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Fermat number
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive
integer of the form

where n is a non-negative integer. The first few Fermat numbers are:

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... (sequence A000215 in
the OEIS).

If 2k + 1 is prime and k > 0, then k must be a power of 2, so 2k + 1 is a Fermat number; such primes are
called Fermat primes. As of 2023, the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17,
F3 = 257, and F4 = 65537 (sequence A019434 in the OEIS); heuristics suggest that there are no more.

The Fermat numbers satisfy the following recurrence relations:

for n ≥ 1,

for n ≥ 2. Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem
(named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1. To see this, suppose that 0 ≤ i < j and
Fi and Fj have a common factor a > 1. Then a divides both

and Fj; hence a divides their difference, 2. Since a > 1, this forces a = 2. This is a contradiction, because each Fermat number is clearly odd. As
a corollary, we obtain another proof of the infinitude of the prime numbers: for each Fn, choose a prime factor pn; then the sequence {pn} is an
infinite sequence of distinct primes.

No Fermat prime can be expressed as the difference of two pth powers, where p is an odd prime.
With the exception of F0 and F1, the last digit of a Fermat number is 7.

The sum of the reciprocals of all the Fermat numbers (sequence A051158 in the OEIS) is irrational. (Solomon W. Golomb,
1963)

Fermat numbers and Fermat primes were first studied by Pierre de Fermat, who conjectured that all Fermat numbers are prime. Indeed, the first
five Fermat numbers F0, ..., F4 are easily shown to be prime. Fermat's conjecture was refuted by Leonhard Euler in 1732 when he showed that

Euler proved that every factor of Fn must have the form k 2n+1 + 1 (later improved to k 2n+2 + 1 by Lucas) for n ≥ 2.

That 641 is a factor of F5 can be deduced from the equalities 641 = 27 × 5 + 1 and 641 = 24 + 54. It follows from the first equality that
27 × 5 ≡ −1 (mod 641) and therefore (raising to the fourth power) that 228 × 54 ≡ 1 (mod 641). On the other hand, the second equality implies
that 54 ≡ −24 (mod 641). These congruences imply that 232 ≡ −1 (mod 641).

Fermat was probably aware of the form of the factors later proved by Euler, so it seems curious that he failed to follow through on the
straightforward calculation to find the factor.[1] One common explanation is that Fermat made a computational mistake.

Basic properties

Further properties

Primality
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There are no other known Fermat primes Fn with n > 4, but little is known about Fermat numbers for large n.[2] In fact, each of the following is
an open problem:

Is Fn composite for all n > 4?

Are there infinitely many Fermat primes? (Eisenstein 1844[3])
Are there infinitely many composite Fermat numbers?
Does a Fermat number exist that is not square-free?

As of 2014, it is known that Fn is composite for 5 ≤ n ≤ 32, although of these, complete factorizations of Fn are known only for 0 ≤ n ≤ 11, and
there are no known prime factors for n = 20 and n = 24.[4] The largest Fermat number known to be composite is F18233954, and its prime factor
7 × 218233956 + 1 was discovered in October 2020.

Heuristics suggest that F4 is the last Fermat prime.

The prime number theorem implies that a random integer in a suitable interval around N is prime with probability 1 / ln N. If one uses the
heuristic that a Fermat number is prime with the same probability as a random integer of its size, and that F5, ..., F32 are composite, then the
expected number of Fermat primes beyond F4 (or equivalently, beyond F32) should be

One may interpret this number as an upper bound for the probability that a Fermat prime beyond F4 exists.

This argument is not a rigorous proof. For one thing, it assumes that Fermat numbers behave "randomly", but the factors of Fermat numbers
have special properties. Boklan and Conway published a more precise analysis suggesting that the probability that there is another Fermat prime
is less than one in a billion.[5]

Let  be the nth Fermat number. Pépin's test states that for n > 0,

 is prime if and only if 

The expression  can be evaluated modulo  by repeated squaring. This makes the test a fast polynomial-time algorithm. But Fermat
numbers grow so rapidly that only a handful of them can be tested in a reasonable amount of time and space.

There are some tests for numbers of the form k 2m + 1, such as factors of Fermat numbers, for primality.

Proth's theorem (1878). Let N = k 2m + 1 with odd k < 2m. If there is an integer a such that

then  is prime. Conversely, if the above congruence does not hold, and in addition

 (See Jacobi symbol)

then  is composite.

If N = Fn > 3, then the above Jacobi symbol is always equal to −1 for a = 3, and this special case of Proth's theorem is known as Pépin's test.
Although Pépin's test and Proth's theorem have been implemented on computers to prove the compositeness of some Fermat numbers, neither
test gives a specific nontrivial factor. In fact, no specific prime factors are known for n = 20 and 24.

