PHYSICS

Has it ever been proven, or disproven, that a coincident set of mutual inductances are Askeusesion always conserved? [closed]
Asked today Modified today Viewed 28 times

Is this why mutual inductance is not included in Kirchhoff's Current Law? Because it can't be conserved all of the time and under all circumstances?

Or i senergy conservable but the potentialities of electrical reactance, namely: capacitance, inductance, phase shifts and frequency, not conservable since they're not a manifestation of kinetic energy?

Both of Kirchhoff's Current and Voltage Laws seem to focus merely on the nodes in between electric connections and ignore magnetic couplings. Is this because mutual inductance is not considered to be another ype of node and is, thus, not always entropic?
have discovered a mathematical relationship among a set of three interconnecting mutual inductances whit do not conserve their energy over time if two of these mutual inductances possess at least a pairing of selfinductances. This relationship is ...
The first mutual inductance of $M I(1)$ is the largest of the three. Its minimum value is the golden ratio $\frac{(\sqrt{5}-1)}{2}$ of approximately 62% magnetic coupling between a pair of large self-inductances and another pair of very small self-inductances. Let's assume that each large self-inductance (of its pair) is labeled and set to the value of $H(1)=1 H$ and that each small self-inductance (of its pair) is $H(2)=2 \mu H$. And let's also assume a pair of alternate magnetic coupling coefficients among all four coils is going to be exactly the golden ratio (for one option) versus exactly 70% (for the alternate option) for the purposes of this question.
2. Second mutual inductance: two options ...

The second mutual inductance of $M I(2)$ magnetically couples the large pair of inductors $H(1)=1 H$ to a fifth single self-inductance $H(3)=2 \mu H$ of the same sel--inductance as is each of the second pair of small self-inductances $H(2)=2 \mu H$. This second magnetic coupling $M I(2)$ can be found by subtracting the first mutual inductance $M I(1)$ from unity and taking the square root $=\sqrt{1-M I(1)}$. So, if the first magnetic coupling $M I(1)$ is 70%, then the second magnetic
coupling $M I(2)$ is approximately 55%.
In the alternative, if the first magnetic coupling is exactly the golden ratio $=\frac{(\sqrt{5}-1)}{2}$, then the second magnetic coupling can be found by an equivalent method of calculation by squaring the golden ratio. So, $\sqrt{1-\left(\frac{\sqrt{5}-1}{2}\right)}=\left(\frac{\sqrt{5}-1}{2}\right)^{2} \approx 38 \%$.
3. Third mutual inductance, two options ...

- If the first magnetic coupling is exactly the golden ratio $=\frac{(\sqrt{5}-1)}{2}$, then the third magnetic coupling can be found by taking the cube of the golden ratio $=\left(\frac{(\sqrt{5}-1)}{2}\right)^{3}$. This is equivalent to subtracting two from the square root of five $=\sqrt{5}-2$.
Otherwise, if the first magnetic coupling $M I(1)$ is greater than the golden ratio, then this third magnetic coupling $M I(3)$ must be tweaked by trial and error to discover its most efficient percentage of unity So, if the first magnetic coupling $M I(1)$ is 70% and the second courling $M I(2)$ is approximately 55%, then the third coupling $M I(3)$ will be found by tweaking downwards the cube of the second magnetic coupling $(M I(2))^{3}=M I(3)$ in order to achie maximum efficiency at a value of approximately 26% (ppt = parts per thousand) simulated in the circuit, whose example, is below
The theoretical efficiency of this anomaly can be simulated in Micro-Cap 12 on a 64 -bit computer which minimizes the likelihood of simulator round-off error to the point of unnoticeable obscurity.
And this simulated circuit has most of its nodes shorted out to reduce the likelihood that the nodal analysis of Kirchhoff's Current Law plays a pivotal, or exclusive, role. Likewise, this poses a question to adherents of Conservation: What is Going On, Here?

