type po he actui upon, and a second electro-magnet whel actrates the type selected.
13. The coubination, substantially as hereinbefure set forth, of a series of them it shift-ing-carrier acting upon one of the trpes of the series, ascries of electro-magnets which select the type to be acted upon, a second electromagnet which actuates the type selbeted, and a thind electro-magnet which actsates the minting-hamater, to matio an impreysion of the selected type.
14. The combination, substaytially as hereinbeiore set forth, of an electro-mingnet for actiating the prinfer-hanymer, and an electromagnet for actuating the paper-feeding mechanism.
15. The combination, substantially as lieneinbefore set fouth, in an electric cirenit of a vibrating reod producing a musical tone, or a definite number of vibrations per unit of time, a key controlling said vibrations, in corresponding reed at the receiving end of the line, a locab battery contrulted by satid pibrating reed or circuit-breaker, and an eleytromarnet, the armature of which carries atope, for the phrpose specitied.
16. The combiniation, substantially as hereinbefore set forth, in- om electric circuit, of a
series of circuit-breakers capable of producing tones of different liteh, abseries of corresponding receivers, is weries of bese controlling the tramsmission of said tores, a series of lowal hatteries controlled by the ribratiug receivers, and a series of them eontrolled directIy by the ellectro-magners of the local bat. terics.
17. The combination, gulstantially as hereinbefore set forth, in ay electric cirenit, of a series of transmittinorkest printing medianism controlled Ty said kers, and a shiftingkey for letermining on adrauce which letter of a suries, marked on each key, shall be printed.
18. The combinatio substimatially as here inbefore set forth, in an electric circuit, of printing mechanism, kess controlling said printing mechanism, athy thip-key, mhiuh determines the point at which the printing of the message begins.
19. The combination, salistantially as hereintefore set forth, in an electric circuit, of printing mechanism, keds for controlling the printing mechathishty which one of a series of type shall be printed, and a trip-key whic) deternines the point on the paper at whicl the printing shall berin.
20. The combiratiou, in a electric circuit, substautially ay hereinbetore set forth, of alp-
paratus for transmitticy tones of different pitch kers controlling said apliaratus, receirers whinianalyze and reproduce said tones, and independently-movable type, each controlled by its nartiontritome.
21. The combination, substantially as herejntotore set forth, of a paper-currier, a spriniz for moving it in one ditection, a feed-bar, ann a gear-wheel mounted on the armature of the electro-maguet, and adiupted to be thrown into or out of gear with the feed-bar by the morement of the armature.
2:. The combination of the paper-carrying mechanism, a feed-bar, a gear-wheel actuating said bar mounted on the armature of oue clectro-magnet, and a feed-pawl mountel on the armatne of another electro-magnet.
23. The analyzing-receiver hercinbefore described, consisting of the combination of troo or more inagnets, with their like poles anited by connecting-bars, constituting in litct one magnet, and a series of tuned receiving-yprings vibrating near said bars, so that each shall receive its proper tone from said magnct.

In testimony whereof I hare herenuto sabscribed tug uame.

ELISEA GRAY.

Witnesses

Wy. A. Skinkle,
Wh. J. Peyton.

To all uchom it may concern:
Be it known that I, Thomas A. Watson, of Boston. in the comuty of Suffolk and State of Massathusetts, have invented a new and useful Improvement in Telephones, which improvement is tully set forth in the following sperification, reterence being had to the accompanying drawings, in which-

Figure 1 is a perspective view of an appa. ratus constructed in accordance with my said invention; and Fig. I, a dagram of the same. showing its arrangement in telephonic circuit.

In using a system of electric teleghones it is necessary to provide some means for producing a sound at the distant telephone-station lund enomish to attract the attention of persons at a distance from the telephone.

My present invention supplies one means for doing this by cansins an intermittent current of electricity of ligin intensity to pass through the line-wire and the distant telephone. For protucing such current I make use of an orilinary inluction-coil, combined with a galvanic battery and a rheotome, for rapidy interruptin: the current. These are arranged as shown in the accompanyinglraw. ings, in which A is the induction-coil. a a are the terminals of its primary, and $b b$ those of its secondary, coil. B is a rheotome, consisting of a steel spring, c, capable of producing a musical note. This spring is set into vibration by the motion of the lever C, and in vibrating makes and breaks contact on serews i i.

The construction of the rheotome can be varied in many ways. For instance, if a metallic membrane is substituted for the steel spring, it can be set in vibration by the voice, and caused to make and break contact against a screr correspouding to screw i in diagraun. All that is necessary is t^{\prime} supply some means for making and breaking contact between two metallic points.

D is a circuit-closer, which makes contact
with plate e when the knob is pressed, and is kept in contact with the plate f when the knob is released by means of its weight or at retractile spring. A galvanic battery, I, is connected with the posts E and 1 : aml the main circuit to the posts G and H.

The operation is as follows: The knob ot the circuit-closer is pressed. bringing the con-tact-spring upon the plate f. This completes the battery-circuit through the serews $; i$, steel spring c, contact-spring D. plate c. and primary coil. The lever C is now mored to and fro. throwing the spring of the rheotome into vibration, and, as it makes and breaks contact against the seroirs $; i$. renders the current passing thronsh the primary coil intermittent, inducing in the secondary coil a correspoudingly intermittent current of much higher inteusity, and the terminals of this coil being connected with the main circuit, the induced current Hows through the line-wire, and pioduces a loud sound in the distant telephone. Epon releasing the linob the contact-spring is drawn back from plate e, thus breaking the battery circuit into contact with plate f, and as one of the terminals of the secondary coil is rommected with the contact-spring anid the other with plate f, the roil is therefore shmed ont of the main cirenit.

I claim-
The nethod of prombeing a signal or call at a distant telephonic station by combining with a system of electric telephones an inductioncoil, rheotome or cirruit-interrupter, cireuitcloser, and galvanic battery, substantially as berein ilescriberl.

In testimons whercof I have signed this specification in the presence of two subscrib. ing withesses.

THOMAS A. WATSON.

[^0]
blisha gray, of chicago, lldinois.

IMPROVEMENT IN CIRCUITS FOR SPEAKING-TELEPHONES.

Specification fomning part of Letters Patent No. 203,264, dated May 7, 1878.

To all whom it may concern,
Be it known that I, Elisha Gray, of Chicago, in the county of Cook and State of Illinois, have inrented certain new and useful Improvements in Speaking.Telephones and in the art of Transmitting Vocal Sounds Telegraphically, of which the following is a specification.

My invention relates to and constitutes an improrement upon a novel art of trausmitting vocal sounds telegraphically, and to improvements apon speak ing.telephones heretofore invented by we, for which sundry applications for Letters Patent of the United States are now pending, and especially contenplates the employment of a number of speaking - telephones in a single circuit.

The object of my invention is to facilitate the transmission of the tones of the human voice through the alarm, call, or signal apparatus or bell-magnet of an intermediatestation, or through the alarm, call, or sigual apparatus or bell-magnets of a series of intermediate stations, where more than two stations are included in the same circuit, whereby my speak-ing-telephone apparatus is rendered especially applicable to circuits apon which ordinary Morse instruments are used.

The subject-matter claimed will hereinafter specifically be designated.

The fact is mell known that when an elec-tro-magnet is included in a circuit through which vibrations are transmittel (whether the magnet be of high or low resistance) it greatly impedes the passage of such vibrations, and the more rapid or higbly-attenuated they are the more difficult it is to transmit them through the coils of such magnet. This difficulty is so prominent under the systems heretofore practiced that the insertion of even tro or three extra magnets in a circuit practically prevents the transmission of articulate sounds or spoken words over a line however short.

To obviate this objection, and at the same time leave the bell or call magnet in circuit, I have devised this improvement.

In the accompanying drawings, which represent the best way of carrying out ing invention now known to me, Figure 1 represents my improved arrangement upon circuit of instruments and apparatus ou a line consisting of two terminal and two intermediate stations. lig. 2 represents two terminal stations and
an intermediate station, showing ing improvements as more especially adapted for operation in connection with a line equipped under the Morse system.

The construction and operation of the instruments represented in the diagrams being well known, it is deemed nnnecessary to represent or describe them in detail, except so far as is necessary to illustrate my new organization of apparatus.

In Fig. 1 of the accompanying drawings four stations, A B C D, are represented as ar. ranged in a speaking-telephone circuit. Fach station is provided with one or more speak-ing-telephones, $\mathrm{E} \mathrm{E}^{\prime} \mathrm{E}^{2} \mathrm{E}^{3}$, and also with an ordiuary electric call-bell, $\mathrm{F}^{\mathbf{1}} \mathrm{F}^{\prime} \mathbf{F}^{\mathbf{2}} \mathrm{F}^{\mathbf{3}}$, having either an orlinary magneto-electric generator or a batters, as the case requires. In this instance station A is shown as provided with a generator, G, while station D is represented as provided with a battery, L B , and an ordinary Morse key, K, for throwing it on and off the line.

The batteries and generators are omitted from the intermediate stations for conrenience of representatiou.

The battery is employed for calling ou such lines ouly as use what is known as the "bat-tery-telephone." The magneto-electric generator is used on such lines as use the perma. neut-maguet telephone, no battery being required in such cases.

Fach station is provided with a switch, I I' $I^{2} l^{3}$, which in one position directs the circuit through its respective telephone-magnet, and in the other position throngh its respective bell-magnet, learing out the telephouc, as will be readily understood by reference to the draw. ings, which show the methorl of running the circuits, and which represent the telephonecounection rires as running around the bellmagnet. A similar awitch, J, throws the generator on or off the line, as required. When the line is not in use the switches are all left stauding, so that the circuit passes through the bell-magnets, shunting the telephones, thus enabling any oue station to call any other by means of its alarin or call bell and battery or bell and magneto-generator, as the case may be.

In Fig. 1 the switches I I^{3} on the terminal stations A and D are respectively shown in position for conversing between those two sta-

United States Patent Office.

BLISHA GRAY, OF CLICAGO, ILLINOIS.

IMPROVEMENT IN SPEAKING-TELEPHONES.

Specilication forming part of Letters Patent No. 210,776, datel December 10, 1878; application filed August 3, 1878.

To all whom it may concern:
Be it known that I, Elisha Grar, of Chicaro, in the county of Cook and State of Illinois, have invented certain new and nseful Improvements in Speaking-Telephoues, of which the following is a specitication:

In Letters Patent No. 166,096, granted to me July 27,1875, on an application originally filed A pril 18, 187, Ihaveshown and described apparatus for transmitting rhythmical ribrations representing composite sounls or misical tones of differentpitch telegraphically, and for reprollacing said tones at the receiving end of the line throngh the medinm of animal tissuc.