Because of Fermat numbers' size, it is difficult to factorize or even to check primality. Pépin's test gives a necessary and sufficient condition for
primality of Fermat numbers, and can be implemented by modern computers. The elliptic curve method is a fast method for finding small prime
divisors of numbers. Distributed computing project Fermatsearch has found some factors of Fermat numbers. Yves Gallot's proth.exe has been
used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the
Fermat number , with n at least 2, is of the form  (see Proth number), where k is a positive integer. By itself, this makes it easy
to prove the primality of the known Fermat primes.

Factorizations of the first twelve Fermat numbers are:

Heuristic arguments

Equivalent conditions

Factorization
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F0 = 21 + 1 = 3 is prime

F1 = 22 + 1 = 5 is prime

F2 = 24 + 1 = 17 is prime

F3 = 28 + 1 = 257 is prime

F4 = 216 + 1 = 65,537 is the largest known Fermat prime

F5 = 232 + 1 = 4,294,967,297

= 641 × 6,700,417 (fully factored 1732[6])
F6 = 264 + 1 = 18,446,744,073,709,551,617 (20 digits)

= 274,177 × 67,280,421,310,721 (14 digits) (fully factored 1855)
F7 = 2128 + 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457 (39 digits)

= 59,649,589,127,497,217 (17 digits) × 5,704,689,200,685,129,054,721 (22 digits) (fully factored 1970)
F8 = 2256 + 1 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,

639,937 (78 digits)
= 1,238,926,361,552,897 (16 digits) ×

93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321 (62 digits)
(fully factored 1980)

F9 = 2512 + 1 = 13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764,0
30,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,6
49,006,084,097 (155 digits)

= 2,424,833 × 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (49 digits) ×
741,640,062,627,530,801,524,787,141,901,937,474,059,940,781,097,519,023,905,821,316,144,415,759,
504,705,008,092,818,711,693,940,737 (99 digits) (fully factored 1990)

F10 = 21024 + 1 = 179,769,313,486,231,590,772,930...304,835,356,329,624,224,137,217 (309 digits)

= 45,592,577 × 6,487,031,809 × 4,659,775,785,220,018,543,264,560,743,076,778,192,897 (40 digits) ×
130,439,874,405,488,189,727,484...806,217,820,753,127,014,424,577 (252 digits) (fully factored 1995)

F11 = 22048 + 1 = 32,317,006,071,311,007,300,714,8...193,555,853,611,059,596,230,657 (617 digits)

= 319,489 × 974,849 × 167,988,556,341,760,475,137 (21 digits) × 3,560,841,906,445,833,920,513 (22
digits) ×
173,462,447,179,147,555,430,258...491,382,441,723,306,598,834,177 (564 digits) (fully factored 1988)

As of November 2021, only F0 to F11 have been completely factored.[4] The distributed computing project Fermat Search is searching for new
factors of Fermat numbers.[7] The set of all Fermat factors is A050922 (or, sorted, A023394) in OEIS.

The following factors of Fermat numbers were known before 1950 (since then, digital computers have helped find more factors):

Year Finder Fermat number Factor

1732 Euler

1732 Euler  (fully factored)

1855 Clausen

1855 Clausen  (fully factored)

1877 Pervushin

1878 Pervushin

1886 Seelhoff

1899 Cunningham

1899 Cunningham

1903 Western

1903 Western

1903 Western

1903 Western

1903 Cullen

1906 Morehead

1925 Kraitchik
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As of January 2021, 356 prime factors of Fermat numbers are known, and 312 Fermat numbers are known to be composite.[4] Several new
Fermat factors are found each year.[8]

Like composite numbers of the form 2p − 1, every composite Fermat number is a strong pseudoprime to base 2. This is because all strong
pseudoprimes to base 2 are also Fermat pseudoprimes – i.e.,

for all Fermat numbers.

In 1904, Cipolla showed that the product of at least two distinct prime or composite Fermat numbers   will
be a Fermat pseudoprime to base 2 if and only if .[9]

Lemma. — If n is a positive integer,

Proof

Theorem —  If  is an odd prime, then  is a power of 2.

Proof

If  is a positive integer but not a power of 2, it must have an odd prime factor , and we may write 
where .

By the preceding lemma, for positive integer ,

where  means "evenly divides". Substituting , and  and using that  is odd,

and thus

Because , it follows that  is not prime. Therefore, by contraposition  must be a
power of 2.

Theorem —  A Fermat prime cannot be a Wieferich prime.

