Preferred Embodiment, update...

The first order of business is to correct an error on the previous schematic which had stated that the total real power per pair of rotor and stator coils is $11\frac{1}{2}$ Giga watts. That's the square root of what it should have said, which puts the correct figure in the vicinity of $132\frac{1}{4} \times 10^{18}$ watts!

But if I place a very large resistor across – in parallel – to one stator coil, then I am provided with two options...

1. If this resistor is 1 Giga Ohm, or less, then this becomes a shorted Stator Coil which shuts OFF this circuit's overunity and effectively turns around its time-domain to conform with conventional wisdom, ie. The Conservation of Energy, in which time tends towards entropy, creating a self-damping waveform. Everyone in the electrical engineering industry is familiar with these signatures of normalcy.

2. But if this resistor is switched out of the circuit, then this circuit continues to achieve overunity, seemingly defying the Conservation of Energy, by reversing the conventional time-domain of "physics" which tends towards entropy. So, instead of surges being defined as transients to signify their transitory nature, and instead of these surges damping at an exponential rate which graphs a hyperbolic function as it approaches its asymptotic limit of zero, it would appear that their time-domain has been reversed creating what I like to call, "staccato wedgies", which exponentially surge upwards towards infinity as their asymptotic limit. These are not normal waveforms. Yet, they are very real and occur whenever a over-voltage, safety switch is opened at a substation of the utility grid.

Take a hyperbolic function of diminishing amplitude, on the left in red, and double it by oscillating it and turn its TIME DOMAIN around backwards, on the right-hand side in blue, and you will have the transformation of the Law of Conservation (and its associated laws of thermodynamics) inverted into the Law of NON-Conservation (and its associated mathematical relationships, ie. laws, of ELECTRICAL REACTANCE). Ergo, the reversal of time undermines ENTROPY by converting it into NEGENTROPY. Which begs the next question... Which domain of Time is an absolute frame of reference? Or, as Einstein would say, "It's all relative." Which implies that both ENTROPY and NEGENTROPY have equal standing. Each is just as possible, although not as probable, due to Mother Nature wanting to prevent the ease with which Creation can blow up under the second clause (on the right-hand side) by making it more difficult requiring expertise of a sophisticated intelligence to be able to design OVERUNITY circuits which yield more currrent OUT, then voltage IN; and, more voltage OUT, then current IN; during phase shifts of one-half cycle (180°) of separation amount-to a negative unity, power factor! I call the pulsing waveforms on the right, a series of "STACCATO WEDGIES." The wave on the left, is a conventional dissipation of a wave via self-damping. Staccato wedgies are constructed of a base frequency of waves which may be: sine, triangular, etc.

The other improvement I made to this circuit's scheme is the addition of a capacitor in parallel to each rotor coil which is set to a default of 5μ F whose purpose is to regulate the frequency of the output and, thus, regulate the rotation rate of the rotor coil it is adjacent to. This, then, becomes a variable frequency drive, or VFD.

I still don't like the duration of pulsations spaced several seconds apart. That's too slow. The effect on passengers within an electric car (powered by this device) would be a lot of jerking, forwards and backwards, as it lunges with alternating acceleration and deceleration at too forceful a pace to avoid whiplashing everyone's necks and backs.

And, of course, the reactive power on each pair of rotors and their associated stator remains too high for EV use...

But the frequency of triangular waves is still around 130Hz...

And resistors still manage to correct for power factor...

The total reactive power on each pair of rotors is...

The raw amperage and voltage on one pair of rotor coils is...

Giga volts is on each Stator coil ...

Here is the revised schematic with a dead battery across each helium bulb to enhance its output...

جامعة على معنى معنى معنى معنى معنى معنى معنى معن	Bifilar winding of insulated copper and bare iron wires comprises the magne- tic coupling between ballasts. Shorted Coll	BALLAST1 30mH @ 25 AWG	2e+19 KVA PER ROTOR + STATOR PAIR OF COILS!		ROTOR3A 1H @ 25 AWG	ROTOR3B 1H @ 25 AWG	2 .2 Stator3 rotor3a rotor3b
Suff capacitors controls frequency of rotation which is a variable fre- quency drive, a VFD. Only dat 11 (gin 0 hm or less, to turn this circuit Ohm o short out its as ballasts must be a mini- mum of 99% to prevent an electrical explosion!	STITCH 200 STITCH	100F RELTOL = 1 Topesoldal Approximation Hethod	Hellum.26Hz 100F A Bewley archetype is a ring in fore capacitor 100F 100F This transforme wring 255555 4mH 40 25 AWG 2004 to 10 4mH 40 25 AWG 2004 to 10 100F	10kH @ 25 AWG	5µF 700m Ohms ROTOR4A 1H @ 25 AWG	700m Ohms ROTOR48 IH @25 AWG	All resistors (which are op- posite the Rotor coils) are supposed to the Rotor coils) are to of their anywhate to their voltage and require a value of between 700m, for full throtte, and 7 0 hms, for cruising, to regulate am- ther resistors are 5 µ 0 hm connections. Multiple rotors one stator radices voltage on each stator and increa- ses voltage on each rotor. STATOR4 ROTOR48 ROTOR48
2 .2 700m Ohms 700m Ohm	voltage giving staccato wedgie wavefo	rms! Helium	26cps Stubblefield's Electric Batte	ry patent and the Ammann brothers	700m Ohms	700m Ohms	20000Ş .2

And here is its nodal voltages...