My present invention constitutes a new application of the principle exemplitied in said Letters Patent, its object being to reproduce articulate sounds at the receiving end of the telegraphic circuit through animal tissue in gliding contact with a plate of suitable metal.

Any of the well-known speaking-telephones which transmit with sufficient intensity mas be employed as a transmitter, in my improved apparatus. I prefer, howerer, for a trausmitter the one known as the "water-telephone," described in a pending application for Letters Patent filed by mo October 29, 18it, or the Edison earbon telephone-transmitter, or some instrument used in connection with a battery, on account of the greater power which may be obtained from such a transmitter.

I prefer to use currents of considerable tension in working my improved apparatus, the most convenient and economical mode of doing which is by the nse of aninduction-coil, as shown and deseribed in my letters Patent above mentioned.

The receiving apparatus is substantially the same in construction and operation as the one heretofore employed by me for reproducing musical tones transmitted through a telegraphic circuit.

My invention therefore consists in combining, in an electric circuit, telephonic apparatus capable of transmitting articulate speech with a resonant receiver through the intervention of auimal tissue in gliding or frictional contact with said resonant receiser. This receiver may consist of a plate of ang of the
well-known metals, whether capable of induc. tion or not. I prefer, howerer, to use a plate, disk, or diaphragm of thin sheet metal-such as zinc or German silver, highly polishen, and oxidized on the surface exposed to friction. The frictional or gliding contact between the animal tissue and the receiring.plate may be produced in rarious wass; but I hare found in practice the simplest and most effective to be to mount the receiving-plate upon a resonant box or case mounted upon a shaft, so as readily to be revolved by means of a pulley, crauk, treadle, or other well-kuown motor. 13 F this means an even pressure and uniform rotation of the receiving-plate is secured.
The animal tissue may consist of one or more fingers of the human hand interposel in the circuitand pressed against the plate. Various other equivalent substances are mentioned in my patent above mentionel.

The accompanying drarings show one convenient form of apparatus for carrying out the objects of my invention. Obviously, however, the details of construction of both the transmitter and receiver may be greatly varied without departing from the spirit of my invention.
Figure 1 represents an axial transverse section thronght the receiver; and Fig. 2 represents an arrangement upon circuit of the entire apparatus, including both transmitter and receiver.
The base or supporting stand A is, by preference, made of metal, and of a weight and sizo suflicient to maintain it in position withont fastening it to its support. A shaft, 13 , revolves in suitable bearings upon this stand, being driven by a crank, 13', or by a pulles, clock-work, or other suitable prime mover, and carries a hollow resonant box or case of wool, or some other resonant substance. The outer or open end of this box is covered by a thin sliect-metal disk, plate, or diaphragm, 1, preferably of zinc, as the surface of this metal is usually covered with a very thin film of oxide, which is highly favorable to the proper action between the animal tissue and the plate when in gliting contact.
The diaphragm, it will be observed, is connected with the shaft and base by a wire, e, inside the resonant box or case, the base being

E．GRAY．

Art of Transmitting Rhythmical Vibrations in an Electrio Cirouit
No．205，378． Patented June 25， 1878.

Elisha．Gray．

ELISHA GRAY, OF CHICAGO, THLINOIS.
improvement in the art of transmitting rhythmical vibrations in an electric circuit.

Specification forming part of Letters Patent No. 205,378, dated Jane 25, 1478; application filed April 9, 187 A.

To all rehom it may concern:

Be it known that I, Elisha Grat, of Chicago, in the county of Cook and State of Illinois, hare invented certain new and useful inprorements in the art of generating and transmitting throagh an electric circuit rbythmical impulses, undnlations, vibrations, or wares, representing composite tones, musical impressions or sounds of any character or quality whatever, and of andibly reproducing such vibrations; and also in apparatus for so generating, transmitting, and reproducing such impalses, undulations, vibrations, or wares, of which improvements the following is a specification :

In Letters Patent of the United States Nos. 166,095 and 166,096, granted to me July $\mathbf{2}^{7}$, 1875, in the caveat tiled by me February 14, 1876, and in sundry applications for Letters Patent for improvements in electric telephony fled October 29, 1857, I have shown derices intended to operate as common receivers and reproducers of all sorts of rhythmical vibrations representing sounds of whatever kind or quality with reference to the number of tones simaltaneonsly transmitted, received, and reproduced, and their relations to each other in pespect to amplitade, rate, \&c.
In an application for Letters Patent filed by me February 23, 1875, for improrements in the art of transmitting masical impressions or sounds telegraphically, and in apparatus for so transmitting such sounds or impressions, I have shown devices for transmitting masical sounds, and one method of arranging the same on an electric circuit to produce the desired results, including the relation of the main battery to the line and instruments at each end, and described the effects produced. in In Letters Patent No. 186,340, granted to me 7tanuary 16, 1877, I have shown and described a method of and apparatus for generating, transmitting, and reproducing in an electric circuitrhythmical impulses, andulations, ribrations, or waves, as well as an improred method of connecting the transmitting apparatus to the line and main battery, so that any tone of a series could be transmitted without interference with the power used for transmission of another tone, and so that two or any greater number of tones could simultaneously be
transmitted, received, and reproduced, preserving their individuality as perfectly as the same would be preserred in passing through the air. This patent also showed a closed circnit, in which a continuous corrent from a main battery kept a reproducing and receiving magnet constantly charged, and derices for varying the power or electro-motive force of the carrent by superposing thereapon the vibrations or undulations generated by the transmitters.
In Letters Patent No. 175,971, granted to me April 11, 1876, for improrements in telephonic telegraph apparatus, I hare shown a series of receivers so constracted that each receiver, which consists of a resonant box with a magnet haring a tuned armature mounted upon it, will only respond to the particular note to which it is adapted, this apparatus, in practice, being arranged upon circuit, as shown in my patent of January 16, 1877, No. 186,340, above mentioned.
By having a namber of receirers taned to all rates of vibration, with correspondentlytaned transmitters, it is possible to transmit and receive composite sonnds varying greatly in respect to quality, rate, \&c. For instance, the different rowel sounds may be transmitted and received by this apparatus, providing that the receivers are of the proper relation to each other, and all arranged near together, so as to get the composite effect of the tone sent throagh the wire.
 inatter of a division of this application, filed May 18, 1878.
To render the vowel sonnd A, for instance, I would transmit a composite tone, the simple elements of which would bear the following relations to each other. The amplitude of vibration of any simple tone which goes to make up the composition of a vowel or any sound is determined in this case by the nomber of cells of the battery used by the transmitter of that particular tone. Let us assume, as a basis for the fundamental or lowest tone in the clang or composition of tones one hundred vibrations per second. The vorel A is composed of fire simple tones. If, as we have assumed, the tirst or fundamental tone have one handred ribrations per second, the second tone will have two hundred, the third

205,378
three handred, the fourth four hundred, and the fifth five hundred. These tones, however, to producet he desired effect, must not all have the same amplitude or loudness; the second tone should be rather moderate in streugth, which will be accomplished by giving it fewer cells of battery; the third, mach greater amplitude, as this is the characteristic note of the clang, to accomplish which we add a greater number of cells of battery; while the fourth and fifth are added with a feeble amplitude. It will be seen that by this arrangement we are able to control not only the number of tones transmitted, but their relations with respect to rate and amplitude.
My present invention constitutro an im.
 patents and applications abore recited, and contemplates the combination, in an apparatus for generating and transmitting ribrations, impulses, or wares representing composite tones of a closed circnit, a series of transmitters vibrating at such relative speeds as to produce the fundamental and harmonics of the tone to be transmitted, a main battery so arranged as to give each transmitter the desired relative amplitude of vibration, and a common receiver, or one capable of reproducing tones of erery rariety and quality.

The sabject-matter claimed will hereinafter specifically be designated.
The accompanying diagram represents an arrangement upon circuit of generating, transmitting, and reproducing apparatus for carrying out my improrement, three different varieties of common receirers or reproducers being shown.
The different sections, 12345 , of the main battery, it will be observed, are arrauged, as to number of cells or electro-motive force, with respect to the amplitude of vibration or wave desired in each of the tones of the composition.

- The diagram shows three different kinds of receivers, $R \mathbf{R}^{1} R^{2}$, each capable of reproducing composite tones or sounds of every character. It is deemed annecessary to describe in detail the construction of the apparatus employed, more than to say that it comprises main aud local batteries, an apparatus for generating and transmitting vibrations representing the composite tone to be transmitted, a receiving apparatus capable of reproducing such tones, and a closed circuit through which a continuous current flows to keep the mag. nets permanently charged. The arrangement of circuit is similar to that shown in my patent of January 16, 1877, above mentioned, while the transmitters represented in the diagram are similar to those shown in Letters Patent No. 165,728, granted to me Jaly 20, 1875.

Each transmitter is operated by its respective local battery, omitted for convenience of representation. The receivers $R R^{1}$ are similar to those shown in sundry applications for Letters Patent of the United States filed by me October 29, 1877, and consist (speaking generally) of a diaphragm, r, adjustably arranged relatirely to an electro-magnet, r. The receiver R^{2} consists of an electro-magnet mounted upon a sounding-box in a way that will be readily understood from the drawings, and (like the others) is capable of reproducing tones of all rarieties and qualities.
It will be observed that my arrangement of batteries and transmitters admits of an unlimited variety of adaptations and combinations in respect to number and character of tones as to amplitude, rate, \&c., so that when the quality of any tone is once determined by analysis it may be reproduced by my combination by the organization of the several parts relatively to each other.

The operation of my invention will readily be understood from the accompanying description. When it is desired to transmit a composite tone of a particular clang, I depress the keys which bring into operation such batteries and transmitters as an analysis of such clang dictates we should use. To transmit a sound of different quality, depress a different set of keys, arranged, as before stated, with reference to the necessities of the case.

It is unuecessary to go into a detailed analysis of a great varietr of sounds, as the principle involved is fully set forth in the case already given.

From the abore it is easy to conceive that composite tones may be mechanically transmitted by a proper arrangement of transmitters, batteries, \&c.

Hon Inclaim as of mronen incention and uesure wo seciur yy weaters F auenu, 1 s-

The combination, substantially as hereinbefore set forth, in an apparatus for generating and transmitting vibrations, impulses, or waves representing composite tones, of a closed circuit, a series of trausmitters vibrating at snch relative speeds as to produce the fandamental and harmonics of the tone to be transmitted, a main battery so arranged as to give each transmitter the desired relative amplitude of ribration, and a common receiver, or one capable of reproducing toues of every variety and quality.

In testimony whereof I have hereunto sub. scribed my name.

ELISHA GRAY.
Witnesses:
Geo. B. Cummings,
D. M. ERSKI, Jr.