Proof

Pseudoprimes and Fermat numbers

Other theorems about Fermat numbers
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Number of sides of known constructible polygons
having up to 1000 sides (bold) or odd side count
(red)

We show if  is a Fermat prime (and hence by the above, m is a power of 2), then the congruence
 does not hold.

Since  we may write . If the given congruence holds, then , and therefore

Hence , and therefore . This leads to , which is impossible since
.

Theorem (Édouard Lucas) —  Any prime divisor p of  is of the form  whenever n > 1.

Sketch of proof

Let Gp denote the group of non-zero integers modulo p under multiplication, which has order p − 1. Notice that

2 (strictly speaking, its image modulo p) has multiplicative order equal to  in Gp (since  is the square
of  which is −1 modulo Fn), so that, by Lagrange's theorem, p − 1 is divisible by  and p has the form

 for some integer k, as Euler knew. Édouard Lucas went further. Since n > 1, the prime p above is
congruent to 1 modulo 8. Hence (as was known to Carl Friedrich Gauss), 2 is a quadratic residue modulo p, that
is, there is integer a such that  Then the image of a has order  in the group Gp and (using
Lagrange's theorem again), p − 1 is divisible by  and p has the form  for some integer s.

In fact, it can be seen directly that 2 is a quadratic residue modulo p, since

Since an odd power of 2 is a quadratic residue modulo p, so is 2 itself.

A Fermat number cannot be a perfect number or part of a pair of amicable numbers. (Luca 2000)

The series of reciprocals of all prime divisors of Fermat numbers is convergent. (Křížek, Luca & Somer 2002)

If nn + 1 is prime, there exists an integer m such that n = 22m. The equation nn + 1 = F(2m+m) holds in that case.[10][11]

Let the largest prime factor of the Fermat number Fn be P(Fn). Then,

 (Grytczuk, Luca & Wójtowicz 2001)

Carl Friedrich Gauss developed the theory of Gaussian periods in his Disquisitiones
Arithmeticae and formulated a sufficient condition for the constructibility of regular
polygons. Gauss stated that this condition was also necessary,[12] but never published a
proof. Pierre Wantzel gave a full proof of necessity in 1837. The result is known as the
Gauss–Wantzel theorem:

An n-sided regular polygon can be constructed with compass and
straightedge if and only if n is the product of a power of 2 and distinct
Fermat primes: in other words, if and only if n is of the form n = 2kp1p2...ps,
where k, s are nonnegative integers and the pi are distinct Fermat primes.

A positive integer n is of the above form if and only if its totient φ(n) is a power of 2.

Relationship to constructible polygons

Applications of Fermat numbers

Pseudorandom number generation
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Fermat primes are particularly useful in generating pseudo-random sequences of numbers in the range 1, ..., N, where N is a power of 2. The
most common method used is to take any seed value between 1 and P − 1, where P is a Fermat prime. Now multiply this by a number A, which
is greater than the square root of P and is a primitive root modulo P (i.e., it is not a quadratic residue). Then take the result modulo P. The result
is the new value for the RNG.

 (see linear congruential generator, RANDU)

This is useful in computer science, since most data structures have members with 2X possible values. For example, a byte has 256 (28) possible
values (0–255). Therefore, to fill a byte or bytes with random values, a random number generator that produces values 1–256 can be used, the
byte taking the output value −1. Very large Fermat primes are of particular interest in data encryption for this reason. This method produces only
pseudorandom values, as after P − 1 repetitions, the sequence repeats. A poorly chosen multiplier can result in the sequence repeating sooner
than P − 1.

Numbers of the form  with a, b any coprime integers, a > b > 0, are called generalized Fermat numbers. An odd prime p is a
generalized Fermat number if and only if p is congruent to 1 (mod 4). (Here we consider only the case n > 0, so 3 =  is not a
counterexample.)

An example of a probable prime of this form is 1215131072 + 242131072 (found by Kellen Shenton).[13]

By analogy with the ordinary Fermat numbers, it is common to write generalized Fermat numbers of the form  as Fn(a). In this notation,

for instance, the number 100,000,001 would be written as F3(10). In the following we shall restrict ourselves to primes of this form, ,
such primes are called "Fermat primes base a". Of course, these primes exist only if a is even.

If we require n > 0, then Landau's fourth problem asks if there are infinitely many generalized Fermat primes Fn(a).

Because of the ease of proving their primality, generalized Fermat primes have become in recent years a topic for research within the field of
number theory. Many of the largest known primes today are generalized Fermat primes.