2 ROTORIA ROTORIB 1H @ 25 AWG 1H @ 25 AWG STATORI ROTORIA ROTOR((2014)) 347/14(2013) 347/14(2013) 347/14(2013) 347/14(2013) 347/14(2013) 347/14(2013)	Bifilar winding of insulated copper and bare iron wires comprises the magne- tic coupling between ballasts.	BALLAST1 30mH @ 25 AWG STATO	KVA PER ROTOR + R PAIR OF COILS!	ROTOR3A ROTOR3B 2000000000000000000000000000000000000	ROTOR3B
SuF capacitors controls frequency of rotation which is a variable fre- on survive frequency of rotation SuF survive frequency of the survive frequency of the survive SuF survive frequency of the survive frequency of	SWITCH >>>> 	100F Hellum 26H	100F 10kH @ 25 AWG Cr (12 105) (12 105) (12 105) V(12 105) (10 105) A Benefey archeringe in Agenetic and an an an and an	All resistors (which a posite the Rotor coils intended to regulate \$µF\$ \$µF\$ \$µF\$ \$µF\$ \$www.esack walke of between 70 \$www.esack walke of between 70 \$wwww.esack walke of between 70 \$www.esack walke of between 70 \$wwwe	are op- s) are the ra- e to quire a 00m, for
less, to turn this circuit 700m Ohms 700m Ohms OFF. I choose to use Ik ROTOR2A ROTOR2A Sociated Stator. The mutual inductance for both ballasts must be a minist H# 02 52 AWG 11/22100 (122100)	In the second se	100F 100F >= 99% Trapezoidal >= 99% Approximation 19:18G }===== Method ↓ 4mH @ 25 A	100F 100F 100F 101F 2 1013 (183 (183 (183 (183 (183 (183 (183 (1	700m Ohms 700m Ohms for cruising, to regul for cruising, to regul perage on the rotors are 1 epresenting solder; 1H @ 25 AWG 1H @ 25 AWG the resistors are 1 representing solder; (845 021)%000 H) (845 021)%000 H) Multiple	late am- s. All .µ Ohm joint le rotors
mum of 99% to prevent an electrical explosioni \$<	1	100F	CV 19-18CV 19-	per stator reduces vo each stator and in ess voltage on each stator sup f sup	oltage ncrea- rotor.
Image: state	26Hz is injected into each helium bulb carried on a sine wave of zero voltage giving staccato wedgie waveforms!		 The elevated mutual inductance of 99.999% may be ahieved by following the example of Nathan Stubblefield's Electric Battery patent and the Ammann brothers 	(#3.62)(685.941) (#3.62)(685.941) 700m Ohms 700m Ohms 200 Character .2	

Here is the same circuit shut OFF by shorting out one of its Stator coils...

And here is its nodal voltages...

HIME .2 ROTORIA ROTORIB 1H @ 25 AWG 1H @ 25 AWG 1H @ 25 AWG STATORI ROTORIA ROTORI -6.473/07-6.8221 -6.473/07-6.8221	Bifilar winding of insulated copper and bare iron wires comprises the magne- tic coupling between ballasts. Shorted Coil	ALLAST1 1 @ 25 AWG 0 k	(VA	ROTOR3A ROTOR3B
SJF capacitors controls frequency of rotation (6.473) (6.6227) (6.6227) (7	SWITCH >>>> 1 	100F Hellum26Hz 130 pes 672n pes 672n 285 672n 285 672n pes LTOL = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100F 10kH ⊕ 25 AWG 56727(255 6775n)555 775n) √(255 775n)0(0)29 567270(90 four capacityse) 15 567270(90 four capacityse) 15 567270(90 four capacityse) 12 267777(5,3352-4)28	All resistors (which are opposite the Rotor coils) are posite the Rotor coils) are to of their amperage to supposite the regulate the ra- tor of their amperage to rouse (rouse) (rous
OFF. I choose to use 1k ROTOR2A ROTOR2A ROTOR2B Sociated Stator. The mu- tual inductance for both ballasts must be a mini- III @ 25 AWG III @ 25 AWG	(if measured on capaci- tors and inductors) surg(-1.7/40, ing with pulses.	apezoidal >= 99% roximation (1.714u) >====================================	This transformer windom (5 334E-028) (714U)generally coupled ct.17140 wery large from mass held outside of the cols' union. (5 334E-028)	ROTOR4A ROTOR4B IH @ 25 AWG IH @ 25 AWG (408m)(408m) (408m)(408m) (408m)(408m) (408m)(408m) (408m)
mum of 99% to prevent an electrical explosion! \$ \$ \$ 09711 0121 09711 0121 \$ \$µF \$ \$ \$µF \$	1	40 -1.7140 -1.7140 -1.7140 -1.7140 -1 100F -1.7140 -1.7140 ALLAST2	.7140) .71740)	Image: spin station reduces voltage Image: spin station reduces voltage </td
STATOR2 ROTOR2A ROTOR2B Stator2	26Hz is injected into each helium bulb carried on a sine wave of zero voltage giving staccato wedgie waveforms!		The elevated mutual inductance of 99.999% may be ahleved by following the example of Nathan stubblefield's Electric Battery patent and the Ammann brothers	> > > STATOR4 ROTOR4A ROTOR48 (4.088n) (4.088n) (4.088n) (4.088n) (4.088n) (4.088n) (4.088n) (4.088n) 700m Ohms 700m Ohms 2