> W. W. JACQUES.

SYSTEM OF ELECTRICAL COMMUNICATION.
No. 246,887.
Patented Sept. 13, 1881.
Fig. 1.

United States Patent Office.

WILLIAM W. JACQUES, OF BOSTON, MASSACHOSETTS.

SYSTEM OF ELEĊTRICAL COMMUNICATION.

SPECIFICATION forming part of Letters Patent No. 246,887, dated September 13, 1881.
Application flled May 27. 1881. (No model)

To all whom it may concern:
Be it known that I, Williay W. Jacques, of Boston, in the country of Suffolk and State of Massachusetts, have invented certain Im5 provements in Systems of Electrical Communication, of which the following is a specification.

MS inrention relates to improvements in electrical circuits and couductors, and has for so its objects the aroidance of the electrical disturbances incident to the use of the ground when emplosed ais a means of completing the circuit of a line of electrical communication, and also the aroidance of similar disturbauces 15 which originate from the passage of any extraneouscurrents, which take the electric wires as a ready and easy path to the earth.

Experience has demonstrated that all lines constructed for electrieal correspondence, ex-
20 cept metallic circuits, are affected by earthcrirreats, which vary considerably ia strength and direction at different hours of the day and night, although at no time are the wires totally free from their iuHuence. These currents are
25 chietly caused by the connection formed by the wire between difterent portions of the earth's surface having different electrical potentials, and they interfere with the proper working of the line to a cousiderable extent. When the
30 receiving-instruneint of such couducting-wires is of very delicate constraction, responding readily to slight changes or variations of cur-rent-such, for example, as a telephoue-the disturbances socaused, as also the disturbances 35 due to the extraneons currents hereinbefore referred to, become a soarce of serious annoyance aud incourenience. They manifest themselves by a confased murmar which is heard in the telephone, and which lecomes at times so in40 tense as to be intolerable. It then drowns and coufuses conversation which is being carried on, rendering it inpossible to anderstand the words which are transmitted on the telephoneline. These-interposing currents may and
45 hare heretofore been prevented from entering and flowing in the circaits by the employment of a second wire returning to the originatingstation, thus forming the circuit entirely of wire, and rendering the introduction of the
50 earth into the circuit and its employment as a return entirely unuecessary. This plan has, however, certain disadvantages.

The use of a metallic circnit or wire return in lien of the employment of the earth in that capacity necessarily inplies double the cost for linc-wire and a donble amount of labor in stiinging the same. Moreover, in view of the fach that nearly all ordinary liues are groundcircait lines, it is evident that the act of connecting an ordinary grounded circuit to each 60 end of a metallic circuit would in effect reduce the entire systern once more to a grounded circinit, thus annalling all the adrantages preriously gained.
By my inventions these evils are obriated. 65 To that end, instead of connecting the linewire to the gromul at each terninal, I connect it to one side of a large coudenser, the other side of which is either-left entirelp open and insulated, or else is connected to a large mass or surface insinlated from the earth-such, for example, as a tiuned roof.
The following description of my incuntion will enable those skilled in the art to which it appertains to apply and use it, refurence being had to the acrompanying drawings, which form a part of this specitication, and in which the several figures represent dispositions of the circuits in accordance therewith.

In Figure 1 is shown a telephoue-line, L, to $8 c$ which ony iuvention is applied at each of the two terminal stations A and B, the mode of application at A differing slightity from that emploged at B. Fig. $\mathrm{L}_{\mathrm{e}} \mathrm{ex} \mathrm{bibits}$ the arrangement of circuits at a terminal station, showing the mode of conuecing a trunk teleplione-line prorided with my invention tu the several short wires radiating fron the said terminal station.

In Fig. 1, L is the line-wire, supported as frequently as may be necessary by the insulators i, fixell on the cross-arms D of the poles.P. It is shown as terminating in one plate or series of plates of a condenser, C, at one station, A, after passing through the coil of the uecessary instruments, which in this case are represented by the telephone T, the olposiug plates of the condenser being left completely insulated or unattached to any conductor. At the other terminal station, B, of the live L the connections are similarly made, the only rariation being that in this case I bave shown the oppo. site series of condeuser-plates connected to the roof R of the house H, the object to be gained being a largely-increased surface or mass, and
 United States Patent Office.

PATRICK B. DELANY, OF NEW YORK, N. Y., ASSIGNOR TO THE STANDARD ELECTRIC MANUFACTCRLTG COMPANY, OF SAME PLACE.

ELECTRICAL SYNCHRONOUS MECHANISM.

SPECIFICATION forming part of Letters Patent No. 286,281, dated October 9, 1882. Application Aled August 6, 18es. (No model.)

To all whom it may concern:
Be it known that I, Patrick B. Delany, a citizen of the United States, and a resident of the city, county, and State of New York, have 5 invented certain uer and useful Improvements in ElectricalSynchronous Mechanism, of which the following is a specification.
 class of apparatus shown and claimed in an io application for LettersPatent filed by me April $1: 1833$, serially numbered 91,489 ; and the general organization of the apparatus illustrated in the drawings attached hereto is the same as that set forth in said application, with
Ij two exceptions, which constitute the subjectmatter of my present invention, and are hereinatter specifically described.
My irfertioncousists in in inipioretheman of controlling the motor-circuit at each station,
20 so as to vary the speed of the actuating apparatus at each station, and, second, an arrangement by which the operator in charge at one station can tell when correcting-impulses of electricity leare his station to correct the speed
25 of the apparatus at the distant station.
in the accompanying didimps, FTgure is a diagrammatic plan view of two electricallyconnected statious arranged according to my inrention. a main line and circuit-breaker, consisting in this instance of a vibrator-fork, a, at each station, which is antomatically vibrated by a local battery, L B, and magnet A, the circuit of
35 this local battery being marked a^{\prime} and indicated by the fine dotted lines. The poles of the vibrator-magnet A are provided with ex-tensiou-screws a^{2}, of magneticmetal, so that they may be approached to-or withdrawn from the
to tines of the fork to regulate their rate of vibration. Platinum contacts $x x^{\prime}$ on the inuer faces of the fork tines make and break contact with spring-fingers $y y^{\prime}$, carried by adjustable insulated arms or levers B B', pivoted upon the
ts bell-plate of the apparatus, and adjusted by thumb-scre ${ }^{\text {s }} b$, against which they are drawn ly spiral springs. The local circuit indicated by the fine dotted line runs from the positive pole of the bottery through the coils of the
50 vibuator-magnet to the head of the fork, and through contacts $x^{\prime} y^{\prime}$ to the insulated lever
B^{\prime}, and thence back to the opposite pole of the battery. A resistance, R^{\prime}, is placed around the contacts x and y, to prerent sparking, being run from the point a^{3} to the head of the fork. When the fork is mechanically started into vibration, its local circuit will be made and broken in the ordinary way, and its vibration maintained continuously. The contact x on the opposite tine of the fork makes and breaks 60 contact with the finger y as the fork vibrates, thus opening and closing a local circuit containing a battery and maguet which continaously rotate the transmission apparatus \mathbf{C}. This motor-circuit is indicated by broken lines, 6 and runs from the positive pole of the battery: D^{\prime} to lever B , contact-finger y, contact x, head A' of the fork, and, by wire d, through the coils of the motor-magnet D D to the opposite pole of the battery. A resistance, R, is thrown around the contacts $x y$, to prevent sparking.

The rotary transmission apparatus C, which is provided with armature-teeth c, is actuated by the magnet D D. This apparatus consists of a stationary table of contacts, F^{ν}, arranged concentrically around the vertical rotating shaft F. which is driven by the armature-wheel C and is connected with the line. A trailing finger or circuit-completer, f, which traverses the contacts, is carried by a radial arm, $F, 8$ projecting from the shaft. It is deemed unnecessary further to describe this apparatus, as it is fully illustrated and described in detail in my application for improvements in teleg. raphr, filed A pril 1??, 18S3, serially nam- 85 bered 91,493 .
I hare shown sisty contact-pieces in the circular table of contacts, which are numbered from 1 to 10 in six independent sets or series. These contacts, except those numbered 9 and 10, may be connected in any suitable order or groups for any purpose desired, as fully set forth in my t wo applicationsabove mentioned. When the trailing contact-fingers f at both stations are upon the contacts bearing the same number, the correspouding instruments, whatever they may be, connected to these contacts at each station will be placed in communication orer the line, and as the fingers at both stations continue to move syuchronously they will pass to the next contact, successively, over all the contacts at each station. During the

\qquad
\qquad

\qquad
\qquad

\qquad \therefore

[^1]

P. LA COUR.

SYNCHRONOUS TELEGRAPHY.

No. 302,502.
Patented July 22, 1884 .
cal?

|

POUL LA COUR, OF COPENHAGEN, DEVYCARK, ASSIGNOR TO FRED P. JONES, . OF PORTSMOUTH, NEW HAMPSHIRE.

SYNCHRONOUS TELEGRAPHY.

SPECIFICATION forming part of Letters Patent No. 302,502, dated July 22, 1884.
Application Aled Febrasry 13, 1884. (No modoL)

To all whom it may concern:
Be it known that I, Poul La Courr, a subject of the King of Denmark, and a resident of the city of Copenhagen, in the Kingdom of
5 Denmark, have invented certain new and useful Improvements in Synchronous Telegraphy, of which the following is a specification.
nous movement of two sets of apparatus conso nected by an electric circuit; and it consists in the arrangement or grouping of a series of independent contacts into different circaits for multiplex transmission. \qquad
In Letters Patent of the United States No. shown an instrument in which, by the electromagnetic vibration of a reed or fork, a motorcircuit is intermittently made and broken. This motor-circuit contains an electro-mag. on the periphery of an armature ring or disk, the makes and breaks in the circuit cansing a continuous and rapid rotation of the disk.

25 sented somewhat diagrammatically, though it fully illustrates the method of operation. For a detailed description of the instrument, however, reference is hereby made to my patent above mentioned.
The accompanying drawing is a diagrammatic view illustrating two electrically-connected stations arranged according to my invention.