A screenshot of its schematic is here ...
 see v4c, schematic, v3.png

A screenshot of its output at 94 milli seconds, without any apparent limit to its escalation towards infinite oblivion, is here ...
Ittps://commons.wikimedia.org/wiki/ File:Simplest-overunity-circuit-you-will-eversee $v 4 c$, Tesla Motors input requirements at 94 ms .png

Its simulation file is located here ...
http://vinyasi.infoomhoslaw/Parametric\ Transformers/2022/Nov/simplest-overunity-circuit-you-will-ever ee v4c.cir

And another copy is here ..
https://ufile.io/5tcexv8w
BTW, which choice of mutual couplings, be it the minimum coupling of the golden ratio $=\frac{(\sqrt{ } \sqrt{5}-1)}{2}$ for the first coupling of $M I(1)$, or anything greater than this, will be determined by the circuit to which it applies. In other words, one set of couplings may work in one circuit but not in any another. This concept is a broad eneralization whose relationships of magnetic couplings may vary from one circuit to ether
may have asked a variation, or a repeetition, of this question before now on some other StackExchange ntil now. So, I Ifeel that this is not a duplicate enquiry.
energy energy-conservation conservaion-laws potentialenerogy inductance
Share Cite Improve this question Follow editied 3 hours ago
K. I getit. You want deteails for clarification. But I need the same from whomevera griees with this closure. It's self evidenty replete with precise mathematical detail. It it s not lacking in detail. That's why 1 view this closure a sa a mystery in is iself. Please explain or reopen it. Thank you - Vinyasi 16 mins ago /
Add comment

Browse other questions tagged energy energy-conservation consenvaion-laws porentialenergy inductance or ask your own question.

The overfiow Blog
 - Harts out of the bag! Join us for Winiterlsummer Bash 2022!

Featured on Meta
Help us identity new roles for community
members
Navigation and UI research starting soon
Related

- Mutual capacitance upper limit 1 Is a unit coupling coefficient for mutual
inductance (so $M=\sqrt{L_{1} L_{2}}$) compatib inductance $\left(\right.$ so $M=\backslash L_{1} L_{2}$) compatible
with different sel-i-nductances $L_{1} \neq L_{2}$?
Energy conservation in induction
Which method of calculating mutual
inductance to use?
inductance to use?
L-t
(1) Mutual inductance - induced magnetic flux

0 is self-inductance dependent on geometry?
Hot Network Questions
4 Can Itravel spontaneously on a Schengen Visa?
Why would voing for a as House Speaker candidate tom a majoity party be "aboo" and
punishable í ityoure a member of a a minoority party?

- I can shrink myself to 3 mm and teleport into
someone elseses body.
How can \mid make them die of haural cause?
y Sorted strings filter
- "tull bualance due" "s "statement balance" vs "pay

8. Holding twand"w the Procedure turn
(T) Why does Jesus quute zechariah $13: 7 ?$

What is "Mia c bon"?
©, What card is missing?
(1s) What sthe rotaing gold object on the outside of
(4. 1 Is it possible that the Roseta orbitier moved the
.i. How would a violin or trumpet degrade over time
"00 Classfication of
(What safe, accessible enveloped virus should we
-. Carmina Burana pronunciation?
Carmina Burana pronunciaion

- Effects of SQL $A G$ failover during full back is
progress
- Iaccidenally typed sudo chmod -R 777 to var

三E Exend Nar partition on Centos Stream 8
${ }_{0}$ How to draw this shape?
T. MariaBB license can not be bught by Oracle

What do people who oppose Dr. Anthony Faci

Y. Can Isee if someone is using browser snapshot
on my westite?
COMPANY
Stack Overliow
Teams
Adverisising
Collectives
Talent
About
Press
Legal
Privacy Policy
Terms of Sevice
cookie Setings
cookie Policy

> STACK EXCHANGE NETWORK Technology Cultur \& recreation Life \& arts Science Professional Business API Data

Setings
ookie Policy

