The most apparent effects of electricity heat and shock are not treated here. Although there is
some interest in the use of electromagnetic hyperthermia in cancer treatment, in general, both
phenomena involve well-understood but relatively unimportant physical processes. In stark contrast,
subthermal phenomena seem destined to revolutionize the study of biology.
We have tried to present our ideas to what we hope will be a broad range of readers: scientists,
engineers, physicians, students, and the general public to stimulate and facilitate further research. We
fully expect that we have made errors in evaluating some studies or theories, because such mistakes can
always be expected in a first attempt to synthesize knowledge from diverse disciplines. We therefore
ask the reader not to judge us too harshly. The book is not a definitive treatise, but only a guide to be
used at the beginning of an exciting journey.
We owe the reader an explanation of our background in the area relating to the practical
implications of this book. In the early I970's we recognized the existence of nonthermal biological
effects of electromagnetic energy we saw that the evidence proved that such phenomena existed and we
spoke and testified to this awareness. These activities earned us the opposition of an impressive array
of individuals and organizations each of whom stood like the ancient king, Canute, and tried to
command the tide of experimental studies to recede. We have diligently tried to prevent this
controversy from coloring our analysis and conclusions, and we leave it to the reader to judge whether
we have succeeded.
We acknowledge a great debt to the scientists who explored the realm of electrobiology and
whose legacy has enriched us all. We are particularly indebted to Szent-Gyorgyi, Brown, Frey, Zaret,
and Cope in the United States and Presman, Kholodov, Sadchikova, and Udinstev in the Soviet Union
for their work. The preparation of this book was greatly aided by the help and advice of our colleague
Maria Reichmanis to whom we express our gratitude. Finally, we acknowledge our debt to our family
and particularly our wives Lillian and Linda whose patience always, somehow, seemed equal to the
unreasonable demands of this book.
INTRODUCTION
Over the past decade there has been a growing awareness that electrical and magnetic forces
have specific effects on living organisms. These effects are produced by forces of very low magnitude
and are not explainable in such simplistic terms as Joule heating. They appear to indicate sensitivities
on the part of living organisms several orders of magnitude greater than predictable by present concepts
of cellular or organismal physiology.
The effects are apparently separable into two broad categories: those that involve general or
specialized functions of the central nervous system (CNS), and those that involve postembryonic
growth and healing process. CNS effects include the production of general anesthesia by electrical
currents that traverse the brain, the direction of migratory behavior of the Atlantic eel by the earth's
electrostatic field, the navigational aid furnished homing pigeon by the earth's magnetic field, the
apparent cue for the timing of biological cycles by the earth's magnetic field, and the direct relationship
between reversals of the earth's magnetic field and the extinction of whole species in the geological
past. Growth effects include the alteration of bone growth by electromagnetic energy, the restoration of
partial limb regeneration in mammals by small direct currents, the inhibition of growth of implanted
tumors by currents and fields, the effect upon cephalocaudal axis development in the regenerating
flatworm in a polarity-dependent fashion by applied direct currents, and the production of
morphological alterations in embryonic development by manipulation of the electrochemical species
ELECTROMAGNETISM & LIFE - 5