At station X I have illustrated diagram35 matically the apparatus shown in my patent. A fork, A, tuned to a given pitch, is vibrated by the magnet B, incladed in a local circuit, (shown by dotted lines,) the circuit being automatically made and broken between the tine $40 a$ of the fork and a light contact-finger, b, carried on an adjustable lever, B^{\prime}. The opposite tine of the fork, c, as it vibrates, makes and breaks contact with a light contact-finger, d, on an adjustable lever, D. The tine c and 45 the contact d are included in a local circuit, (shown by broken lines,) in which the motormagnet E is placed. This mugnet acts upon a toothed armature-disk, F, and canses its continuous rotation. Fast upon the axis or ro-
finger, G, is mounted, which, in its rotation, sweeps over a concentric circle of independent insulated contact-pieces. There are sixty contacts represented on the circular table, numbered from 1 to 10 , for convenience of 5 description, in six independent series. The main line is connected with the contact-finger G, and at the other station, Y, is connected to a like finger, which sweeps a like table of contacts, and is actuated by the rotation of the 60 toothed wheel or armatare-disk, caused by the makes and breaks in the local circuit, which includes the motor-magnet E , as at station X . The makes and breaks in this local circait are cansed by the vibration of the fork A, which 65 is taned to the same pitch, and consequently has the same rate of vibration as the fork at station X. At station I six of the contactssay the contacts numbered 6 in each seriesare connected together and, throngh a battery, 70 M B, with the ground. At station Y the corresponding six contacts are connected together, and by a line, 1 , through the coils of a magnet, I, and thence to gronnd. This magnet is placed to act upon the tines of the fork, as is the one illastrated at station X. The poles of the magnets I and B are provided with adjustable or screw pole-pieces x, by the adjustment of which the vibration of the forks may be coutrolled, so as to adjust them to unison so in case of any disturbance or want of syuchronism, as is presently described.
I will now describe the grouping or connection of the contacts in independent circuits, which constitutes the subject-matter claimed S_{5} in this application.

The contacts 12345 : S 910 in each series are connected together and to a corre-spondingly-numbered binding-post, as clearly shown at both stations. The biuding-posts 90 nambered 1 and 10 are connected together and with a line, L, in which a relay, R, switch S, key T, and battery U are placed. By means of the switch S the line may be either put direct to ground or connected with the key and 9 battery in the usual way. The 1's and 10's at the other station are similarly connected with the line, which is equipped in the same way. At each station the 3 's and S 's, the 2 's and 9 's, and the 4 's and ''sare shown as sinif -100

larly joined, and each pair is to be connected with a line equipped with instruments, as just described. It will be seen, therefore, that there are four independent sets of telegraphic
5 instruments at each station. The 5 -contacts are shown unconnected with any circuit.

It will be obvions that the line L, connected with the contacts 1 and 10 , will be connected with the trailing coutact-finger or circuit-
to completer, and through said finger with the main line trelre times in each revolution of the finger; and if the finger rotates three times a secoud (more or less) there will be about thirty-six completions of contact per i_{5} second of the line L with the trailing finger and the main line. This occurs at both stations. Obviously, therefore, if the trailingfingers at both stations simultaneously rest upon the corresponding 1 and 10 contacts,
20 there will be a completion of the circuit from the instruments in the line L at one station to the corresponding instruments at the other station. These completions of the circuit are independent of all the other contacts, and are 25 so rapid that the circuit is practically continuous for Morse transmission, and the operators are not aware that the circuit is at any time broken or taken from them. The same is trae of instraments connected with the

8's, the 2 's and 9 's, and the 4 's and $\bar{\prime}$'s-so that if the trailing-fingers at each station move synchronously there are four independent telegraphic circuits, which may be worked in
$3 \dot{5}$ the ordinary way with as much freedom as if each pair of operators had a separate line devoted to their own use.
The synchronous rotation of the trailing. fingers at the tro stations is obtained in the 40 following way: The forks, which are tuned as nearly as possible to the same pitch, consequently have the same or approximately the same rate of vibration; and when these forks are vibrated the two disks at the stations will be rotated at substantially the same speed. The forks at both stations having been mechanically started into vibration and animpulse of rotation imparted to the toothed disks, the circuit-completers at each station
50 will be caused to rotate. The vibrator-circuit of the fork at station X, being automatically made and broken, will cause the continuous vibration of the fork. The operators' instraments at both ends of the line are normally ratas at the two stations happen to start synchronously there will be no sound on the iustruments at either of the stations, and it will therefore be known that the contacl-fingers
6 c are rotating synchronously. If they continue to rotate insynchronism, six impulses of electricity will be sent from the battery MB at station X through the contacts numbered 6 at each station to the magnet I, and maintain the

65

 65 continued vibration of the fork at station Y. If the apparatus does not start synchronously, or having so started runs out of synchronism,the operator at station F will be able to tell whether his fork is vibrating more slowly or more rapidly than that at the other station by: the soands on the telegraph-instruments, which will give astroke whenever the circuitits conpleted from a 6-contact at station I through om of the contacts with which the instrument is connected at station I. The order in which the instruments are caused to sound will indicate whether the fork at station Y is running fister or slower than that at station 工. The operator therefore may adjust the screw polepieces on the magnet I so that the ribrating impulses received from station \bar{x} will act to cause the fork to vibrate slower or faster, as may be desired. The apparatus at the two stations, having been once brought into synchronism, will continue to rotate at the same δ speed, being governed by the furks, which will continue to vibrate at the same rate.

I have shown and described my own synchronous system contemplated in my patent above mentioned. It is obrious, however, that the arrangement of contacts for telegraphic transmission or other purposes may be used in connection with other syachronous systems, and is not dependent upon the special system described, or upon any particular system. For instance, the invention is well adapted to the synchronous systems of Patrick B. Delany, patented October 9, 1883, in two of which patents, Nos. 286,273 and $286,2 \% s$. the circuits and contacts are shown as grouped 100 in substantially the manner herein illustrated.

No claim is made herein to the manner of obtaining and maintaining the synchronous movement of the tho apparatus-that is, by impulses of electricity sent from the 6's at station X, which are all connected together and to a battery, 15 B , to the vibrator - magnet at station I, which, by means of said periodic transmitted impulses from the 6-contacts, maintains a fork at Y in constant vibration. Nor is any claim made to the manner of driving the toothed wheel; but what is desired to be covered in this application is the manner of grouping or distribating the independent series of contacts in the circle among several in independent branch lines for the purpose of multiplex transmission.
I claip as mrincention-

1. The combination of a main line, a series of independent contacts at each end of the line, two or more separate circuits or branch lines at each end of the main line, each of said branch lines being connected with two or more of said contacts, means, substantially such as described, for successively placing the main line at both ends in connection with said contacts, and means for synchronously actuating such circuit-completers.
2. The combination of a main line, a series of independent contacts at each end of the 130 line, two or more separate circuits or branch lines at each end of the main line, in each of which two or more of the contacts placed at regular interrals in the series are connected
5
\square o
independently of the other contacts, means, sabstantially such as described, for successively placing the main line at both ends in connection with said contacts, and means for
5 synchronously actaating such circait-completers.
3. The combination of the main line, the circalar series of independent contacts placed at each end of the main line, the trailing cir-
ro cuit completers or fingers permanently connected with the line, which traverse said contacts, means for synchronously actuating such fingers, and two or more branch lines at each end of the main line, in each of which two or 15 more of the contacts placed at intervals in the circular series are connected independently of the other contacts.
4. The combination of a main line, a series of contacts at one end of the line, means, sub20 stantially such as described, for successively placing the line in connection with each of said contacts, and two or more branch lines,
in each of which two or more of the contacts in the series are connected independently of the remaining contacts.
5. The combination of a single main line, a series of independent contacts at each end of the line, means for successirely placing the line in connection with each of said contacts, means for synchronously actuating such cir-cuit-completing devices, two or more branch lines, in each of which one or more of said contacts are connected independently of the other contacts, and instruments in the branch lines for either transmitting or receiving at 35 either station.
In testimony whereof I have herennto sub. scribed my uame this 19th day of December, A. D. 1853.

POCL LA COLR.
Witnesses:
Ledvig Schrider.
Poul Pedersen.

TELEGRAPHIC TRANSMITTING APPARATUS.

CPRCIFICATION forming part of Letters Patent N. 316.125, dated April 21, 1885.

Application fled Febraary 26, 1884. (No model.)

To all whom it may concern:
Be it known that I, Patrick B. Delaity, of the city, county, and State of Sew York, have invented certain new and useful Im5 provements in Telegraphic Transmitting Apparatus, of which the fullowing is a specifica. tion.
mitters in which an armature-lever actuated
10 by an electro-magnet, in the circuit of which a key is placed, is used to throw the battery upon the line. In arrangements of this character beretofore the armature has been provided with an adjusting-spring, and usually,
15 instead of transmitting from the ordinary rigid contacts against which the vibrating transmitting-armature works, it is customary to sapplement the electrodes or rigid points of contact by yielding contacts, which will close
20 the circuit more securely and remedy the defects in the contact caused by the rebound of the lever from a rigid limiting-point or con-tact-stop under the influence of its spring. These yielding contacts are liable to sibrate 25 under a sudden blow or withdrawal of the armature.
absolutely perfect contact by causing the ar-mature-lever to be beld tightly and firmly tracting-magnet, and I dispense with the retractile spring, which tends to lessen the firmness of its contact.
Under my invention, also, the lever moves with the greatest rapidity and precision from one stop to the other in response to the movement of the operator's key, and a substantially equal pressure on both its coutact-stops is obtained regardless of variations in the
40 strength of the local battery in which the key is placed.
The details of my invention are fulls set forth below.
IHgore 15 a diagrame iew intustratiog one
45 form of my invention, and Fig. 2 a similar view illustrating another form of the invention.

In Letters Patent of the United States So. 2S6,278, granted October 9, 1SS3, I have shown
50 a synchronous system of telegraphy to which the particular arrangement illustrated for
transmitting with repurse currents is well adapted. I have therefore indicated in the drawings diagrammatically in each figure a table of contacts, A, a rotating armature-disk, B, and a trailing contact-finger, a, which traverses a series of contacts on the table, and I refer to said patent for a full exposition of this subject. The incention, however, is not limited to that particular system, but is ap- $\in c$ plicable to the transmission of messages in any of the well-known telegraphic systems. It is therefore deemed annecessary to particularly describe any system, as the operation of my invention will be perfectly plain to those 65 skilled in the art.
Reremmo, inst, to Fis. 1, the tratisumitifigbattery MB is shown as arrauged for reverse trinsnission. It is grounded in the middle, and its opposite poles are connected to oppo- 70 site contact-stops, $c d$, between which a freelyvibrating armature, e, vibrates. This armature is connected through the liue f, contacts, and trailing-finger of my synchronous system with the main line. The transwitting-key K is connected with one pole of a local battery, LB. Its front stop is connected in a branch circuit, g, which runs from the stop through the coil of an independent magnet, O, to the opposite pole of the battery. Its back stop is connected in an- 80 other branch circuit which runs from the stop through the coil of an independent magnet, M, to the opposite pole of the battery. The freely-vibrating armature e is arranged bet vieen these opposed magnets, and is acted up- 85 ou by them. When the key is upon its front stop, the magnet O firnily and promptly draws the free armature against the contact d, holding it there with a uniform unvarying pressure and putting one pole of the main battery MB to line. When the key is thrown on its back stop, the magnet O is demagnetized, and the magnet I is energized and promptly draws the armature against its contact c, thus putting the other pole of the battery to line. As 9 the armature is a freely-vibrating one without bias and without a retractile spring, it remains in either of the positionsinto which it is drawn, and is held with unvarying pressure upon its contacts. This method of transmission gives 10 the most perfect results, and prevents any weakness or unccrtainty of contact between
\qquad

\qquad
65

\qquad
70

\qquads 75
\qquad8085

VRILLIC CORRESPONDERS:
A PERSISTENT HISTORICAL MOVE TOWARD THE VISCERAL RESPONDER being mechanically conducted along the wire.
3. Very striking audible effects can be produced upon a short circuit by means of two Grove elements. I had a helix of insulated copper-wire (No. 23) constructed, having a resistance of about twelve ohms. It was placed in circuit with a rheotome which interrupted the current one hundred times per second. Upon placing the helix to my ear I

- Ferguson. Proceedings of Royal Scottish Soc. of Arts, April 9, 1866;

could hear the unison of the note produced by the rheotome. The intensity of the sound was much increased by placing a wrought-iron $1, \frac{y}{4}$ nail inside the belix. In both these cases, a crackling effect accompanied the sound. When the nail was held in the fingers so that no portion of it touched the helix, the crackling effect disappeared, and a pure musical note resulted.