Generalized Fermat numbers can be prime only for even a, because if a is odd then every generalized Fermat number will be divisible by 2.
The smallest prime number  with  is , or 3032 + 1. Besides, we can define "half generalized Fermat numbers" for an odd

base, a half generalized Fermat number to base a (for odd a) is , and it is also to be expected that there will be only finitely many half

generalized Fermat primes for each odd base.

(In the list, the generalized Fermat numbers ( ) to an even a are , for odd a, they are . If a is a perfect power with an odd

exponent (sequence A070265 in the OEIS), then all generalized Fermat number can be algebraic factored, so they cannot be prime)

(For the smallest number  such that  is prime, see OEIS: A253242)

Generalized Fermat numbers

Generalized Fermat primes
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numbers 
such that

 is prime

numbers 
such that

 is prime

numbers 
such that

 is prime

numbers 
such that

 is prime

2 0, 1, 2, 3, 4, ... 18 0, ... 34 2, ... 50 ...

3 0, 1, 2, 4, 5, 6, ... 19 1, ... 35 1, 2, 6, ... 51 1, 3, 6, ...

4 0, 1, 2, 3, ... 20 1, 2, ... 36 0, 1, ... 52 0, ...

5 0, 1, 2, ... 21 0, 2, 5, ... 37 0, ... 53 3, ...

6 0, 1, 2, ... 22 0, ... 38 ... 54 1, 2, 5, ...

7 2, ... 23 2, ... 39 1, 2, ... 55 ...

8 (none) 24 1, 2, ... 40 0, 1, ... 56 1, 2, ...

9 0, 1, 3, 4, 5, ... 25 0, 1, ... 41 4, ... 57 0, 2, ...

10 0, 1, ... 26 1, ... 42 0, ... 58 0, ...

11 1, 2, ... 27 (none) 43 3, ... 59 1, ...

12 0, ... 28 0, 2, ... 44 4, ... 60 0, ...

13 0, 2, 3, ... 29 1, 2, 4, ... 45 0, 1, ... 61 0, 1, 2, ...

14 1, ... 30 0, 5, ... 46 0, 2, 9, ... 62 ...

15 1, ... 31 ... 47 3, ... 63 ...

16 0, 1, 2, ... 32 (none) 48 2, ... 64 (none)

17 2, ... 33 0, 3, ... 49 1, ... 65 1, 2, 5, ...



b known generalized (half) Fermat prime base b

2 3, 5, 17, 257, 65537

3 2, 5, 41, 21523361, 926510094425921, 1716841910146256242328924544641

4 5, 17, 257, 65537

5 3, 13, 313

6 7, 37, 1297

7 1201

8 (not possible)

9 5, 41, 21523361, 926510094425921, 1716841910146256242328924544641

10 11, 101

11 61, 7321

12 13

13 7, 14281, 407865361

14 197

15 113

16 17, 257, 65537

17 41761

18 19

19 181

20 401, 160001

21 11, 97241, 1023263388750334684164671319051311082339521

22 23

23 139921

24 577, 331777

25 13, 313

26 677

27 (not possible)

28 29, 614657

29 421, 353641, 125123236840173674393761

30 31, 185302018885184100000000000000000000000000000001

31

32 (not possible)

33 17, 703204309121

34 1336337

35 613, 750313, 330616742651687834074918381127337110499579842147487712949050636668246738736343104392290115356445313

36 37, 1297

37 19

38

39 761, 1156721

40 41, 1601

41 31879515457326527173216321

42 43

43 5844100138801

44 197352587024076973231046657

45 23, 1013

46 47, 4477457, 46512+1 (852 digits: 214787904487...289480994817)

47 11905643330881

48 5308417

49 1201



50

(See [14][15] for more information (even bases up to 1000), also see [16] for odd bases)

(For the smallest prime of the form  (for odd ), see also OEIS: A111635)
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numbers  such that

is prime

2 1 0, 1, 2, 3, 4, ...

3 1 0, 1, 2, 4, 5, 6, ...

3 2 0, 1, 2, ...

4 1 0, 1, 2, 3, ...

4 3 0, 2, 4, ...

5 1 0, 1, 2, ...

5 2 0, 1, 2, ...

5 3 1, 2, 3, ...

5 4 1, 2, ...

6 1 0, 1, 2, ...

6 5 0, 1, 3, 4, ...

7 1 2, ...

7 2 1, 2, ...

7 3 0, 1, 8, ...

7 4 0, 2, ...

7 5 1, 4, ...

7 6 0, 2, 4, ...

8 1 (none)

8 3 0, 1, 2, ...

8 5 0, 1, 2, ...

8 7 1, 4, ...

9 1 0, 1, 3, 4, 5, ...

9 2 0, 2, ...

9 4 0, 1, ...

