```
>> Search range is from 2 to 100 <<
```

2p 8-Gon
Angle No.1, Sin (45 degrees / 2) $=0.76536686473018 / 2$
Angle No.2, Sin (90 degrees / 2) $=1.41421356237309 / 2$
Angle No.3, Sin (135 degrees / 2) $=1.84775906502257 / 2$
Angle No.4, Sin (180 degrees / 2) = $2 / 2$

When the reciprocal of Angle No.1 (1.30656296487638) is multiplied by Angle No. 3 (1.84775906502257), then this equals the length of a diagonal: 2.41421356237309. Likewise, when Angle No.1 (0.76536686473018) is multiplied by the reciprocal of Angle No. 3 (0.541196100146197), then this yields the length of another diagonal: 0.414213562373095 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:
$\{2.41421356237309,-0.414213562373095\}=x^{\wedge} 2-2 x-1$

3p 12-Gon
Angle No.1, Sin (30 degrees / 2) $=0.517638090205041 / 2$
Angle No.2, Sin (60 degrees / 2) = $1 / 2$
Angle No.3, Sin (90 degrees / 2) $=1.41421356237309 / 2$
Angle No.4, Sin (120 degrees / 2) $=1.73205080756888 / 2$
Angle No.5, Sin (150 degrees / 2) $=1.93185165257814 / 2$
Angle No.6, Sin (180 degrees / 2) = 2 / 2
When the reciprocal of Angle No. 1 (1.93185165257814) is multiplied by Angle No. 3 (1.41421356237309), then this equals the length of a diagonal: 2.73205080756888. Likewise, when Angle No. 3 (1.41421356237309) is multiplied by the reciprocal of Angle No. 5 (0.517638090205041), then this yields the length of another diagonal: 0.732050807568877 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:
$\{2.73205080756888,-0.732050807568877\}=x^{\wedge} 2-2 x-2$.
When the reciprocal of Angle No.1 (1.93185165257814) is multiplied by Angle No. 5 (1.93185165257814), then this equals the length of a diagonal: 3.73205080756888. Likewise, when Angle No.1 (0.517638090205041) is multiplied by the reciprocal of Angle No. 5 (0.517638090205041), then this yields the length of another diagonal: + 0.267949192431123.

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:
$\{3.73205080756888,+0.267949192431123\}=x^{\wedge} 2-4 x+1$.
When the reciprocal of Angle No.3 (0.707106781186548) is multiplied by Angle No. 5 (1.93185165257814), then this equals the length of a diagonal: 1.36602540378444. Likewise, when Angle No.1 (0.517638090205041) is multiplied by the reciprocal of Angle No. 3 (0.707106781186548), then this yields the length of another diagonal: 0.366025403784439 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:

```
{1.36602540378444, - 0.366025403784439} = 2x^2 + 2x - 1.
```

5p 20-Gon
Angle No.1, Sin (18 degrees / 2) $=0.312868930080462 / 2$
Angle No.2, Sin (36 degrees / 2) $=0.618033988749895 / 2$
Angle No.3, Sin (54 degrees / 2) $=0.907980999479093 / 2$
Angle No.4, Sin (72 degrees / 2) = 1.17557050458495 / 2
Angle No.5, Sin (90 degrees / 2) $=1.41421356237309 / 2$
Angle No.6, Sin (108 degrees / 2) $=1.61803398874989 / 2$
Angle No.7, Sin (126 degrees / 2) $=1.78201304837674 / 2$
Angle No.8, Sin (144 degrees / 2) $=1.90211303259031 / 2$
Angle No.9, Sin (162 degrees / 2) $=1.97537668119028 / 2$
Angle No.10, Sin (180 degrees / 2) = 2 / 2
When the reciprocal of Angle No. 2 (1.61803398874989) is multiplied by Angle No. 6 (1.61803398874989), then this equals the length of a diagonal: 2.61803398874989. Likewise, when Angle No. 2 (0.618033988749895) is multiplied by the reciprocal of Angle No. 6 (0.618033988749895), then this yields the length of another diagonal: + 0.381966011250105 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:
$\{2.61803398874989,+0.381966011250105\}=x^{\wedge} 2-3 x+1$.
When the reciprocal of Angle No. 2 (1.61803398874989) is multiplied by Angle No. 10 (2), then this equals the length of a diagonal: 3.23606797749979.

Likewise, when Angle No.6 (1.61803398874989) is multiplied by the reciprocal of Angle No. 10 (0.5), then this yields the length of another diagonal: 1.23606797749979 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:

```
{3.23606797749979, - 1.23606797749979} = x^2 - 2x - 4.
```

When the reciprocal of Angle No. 4 (0.85065080835204) is multiplied by Angle No. 8 (1.90211303259031), then this equals the length of a diagonal: 1.61803398874989. Likewise, when Angle No. $4(1.17557050458495)$ is multiplied by the reciprocal of Angle No. 8 (0.525731112119134), then this yields the length of another diagonal: 0.618033988749895 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial: $\{1.61803398874989,-0.618033988749895\}=x^{\wedge} 2-x-1$.

When the reciprocal of Angle No. 6 (0.618033988749895) is multiplied by Angle No. 10 (2), then this equals the length of a diagonal: 1.23606797749979.

Likewise, when Angle No. 2 (0.618033988749895) is multiplied by the reciprocal of Angle No. 10 (0.5), then this yields the length of another diagonal: 3.23606797749979 .

And when the first diagonal is divided by the second diagonal, and when the second diagonal is divided by the first diagonal, then this yields the two roots of a quadratic polynomial:
$\{1.23606797749979,-3.23606797749979\}=x^{\wedge} 2+2 x-4$.