When the nail was placed inside the helix, between two cylindrical pieces of iron, a loud sound resulted that could be heard all over a large room. The nail seemed to vibrate bodily, striking the cylindrical pieces of metal alternately, and the iron cylinders themselves were violently agitated.
4. Loud sounds are emitted by pieces of iron and steel when subjected to the attraction of an electro-magnet which is placed in circuit with a rheotome. Under. such circumstances, the armatures of Morse-sounders and Relays produce sonorous effects. I havo succeeded in rendering the souuds audible to large audiences by interposing a tense membrane between the electro-magnet and its armature. The armature in this case consisted of a piece of clock-: spring glued to the membrane. This form of apparatus I have found invaluable in all my experiments. The instrument was connected with a parlor organ, the reeds of which were so arranged as to open and close the circuit during their vibration. When the organ was played the music was loudly reproduced by the telephonic receiver? in a distant room. When chords were played upon the organ, the various notes composing the chords were emitted simultaneously by

circuit. I fuiled to obtain audible effects in this way when the pitch of the rieotome was high. Elisha Gray * has also produced audible effects by the passage of induced electricity through the human body. A musical note is occasioned by the spark of a Ruhmkorff's coil when the primary circuit is made and broken sufficiently rapidly. When two rheotomes of different pitch are caused simultaneously to open and close the primary circuit, a double tone proceeds from the spark.
9. When a voltaic battery is common to two closed circuits, the current is divided between them. If one of the circuits is rapidly opened and closed, a pulsatory action of the current is occasioned upon the other.

All the audible effects resulting from the passage of an intermittent current can also be produced, though in less degree, by meaus of a pulsatory current.
10. When a permanent magnet is caused to vibrate in front of the pole of an electro-magnet, an undulatory or oscillatory current of electricity is induced in the coils of the electro-magnet, and sounds proceed from the armatures of ocher electro-magnets placed upon the circuit. The telephonic receiver referred to above (par. 4), was connected in circuit with a single-pole electro-magnet, no battery being used. A steel tuning-fork which had been previously magnetized was caused to vibrate in front of the pole of the electro-magnet. A musical note similar in pitch to that produced by the tuning-fork proceeded from the telephonic receiver in a distant room.
11. The effect was much increased when a battery was included in the circuit. In this case, the vibration of the permanent magnet threw the battery-current into waves. A similar effect was produced by the vibration of an unmagnetized tuning-fork in front of the electro-magnet. The vibration of a soft iron armature, or of a small piece of stetl spring no larger than the pole of the electro-magnet in front of which it was placed, sufficen to produce audible effects in the distant room.
12. Two single-pole electro-magnets, each having a resistance of ten ohms, were arranged upon a circuit with a battery of five carbon elements. The total resistance of the circuit, exclusive of the battery, was about twenty-five ohms. A drum-head of gold-beater's skin, seven centimetres in diameter, was placed in front of each electromagnet, and a circular piece of clock-spring, one centimetre in diameter, was glued to the middle of each membrane. The telephones $s 0$ constructed were placed in differeut rooms. One was retained in

into water included in the circuit. A sound proceeded from the distant telephone. When two tuning-forks of different pitch were connected together, and simultaneously caused to vibrate in the water, two musical notes (the unisons respectively of those produced by the forks) were emitted simultaneously by the telephone.

A platinum wire attached to a stretched membrane, completed a voltaic circuit by dipping into water. Upon speaking to the membrane, articulate sounds proceeded from the telephone in the distant room. The sounds produced by the telephone became louder when dilute sulphuric acid, or a saturated solution of salt, was substituted for the water. Audible effects were also produced by the vibration of plumbago in mercury, in a solution of bichromate of potash, in salt and water, in dilute sulphuric acid, and in pure water.
14. Sullivan * discovered that a current of electricity is generated by the vibration of a wire composed partly of one metal and partly of another; and it is probable that electrical undulations were caused by the vibration. The current was produced so long as the wire emitted a musical note, but stopped immediately upon the cessation of the sound.
15. Although sounds proceed from the armatures of electro-magnets under the influence of undulatory currents of electricity, I have been unable to detect any audible effects due to the electro-magnets themselves. An undulatory current was passed through the coils of an electromagnet which was held closely against the ear. No sound was perceived until a piece of iron or steel was presented to the pole of the magnet. No sounds either were observed when the undulatory current was passed through iron, steel, retort-carbon, or plumbago. In these respects an undulatory current is curiously different from an intermittent one. (See par. 2.)
16. The telephonic effects described above are produced by three distinct varieties of currents, which I term respectively intermittent, pulsatory, and undulatory. Intermittent currents are characterized by the alternate presence and absence of electricity upon the circuit; Pulsatory currents result from sudden or instantaneous changes in the intensity of a continuous current; and undulatory currents are produced by gradual changes in the intensity of a current analogous to the changes in the density of air occasioned by simple pendulous vibrations

[^2] Phil. Mag., 1845, p. 261 ; Arch. de l'Electr., X., p. 480.
 Telephone by Mr. Elisha Gray, of Chicago.-This system, $-{ }^{2}$ inrented in 1874, is in reality only an instrument of the natfure of those which preceded it, but with important modifica, tions, which made it possible to apply it usefully to telegraphy. In an early model he made use of an induction coil, with two helices, one over the other: the contact-breaker, which was vibrating, was multiple, and so arranged as to produce ribrations numerous enough to emit sounds. These sounds may, as we bave seen, be modified by this arrangement, according to the mode in which the instrument is adjusted, and if there are a certain number of such contact-breakers side by side, with vibrating disks so ordered as to produce the different notes of the scale on sereral octaves, it becomes possible, by a combination of certain notes, to esecute on this new kind of instrument a piece of music such as may be produced by a harmonium, an accordion, or any other instrument with blowers. The contact-breakers are set in motion by means of the \geqslant primary current of the induction coil, as it circulates through
ione or other of the electro-magnets of these contact-breakers,
f actuated by the lowering of the notes of a key-board connect-- ed with them, and the secondary currents which arise in the coil, in consequence of the interruptions in the primary cur3 rents, transmit the corresponding vibrations to a remote re3 ceiver. There is an analogy between this instrument and the - telephones of which we have already spoken by Reiss and Wray, but the effect is increased by Mr. Gray's modifications.

We represent in Fig. 4 the arrangement of the first system. The vibrators are A and A^{\prime}, the key-board M and M, the inㅍiduction coil B, and the receiver C. This receiver consists, as \because we see, of a simple electro-magnet, $\mathrm{V}^{\prime} \mathrm{I}^{\prime}$: above its poles \% there is a metal cylindrical case, C , of which the bottom is made of iron, to serve as an armature. This box, like a violin, - is pierced with two holes in the form S , to serve as a sounding-
 abs

It is quite intelligible that the effect obtained in this system might be reproduced, if, instead of contact-breakers or electric rheotomes, mechanical contact-breakers were used at the send-ing-station, so arranged as to furnish the requisite number of breaks in the current which communicates the vibrations of the different notes of the scale. In this way also it would be possible to dispense with the induction coil, by causing the current which has been broken by the mechanical contactbreaker to react upon the receiver. Mr. Elisha Gray has, moreover, made a different arrangement of this telephonic system,
 (3) transmissions, of which we shall speak presently.

If we mar beliere Mr. Elisha Gray, the vibrations transmitted be the secondary currents would be capable, by the interrention of the human body, of causing the sounds to be reproduced at a distance by conducting disks, which ribrate | radily, and are placed on a sounding-box. In this way musical sounds may be evoked from copper cylinders placed upon a table, from a metallic disk fastened to a kind of riolin, from a nembrane stretcled on a drum, or from any other resonant substance, by touching any of these objects with one hand, while bolding the end of the line with the other. These scunds, of which the quality must rary with the substance touched, would reproduce the transmitted note with the precise number of vibrations which belong to it. ${ }^{2}$

Mfr. Varley's Telephone.-This is, strictly speaking, merely a musical telephone of the same kind as that of Mr. Gray, but the arrangement of the receiver is original and interesting. 1 This part of the instrument essentially consists of a drum of large size (three or four feet in diameter), within which is a condenser formed of four sheets of tin-foil, divided by sheets of some insulating matcrial, and with a surface of about half
${ }^{1}$ Mr. Gray, in an article inserted in the Telegrapher of October 7 th, 1876, enters into full details of this mode of transmitting sounds br the tissues of the human body, and he gires the following as the conditions in which it must be placed to obtain a favorable result:

1. The clectricitr must be of a high tension, in order to hare an effect perceptible to the ear.
2. The substance employed to touch the metallic plate must be soft, fexible, and a good conductor, up to the point of contict: it must then interpose a slight resistance, neither too great nor too small.
3. The disk and the hand, or any other tissue, must not only be in contact, but the contact must result from rubbing or gliding orer the surface.
4. The parts in contact must be dry, so as to maiutain the required de) gree of resistance.

the size of the dram. The plates of the condenser are placei parallel to the meinbranes of the drum, and very little removec from its surface.