9 5 0, 1, 2, ...

9 7 2, ...

9 8 0, 2, 5, ...

10 1 0, 1, ...

10 3 0, 1, 3, ...

10 7 0, 1, 2, ...

10 9 0, 1, 2, ...

11 1 1, 2, ...

11 2 0, 2, ...

11 3 0, 3, ...

11 4 1, 2, ...

11 5 1, ...

11 6 0, 1, 2, ...

11 7 2, 4, 5, ...

11 8 0, 6, ...

11 9 1, 2, ...

11 10 5, ...

12 1 0, ...

12 5 0, 4, ...

12 7 0, 1, 3, ...

12 11 0, ...

13 1 0, 2, 3, ...



13 2 1, 3, 9, ...

13 3 1, 2, ...

13 4 0, 2, ...

13 5 1, 2, 4, ...

13 6 0, 6, ...

13 7 1, ...

13 8 1, 3, 4, ...

13 9 0, 3, ...

13 10 0, 1, 2, 4, ...

13 11 2, ...

13 12 1, 2, 5, ...

14 1 1, ...

14 3 0, 3, ...

14 5 0, 2, 4, 8, ...

14 9 0, 1, 8, ...

14 11 1, ...

14 13 2, ...

15 1 1, ...

15 2 0, 1, ...

15 4 0, 1, ...

15 7 0, 1, 2, ...

15 8 0, 2, 3, ...

15 11 0, 1, 2, ...

15 13 1, 4, ...

15 14 0, 1, 2, 4, ...

16 1 0, 1, 2, ...

16 3 0, 2, 8, ...

16 5 1, 2, ...

16 7 0, 6, ...

16 9 1, 3, ...

16 11 2, 4, ...

16 13 0, 3, ...

16 15 0, ...

(For the smallest even base a such that  is prime, see OEIS: A056993)

https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://oeis.org/A056993


bases a such that  is prime (only consider even a) OEIS
sequence

0 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136,
138, 148, 150, ... A006093

1 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176,
180, 184, ... A005574

2 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204,
210, 220, 228, ... A000068

3 2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680,
682, 732, 782, ... A006314

4 2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568,
598, 642, ... A006313

5 30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198,
1306, 1540, 1568, ... A006315

6 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238,
2336, 2388, ... A006316

7 120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108,
9356, 9582, ... A056994

8 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930,
7022, 7332, ... A056995

9 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682,
7388, 7992, ... A057465

10 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358,
17646, 17670, ... A057002

11 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738,
44174, 45654, ... A088361

12 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540,
101578, 109696, ... A088362

13 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764,
225174, 241600, ... A226528

14 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144,
498904, 506664, ... A226529

15 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124,
999236, 1041870, ... A226530

16 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390,
1057476, 1087540, ... A251597

17 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162,
1722230, 1766192, ... A253854

18 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294,
2676404, 3060772, ... A244150

19 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450,
4896418, 5897794, ... A243959

20 919444, 1059094, 1951734, 1963736, ... A321323

The smallest base b such that b2n + 1 is prime are

2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444, ...
(sequence A056993 in the OEIS)

The smallest k such that (2n)k + 1 is prime are

1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 4, 1, ... (The next term is unknown) (sequence A079706 in the OEIS) (also see
OEIS: A228101 and OEIS: A084712)

A more elaborate theory can be used to predict the number of bases for which  will be prime for fixed . The number of generalized
Fermat primes can be roughly expected to halve as  is increased by 1.

The following is a list of the 5 largest known generalized Fermat primes.[17] The whole top-5 is discovered by participants in the PrimeGrid
project.
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Rank Prime number Generalized Fermat notation Number of digits Discovery date ref.

1 19637361048576 + 1 F20(1963736) 6,598,776 Sep 2022 [18]

2 19517341048576 + 1 F20(1951734) 6,595,985 Aug 2022 [19]

3 10590941048576 + 1 F20(1059094) 6,317,602 Nov 2018 [20]

4 9194441048576 + 1 F20(919444) 6,253,210 Sep 2017 [21]

5 25 × 213719266 + 1 F1(5 × 26859633) 4,129,912 Sep 2022 [22]

On the Prime Pages one can find the current top 100 generalized Fermat primes (http://primes.utm.edu/primes/search.php?Comment=Generaliz
ed+Fermat&OnList=yes&Number=100&Style=HTML).

Constructible polygon: which regular polygons are constructible partially depends on Fermat primes.
Double exponential function
Lucas' theorem
Mersenne prime
Pierpont prime
Primality test
Proth's theorem
Pseudoprime
Sierpiński number
Sylvester's sequence
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