If an electric charge is communicated to one of the serics ol conducting plates of the condenser, those which corrcspond to it are attracted, and if they were movable they might commut nicate to the intervening strata of air a inovement which, ou reaching the membranes of the drum, might, by a serics of charges in rapid succession, cause the membranes to ribrate, and thus produce sounds: these sounds would correspond to the number of charges and discharges which had occurred. Since these charges and discharges are determined by the contact of the two plates of the condenser, at the extremitics of the secondary circuit of an induction coil, of which the primary circuit has been duly broken, it becomes evident that, in order to cause the drum to emit any given sound, it will be enough to produce the number of vibrations in the contact-breaker of the induction coil which are required for this sound.

The means employed by Mr . Varles to produce these interruptions are the same which are in use in several electrical instruments, and especially in chronographs-an clectro-magnetic tuning-fork, regulated so as to emit the sound required. This tuning-fork may, by acting as contact-breaker, renct on the prinary current of the induction coil; if the number of the tun-ing-forks equals that of the musical notes which are to be transmitted, and if the electro-magnets which set them in motion are connected with the keg-board of a piano, it would be possi-1 ble to transmit a melody to a distance by this system, as well; as by that of Mr. Elisha Gray.
The peculiarity of this system consists in the reproduction of sounds by the action of a condenser; and we shall presently', see that this idea, adopted by Messrs. Pollard and Garnier, led ${ }^{\text {S }}$ to interesting results.

Sinying Condenser of MM. Pollard and Garnier.-This in-s unconer
 z^{-}way the singing instrument is constructed. A sonewhat heary of a watch-spring), placed across this piece of wood gives it : is weight, placed upon the condenser to compress the sheets, does 'certain elasticity beneath the pressure, and this elasticity is nec ; not in any way prevent it from working; and this vitiates the essary in order that the instrument may act properly, and it 7. Theory first put forward to explain its effects, that the sheets ; were moved by attraction.

The sending instrument consists of a sort of telephone with\rightarrow out a handle, E, of which the vibrating disk is formed of a very Athin plate of tiu. A cylindrical piece of carbon, C , is fastened S- to its centre, and is supported by another cylinder of the same material, H. This rests on a transverse picce of wood, A B, jointed on the side A, on the edge opposite to the box, by
 which a membrane was stretched, and in its centre there was fitted a thin disk of platinum, o, above which a metallic point, c, was fixed, and this, together with the disk, constituted the contact-breaker. On one face of the sounding-box K there was a sort of speaking-tube, for the purpose of collecting the sound. and directing it to the interior of the box, in order that

Fic. 1 .
The rods a, c, which support the platinum point b, are in metallic contact with a Morse key, t, phaced on the side of the box K, and with an electro-magnet, A, which belonss to a telegraphic ssstem, intended to exchange the siguals required to start the action of the two instruments at their respective stations.
The receiver consists of a sounding box, D , on which rest two supports, d, d, bearing an iron rod of the thickness of a knitting-needle. An induction coil of insulated wire, g, is wound round this rod, and the whole is cnelosed by the lid D, which enneentrates the sound already increased by the sound-上2

ing-box: for this purpose the box is provided with two openings below the coil.

The circuit is completed through the primary of this coil by the two terminals 3 and 4, and a Morse key, t, is placed at the side of box B, in order to exchange signals.
In order to work this system, the speaking instrument may be a flute, a violin, or eren the human voice. The vibra-
tions of air occasioned by these instruments cause the tel-
phonic membrane to ribrate in unison, and the latter, rapidy
moving the platinum disk o to and from the point b, causes a
series of breaks in the current, which are repeated in the iron
wire $d d$, and transformed into metallic vibrations, of which
the number is equal to that of the sounds successively produced.
According to this mode of action, the possibility of transmitting sounds with their relative value becomes intelligible; but it is equally clear that sounds thus transmitted will not have the timbre of those which produce them, since the timbre is independent of the number of vibrations, and it must be added that the sounds produced by M. Reiss's instrument were as shrill as those of a child's penny trumpet, and by no means attractive. The problem of transmitting musical sounds by electricity was, however, really solved, and it can he said With truth that an air or a melody could be heard at any given distance.

The inrention of this telephone dates, as me have seen, from 1860, and Professor Heisler speaks of it in his treatise of technical physics, published at Vienna in 1866; he even asserts, in the article which he derotes to the subject, that although the instrument was still in its infancy, it was capable of transmitting rocal melodies, and not merely musical sounds. The ssstem was afterward perfected by M. Fander Weyde, who, After reading the account published by M. Heislcr, sought to

make the box of the sender more sonorous, and to strengthen the sounds produced by the receiver. He writes as follows in the American Scientific Journal:
"In 1868 I caused two telephones to be made, similar to those I have described, and I exhibited them at a mecting of the Polytechnic Club of the American Institute. The transmitted sounds were produced at the farthest extremity of the Cooper Institute, quite outside the hall in which the audience sat: the receiver was placed on a table in the hall itself. The vocal airs were faithfully reproduced, but the sound was rather weak and nasal. I then tried to improve the instrument, and I first obtained stronger vibrations in the box K by causing reverberation from the sides of the box, by means of hollow partitions. I next intensified the sounds produced by the receiver, by introducing several iron wires into the coil instead of onc. These improvements were submitted to the mecting of the American Association for the Advancement of Science, which was held in 1869, and it was considered that the invention contained the germ of a new mothod of telegraphic transmission which might lead to important results." This opinion was soon afterward justified by the discoveries of Bell and Elisha Gray.

AAn invention none of us could live without, a tool of modern communications so basic that many of today's business and social activities would be inconceivable in its absence, the telephone, is at the center of a series of events so strange as to amount to a "whodunit."

Most ot us were brought up on the story oi Alexander Graham Bell, the romantic figure of an inventor with dash and charm. Some of these favorable impressions must have come from the famous, if apocryphal, "Come here Watson. I want you" legend of the invention of the device. a tradition augmented bu the movie version of the tale, in whish actor Don Ameche became more or less permanently attached to the persona of Bell.

But it seems that history must be rewritten if justice is to be done to an irnmigrant from Florence. Italy: Antonio Meucci. who invented the telephone in 1849 and filed his first patent caveat (notice of intention to take out a patent) in 1871. setting into motion a series of mysterious events and injustices which would be incredible were they not so well documented.

Meucci was an enigmatic character, a man unable to overcome his own lack of managerial and entrepreneurial talent. a man tormented by his inability to communicate in any language other than Italian. The tragic events of his personal and professional life, his accomplishments and his association with the great Italian patriot, Garibaldi, should be legendary in themselves but, curiously, the man and his story are practically unknown today.

Antonio Meucci was born in San Frediano, near Florence, in April 1808. He studied design and mechanical engineering at Florence's Academy of Fine Arts and then worked in the Teatro della Pergola and various other theaters as a stage technician until 1835, when he accepted a job as scenic designer and stage technician at the Teatro Tacon in Havana. Cuba

Absolutely fascinated by scientific research of any kind, Meucci read every scientific tract he could get his hands on, and spent all his spare time in Havana on research, inventing a new method of galvanizing metals which he applied to military equipment for the Cuban government; at the same time. he continued his work in the theater and pursued his endless experiments.

One these touched off a series of fateful events. Meucci had developed a method of using eiectric shocks to treat illness which had become quite popular in Havana. One day, while preparing to administer a treatment to a friend. Meucci heard an exclamation of the friend, who was in the next room, over the piece of copper wire running between them. The inventor realized immediately that he held in his hand something much more important than any other discovery he had ever made. and he spent the next ten years bringing the principle to a practical stage. The following ten years were to be spent perfecting the original device and trying to promote its commercialization.

With this goal. he left Cuba for New York in 1850, settling in the Clifton section of Staten Island. a few miles from New York City. Here, in addition to his problems of a strictly financial nature. Meucci realized that he could not communicate adequately in. English, having relied on the similarities of Italian and Spanish during his Cuban residence. Furthermore, in Staten Island, he found himself surrounded by Italian pulitical refugees; Giuseppe Garibaldi, when exiled frum Italy, spent his period of United States residency in Meucci's house. The scientist rried to help his Italian friends by devising any number of industrial projects using new or improved manufacturing methods for such diverse products as beer, candles, pianos and paper. But he knew nothing of management. and even those initiatives which succeeded were to have their profits eaten up by unscrupulous or inept managers or by the refuges themselves, who sfent more time in political discussicen than they did in active work.

Meanwhile. Meucci continued to dedicate his time to perfecting the telephone. In 1855, when his wife became partially paralyzed. Meucci set up a telephone system which joined several rooms of his house with his workshop in another building nearby, the first such installation anywhere. In 1860, when the instrument had become practical. Meucci organized a demonstration to attract financial backing in which a singer's voice was clearly heard by spectators a considerable distance away. A description of the apparatus was soon published in one of New Yorks Italian newspapers and the report together with a model of the invention were taken to Italy by a certain Signor Bendelari with the goal of arranging production there; nothing came of this trip. nor of the many promises of financial support which had been forthcoming after the demonstration.

The years which followed brought increasing poverty to an embittered and discouraged Meucci, who nonetheless continued to produce a series of new inventions. His precarious financial situation, however, often constrained him to sell the rights to his inventions. and still left him without the wherewithal :o take out final patents on the telephone.

A dramatic event. in which Meucci was severely burned in the explosion of the. steamship Westield returning from New York. brought things to an even more tragis state. While Meucci lay in hospital. miraculously alive after the disaster, his wife sold many of his working models (inciuding the telephone prototype) and other materials to a second-hand deaier for six dollars. When Meucci sought to buy these precious ubjects back. he was told that they had been re-sold to an "unknown young man" whose identity remains a mystery to this dau.

Crushed, but not beaten. Meucci worked nignt and day to recunstruct his invention and to produce new designs and specifications. clearly apprehensive that someone could steal the devise before he c. uld have it patented. Unable to raise the sum for a definitive patent ($\$ 250$), consicterable in those dayo). he took recour:ie in the caveat or notice of intent, which was registered on December 28. 1871 and renewed in 1872 and 1873 but, fatefully, not thereafter.

Immediately after he received certification of the caveat. Meucci tried again to demonstrate the enormous potential of the device. delivering a model and technical details to the vice president of one of the affiliates of the newly established Western Union Telegraph Company, asking permission to demostrate his "Talking Telegraph" on the wires of the Western Union system. However, each time that Meucci contacted this vice president, a certain Edward B. Grant, he was told that there had been no time to arrange the test. Two years passed, after which Meucci demanded the return of his materials, only to be told that they had been "lost." It was then 1874.

In 1876. Alexander Graham Bell filed a patent which does not really describe the telephone but refers to it as such. When Meucci learned of this. he instructed his lawyer to protest to the U.S. Patent Office in Washington, something that was never done. However, a friend did contact Washington, only to learn that all the documents relevant to the "Talking Telegraph" filed in Meucci's caveat had been "lost." Later investigation produced evidence of illegal relationships linking certain employees of the Patent Office and officials of Bell's company. And later, in the course of litigation between Bell and Western Union. it was revealed that Bell had agreed to pay Western Union 20 percent of profits from commercialization of his "invention" for a period of 17 years. Millions of dollars were involved, but the price may been cheaper than revealing facts better left hidden, from Bell's point of view.

In the court case of 1886, although Bell's lawyers tried to turn aside Meucci's suit against their client, he was able to explain every detail of his invention so clearly as to leave little doubt of his veracity, although he did not win the case against the superior - and vastly richer - forces fielded by Bell. Despite a public statement by the then Secretary of State that "there exists sufficient proof to give priority to Meucci in the invention of the telephone," and despite the fact that the United States initiated prosecution for fraud against Bell's patent, the trial was posponed from year to year until, at the death of Meucci in 1896, the case was dropped.

The story of Antonio Meucci is still iittle known. yet it is one of the most extraordinary episodes in American history, albeit an episode in which justice was perverted. Still, the genius and perservance of an Italian immigrant - genius, poor businessman, tenacious defender of his rights against incredible odds and grinding poverty - is a story which must be told. Antonio Meucci is-waiting to be recognized as the inventor of a key element in our modern culture.

 transact their busineas between London and Calcritta The posaibility of transmitting by means of electricity the vibrations of sound undulations produced by the voice is clearly demonstrated". In the same newspaper of the 22nd Aagust, 1865, I find the following:commanicated his method of transmitting speech by the telegraph wire, proposed to apply his invention to private telegraph wires used in England."

Perhaps those English engineers, if they be yet amongst us, will give to the public what they then learned of Manzotti's invention.

Le Petit Jouruct, of Paris, of 22nd November, 1865, contained an article by an avocat of the Imperial Bank of Paris, headed, "Discovery of the Transmission of Sound and of Speech by the Telegraph, by Manzetti." I have been unable, as jet, to find any description of the mechanism or method used by Manzetti for the transmission of speech. From the publication above referred to, it appears that Manzetti conceived his idea of the transmission of speech by electricity in 1854, und it was publicly announced in 1865 that he had actually accomplished the result which " has been the admiration of the whole world." But, alas! how he did it lies with him, a secret, in the grave.

The first pablication (so far as I have jet discovered) of any description in detail of any system of transmitting speech by means of electricity was in a journal, CIllustrution, of 30th July, 1854, Paris, and subsequently in the Diduskcalich of Frankfort, 28th Sept., 185t. This was an invention of Charles Bourseul, a Frenchman, and about that time a soldier in the army in Algiers. That description is as follows, and it will
 "An electric carrent passing through a wire trans-
forms a piece of soft iron into a magnet. If the current censes the magnetism also ceases. This electromagnet can be made to alternately attract and release a movable plate, which in its to and fro movements produces the couventional telegraphic signals. Now, it is also known that all sounds which reach our ear are produced by vibrations in the air, and that the infinite variety of sounds depends solely on the speed and magnitude of these sound waves. If, now, a metal disc could be invented which would be fexible enough to reproduce all the sonnd waves transmitted to it by the air, and if that disc conld be connected to an electric circuit-such a way that in conformity with the vibration of the air it would start and interrapt the current-then it would also be possible to cause a similarly constracted metal disc, in electrical connection with the first, to repeat all the movements of $i t$, and the effect woald be the same as if one had spoken directly against this secoud disc-that is to say, the ear would be affected in the same manner as if it heurd the speech directly through the first metal diaphragm."

I huve thus far been naable to discover whether Bourseul ever made an instrament after the above description ; but the fact that Philip Reis was the first to make, and gice to the public a spechking telephesese, is clearly established by the numerous publications cited by Professor Silvanus P. Thompson, in his book, "Philipp Reis, Inventor of the Telephone." Instruments mude by Reis himself were sold in livil. That Reis's instruments, wade according to the description of them, will transmit speech can be verified by anyono. I have frequently heard them tulk. Mr. Justice Fry, in his judgment, said, "I have some evidence that they will transmit articulate speech."

In the last article on the invention of the telephone writton by the late much-lannented eminent sarant, Count Du Moncel, in Lat Lumiere Electrique, of 29th October, 1883, appear these words: "Ou a entendu certaines paroles dans la telephone de Reis."

I avail myself of this occasion to express ms deep sorrow for the denth of this eminent man of science.

 right-lımal vide.
 stcam loiler for the mulor.
No. 2, side of thes humso.
No. 3, imettery in the insement.
No. 4, combucting wires, pmaing tu the exterior of the hanne ame penctmang, lis the windur, in tho romsa enlleal of (iarimaldi, on Uin third flowr.

 and adjoininge the rnunior G aribalati.
 wires comsing from the liathery culeroul.
Sio. x_{0}, rimblow in thu baswenent, frome which the wire guing fromi the lattery to wimbur lio. 7. cane cult.

Thick paler of manilln, maluratesl will mulphuric acial diluteal in wnter, and then put on tho fulve likn tha parchanent, amel anor In:ing
 miles I put nomn line phumbugo, this in a gixal diaphimann.
The name pxyper xaturataxi with a !meth of nitrate of vilver and then qumfine, like the previuun, in gent.
Finbric of cuttom, max, silk, enturated with slarreh very thick, and

 mobmirann it in necressury to puit in the croutm a small dixk (1) of
(*) All uto pare is writton io peazell.
(1) Wunln "of iron or plathum " written in the lext ta lak adil ntruck ont hy peose ell. Wurds in brackete laterlluel in prinell.
iron or platinum metallic iron in orrios that it can have artion mitioe renter of the labhin ami mmmunirate the elertrivily in ita riloration when the monbed iof the woral: lout all thope memisanoin neral fol in

 a unctallic luaflon; Jon it.aterl or iron. or (x) platinum. Thin lasis

 flaner of alnuod a mile.]

$$
\left(l^{2} \text { app } 35_{0}\right)
$$

SEIT. .7. ixin.

 aniterl to the groumet.

 the i innumal.

THE USE OF TERRESTRIAL GROUND ENERGIES TO ACTIVATE THE

MEUCCI SYSTEM

1. 12 , the instrument can be used without need of a battery but these magnetized bars must be made in the shape of a snail so that they can stay in the instrument, because otherwise this would be too long for transmitring.' I ask you if that is not a correct descripcion of the magnet of the instrument drawn as shown in Meucci's affidavic, marked 'M,' p. 31 ?
"Ans. It is undoubtedly true that the resistance of 2 magnetized bar becomes greater in proportion as it is longer. It is undoubtedly tue that an electrical speaking telephone, constructed with a magnee, like that shown in the Meucci affidavit drawing referred to, is capable of transmitting speech withoue the aid of a battery; that is, the statements made in the memorandum book are undoubtedly true of the drawing referred to in the affidavit; and in that sense it might be said that the description of the instrument was 2 correct one. But this socalled description is exceedingly vague, imperfect and unintelligible, and does not show that the writer had any idea of the principles utilized in the electrical speaking relephones."

The above questions and answers should be sufficient to prove that alchough the drawing was made four years after Bell's patenc, Meucci did not copy anything from anybody. As for Prof. Cross' argument that the sketch in the memorandum book does not show any leading wires, it is too silly wo be caken seriously. After all, the drawing in the affidavit is precise, and shows the leading wires clearly. Once more it shows to what ridiculous lows Prof. Cross descended to confuse and mislead.

As for the charge that the description is too vague, etc. ecc., what we have said about the drawing on page 40 is just as valid for the drawing on page ss. After all, the drawing on page 23 of Meucci's affidavic could hardly be more precise and. accyrate in every respect.

The reference to the length of the magnet, moreover, shows hat Meucci used his own head. Nobody else, to the best of our knowledge, had ever used a magner like a snail so chat it could fie inside the ernasmittes/

4315

and and年

THE NEXT STEP

About 1852 , when he was already in the United States, Meucci expressed the desire "to see and know some factory where were constructed telegraphic instruments, in order to open my mind and be in knowledge of what was in use, either in instruments, and so forch. Said Pader (a Spanish friend menThtioned before) being acquiinted with my friend Negretti, told me that they knew a manufacturer of telegraphic instruments oliving in Centre Street, by name of Chester, and that they 4 would take me to said establishment to give me the opportunity to observe the telegraphic instruments, and have me furnished, by paying, with everything I could need. After a few days, :we were all together at said Chester's, and he showed me all the things necessary used then in the telegraphic art, and so? I was put in knowledge and my memory was opened to build some new instruments to improve the one I had made. Recurning home, after some reflection, I construcred a first instru." That was instrument No. 4 (No. 3 of the affiment. . Herre bo used an animal membrane with a hole in the middle and under the hole a metallic tongue for its vibra-

In the next instrument (No. \& of che deposition and No. 3 of affidavit) made about 1853, Meucci introduced a bobbin Or core with coils for the first time, thus getting much closer. to the electric telephone. All this instrument needed to be 2 good electric telephone, as Prof. Cross had to admit, was an iron diaphragm.

In his original description of this instrument Meuca mentioned ouly an animal membrane with 2 hole in the center, thereby leading one to suppose, as argued by his lawyer, that under the membrane there was a metallic plate, the whole forming a metallic diaphragm. However, the description Meuci gave in his Answers 21 and 22 is $\mathbf{t o 0}$ vague. He was more precise in his Answer 606, when he said: "The description will be the same I gave before. It is a tube of tin, with the mouthpiece, to speak, of the same metal. At the botrom there is an animal membrane saturated with bichromate of potash to reader it firmer. In the interior there is 2 small eongue of platinum
 to a conductor of copper, to communicate with the battery. The exterior of the tube is covered by insulated coppes wire, forming something like a bobbin. One extremity of the wire goes to the interior of the small tongue of platinum; the ocher to the battery." This instrument was made between 1852

MEUCCI was unaware of the use others were making of his papers and instruments. He continued obsessively to work on improving his invention. He took all the reels of wire he had and strung a line that reached from his house across his property. It was the first real telephone line in history. Matilde Ciuci. who like Mary Gregory lived with the Meuccis and in exchange for her room and board helped Signora Ester. has left us a precise description of his frenetic activity in this period. "I remember." Ciuci was to testify. "the date when I first went to live with Mr. and Mrs. Meucci. It was the 22nd day of October. 1875.... I saw wires about the thickness of shoelaces going from the basement to the room which was called the Garibaldi room. I remember distinctly there were wires going up to the room on the third floor. Mr. Meucci used to be putting the wires up and down. he sometimes put them up outside of the house and through the window into the room. Sometimes he would have the wires put along the stairs. .. He also had wires running from the basement into the yard. the distance was as far as across Broadway. These wires reached the entire width of the lot.... Sometimes he would have me go upstairs to talk. and sometimes he would have me go into the basement.... When he had the wires in the yard. I had to go across the place to the end of the wires. I remember very positively that often I was called to go across the yard to talk. and this was soon after I went there. .. I could plainly hear what he said. He used to say the words 'good morning.' "how do
 represente:
That he has made certain improvements in Sound Telographa, and that be is now engaged in making oxperimenta for the purpose of perfecting the same proparatory to applying for Lettery Patent therefor. Ho therefore prays that the subjoined description of his invention may be fled as a Cavent in the Confidential Archives of tho Patent Office.

OATH.

$\left.\begin{array}{l}\text { Gritz of NET Yorr, } \\ \text { County of Richmond, }\end{array}\right\}$ sas:
Arromo Yrecer, the above-nameel petitioner, being iuly aworn, deposes and sayn that he verily bolieves himmelf to be the original and first inventor of the improventent in Sound Talographs, described and claimed in tha foreguing aperification; that he does not know, and does not believe. that the same was ever before known and used; and that I an a citizen of the United States.

Antomo Yruecl.
Subocribed and sworn to belore nie,
this 23d day of December, 1871, $\}$
Josxpa Doyzr,
Juatice of the Peace.

The following is a description of the invention suff. cieatly in detail for the purposes of this Cavent:
I emplay the well-known conductin; effect of cuntinuous metallic conductors as 3 medium for sound, and in.

\rightarrow , and

To call atteation, the party at the other end of the lino nay be wirmed by an electric telegraph sigal or a series of them. The apparatus for this purpose and the akill in oprerating it newd lve much less than for the ordinary telcgraphing.

When my sound telegraph is in operation the parties ixhould remain alone in their reapective rooms and evary practicable pnecaution shuuld be taken to havo the aurroundings perfectly quiet. The closed mouth utensil or trumpet and the cnclosing the persons also in a room alone both tend to provent undue pablicity to the com. munication. I think it will be easy by these means to pravent the comnunication being understood by any but
jpithe proper peronns.
It may be found practicable to work with the person sending the message insulated and with the person receiving it in froe electrical comrounication with the ground. Or these conditions may possihly be reversed and still operate with-some success.

Both the conductors or utensils for mouth and ears should be,-in fact I may say -must be-metallic and be so conditioncd as to be gool conductors of electricity.
I claim as my invention de desire to have considered as such for all the purposes of this Caveat

The new invention herein set forth in all its details, combinations and sub-combinations.

And more specifically I claim-
Firest-A continuous sound conductor electrically insu lated.

SEcond-The same adayted for telegraphing by sound or for conversation hetween distant parties electrically insulated.

Trird-The employnient of a sound conductor which is also an clectrical conductor as a means of communica. tion by sound between distant points.

Focrty-The same in combination with provisions for electrically insulating the sending and recaiving parties.

Ftrin-The mooth piece or speaking utensil in combination with an electrically insulating conductor.

Strir-The ear utensils or recuiving resoela adapted to apply upon the ears in combinatina with an electrically iusulating sound conductor.

Saventh-The entire gystam comprising the electrical and sound conductor insulated and furnished with a muyth piece and ear pieces at each end aclapted to werve 2s specified.

In tratimony whereof I have hereunto set my uame in presence of two subecribing wit. nerses.

Antomo Maceca Witnesses:

Shirley McAydret.
Eredr. Harper

Of the instruments described above, the first four, made before 1852, were primarily of an' experimental nature. The fourth was more or less like the orhers, but, as we have said, it marked another step in the right direction, for it employed $2 n$ animal membrane which was missing in the first three.

Instruments No. 5, 10, 11, and 8, all made afrer 1852 and before 1857, mark further progress in the right direction. In No. S, we find for the first time the use of a bobbin or core and coil, with a small tongue of platinum; in No. 10 we have 2 merallic diaphragm "somerimes of irono" No. 11 also may have had an iron membrane, although Meucci is not very clear about it. Np. 8 also used metallic membranes.

Thus, since Meucci kept on experimenting and changing membranes, it is quite possible that he may have made a good electric relephone becween 1852 and 1857. As be said in his Answer 29, /At the same time I tried several qualities of membranes; some of iron, some of different qualities of fabrics and ${ }^{7 r}$ metals, and animal substances, ecc."

Neteci's description of instrument No. 7 (also No. 7 in che affidavit), made about 1859 or 1860 , is more precise. Because of its importance we quote it in full:
"Answer 30. About the year 1859 or 1860. That was the Pfirst instrument that I made with the bobbin bought from Mr. Chester, as well as the first with the centre of the bobbin made of a piece of steel, tempered and magnetized permanently, put ioside of a circular box of pasteboard, with a wooden bottom, and with above it an animal diaphragm with a hole in the middle and the whole covered by a metallic tongue that served as a valve, opening and closing by the oscillations of the word. And in the same instrument I tried several other qualities of diaphragms of several materials. This instrument has given me excellent results in the transmission of the exact word
"No. 1, pasteboard box, with wooden bottom.
"No. 2, bobbin.
"No. 3, steel bar, tempered and permanently magnetized, passing through the centre of the bobbin, which can be raised and lowered by means of the screw at the bottom.
"No. 4, animal diaphragm, with a hole in the center, with a metallic tongue of iron under it, serving as a valve (italics ours).
"No. s, bottom of the instrument in wood.
"No. 6, nut to raise and lower the centre of the bobbin.
"No. 7, copper wire insulated, coming from the bobbin, passing through the bottom of the instrument, to connect with the battery.
"This apparatus gave me good results, transmitring the word with the same facility without being necessary to connect it with the battery." Obviously, THIS IS AN EXCELLENT ELECTRIC TELEPHONE.

Confronted with the above evidence, the Bell counsel, Mr. Storrow, and the Bell expert, Prof. Cross, tried to discredit it to the best of their abilities but, being unable to deny that some of the later instruments contained all the elements of duced in order to show the different stages of the invention) they stated without hesitation that Meucci must bave copied

We shall take up this charge in the following chapter. Before doing that, however, we submit for the consideration of the impartial reader some of the arguments to which Prof. Cross and Mr. Storrow resorted in order to further confuse the issue. 7 We quote verbatim from Mr. Scorrow's direct interrogation 'in of his witness, Prof. Cross, as it appears in Prof. Cross' deposition:
"Int. 69. Will you state whecher you have used an apparatus composed of two instruments constructed exacriy alike, and of substantially the same size as Fig. 7 of Mr. Meucci's deposition, as explained in his 29 ch and 30 th Answers,-subscituting, bowever, 2 sheet iron diaphragrn for the membrane diaphragm; and if you have tried it with such substitution state the resules."

Now notice how precise, however repecitious, was Prof. Cross' answer. Meucci would have replied "Yes" and done with it: - "Ans. 69. I have used an apparatus composed of two instruments constructed exactly like Fig. 7 of Mr. Meucci's deposition, and his description of the same in his chirtieth answer, except that a sheet-iron diaphragm was added at the upper end, a short distance from and in front of the upper end of the steed magnetized core 3. With that addition it became an excellent electric speaking telephone, transmitring and receiving speech without the aid of a battery, and without any trouble whatever. I am very sure that an instrument made according to that drawing, with the addition of a diaphragmon of sofy, thin shee-iron, would give such results as would leave no one in doubt as to its practicability and utility."

That answer should have been sufficient, but not for Mr. Storrow, who then asked the following question:
"Inc. 70. If you employ an animal membrane diaphragm in Fig. 7 , instead of the iron diaphragm which you did employ, will an apparatus composed of two such instruments connected rogether, be an electric speaking telephone, and transmit speech by means of electricity?
"Ans. 70. Such an apparatus would not be an electric speaking telephone, nor would it be possible by such an apparatus to transmit speech electrically.
"Inc. 71. Will you examine the statements Mr. Meucci makes about what he calls 2 valve in Fig. 7, as described in his answer thirty, and in his cross answers 253 to 256 inclusive, and tell me whether that valve can perform any function in the electrical transmission of speech?
"Ans. 71. I do not see how the valve which he describes can posibly perform any funcrion in the transmission of speech.
"Int. 72. Please look again at that description of the valve and seate whecher a metal valve attached so delicately that it would open and shut the hole in the animal membrane, under the influence of the sound waves due to the voice of che speaker, would serve as an inductive armature, or convert animal membrane into a diaphragm amounting to an inductive armature, acting like the instruments of Fig. 7 of the Bell patent?
"Ans. 72. In my opinion it is not possible that 2 metal valve as described, so delicate as to open and close the aperture in the membrane in the manner indieated, could possibly serve so as to operate in the manner of the tranomitter shown in Fig. 7 of the Bell patent."

In his affidavit Prof. Cross stated:
"I have used an apparatus composed of two instruments constructed exactly like Fig. 7 of Mr. Meucci's deposition, and his description of the same in his thirriech answer, except that a sheer-iron diaphragm was added at the upper end, a short distance from and in frone of the upper end of the steel magnetized core 3. With that addition it became an excellent speaking relephone, transmitting and receiving speech without the aid of a battery, and without any trouble whatever. I am very sure that an instrument made according to that drawing with che addition of a diaphragm of soft, thin sheer-iron, would

VRILLIC RELAY SWITCH
give such resules as would leave no one in doubt as to its pracricability and ucility."

Mir. Storrow's interrogations and Prof. Cross' replies, as well as Prof. Cross' statement in his affidavit in which he says "except a sheet-iron was added at the upper end" might lead lone to believe that Meucci's telephone did not include an iron diaphragm. But, as we have seen, Meucci in his answer No. 30 did clearly specify a metallic tongue of iron.

Prof. Cross' replies to the cross-interrogations of Mr. Humphreys, Meucci's lawyer, are nothing short of extraordinary. Referring to Meucci's Answer No. 30, Prof. Cross says that Meucci "does not in his principal description mention that there is any iron used in connection with the diaphragm" (referring to the first part of the answer) conveniently disregarding that a few seconds later, in the same Answer No. 30 Meucci was more specific and said "metallic tongue of iron."

Furchermore, according to Prof. Cross, whether Meucci said "metallic tongue" or "metallic tongue of iron," was irrelevant, adding "I should judge from his description that he did not consider it in any way material whecher the metallic valve were of iron or of any ocher material." But how can one make such a statement when Meucci, for once, was very precise? The inductive agtion of the diaphragm is clearly indicated by his descriptior "opening and closing by the oscillations of the word."

年

 Bning品隹

 －$x^{2} x^{2}$ $\therefore A_{0}+x^{2}$

 $=\sim$ 年

[^0]: Witnesses:
 C. E. Eutbbard.

 Whrren Kitaf.

[^1]:

[^2]: - Sullivan. "Currents of Electricity produced by the vibration of Metals."

