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Synopsis.-The purpose of this paper is two-fold: First; to waves. The origin, shape, and general characteristics of traveling
present the theory of traveling waves on multi-conductor systems, and waves are discussed. The equivalent circuits of terminal equipment
second, to compile a brief compendium on the general subject of and the corresponding reflections and refractions from such junctions
traveling waves on transmission systems. While the application are given for a large number of cases. The methods of computing a
of the multi-conductor theory is more laborious than that of the multiplicity of successive reflections by means of lattices are de-
single-wire theory, yet it does not involve much greater complication, scribed. The effect of line losses in equalizing the subsidence of
and it becomes necessary to go to the more general theory when traveling waves and on their attenuation and distortion is also
mutual effects are important, as in the study of ground wires, or discussed.
when discontinuities exist in paralleled circuits carrying traveling * * * * *

ORIGIN OF TRAVELING WAVES and this wave has a total length of only 13 microseconds.
SURGES on transmission lines owe their origin to Had the time of cloud discharge been 30 microseconds

four different causes; induced from lightning then the induced voltage would have been only
discharges, direct lightning stroke, arcing grounds, V' = 0.13 X 100 X 60 = 780 kv.

and switching. The induced voltages decrease in importance as the line
The maximum potential at the point of origin, and insulation is increased, and the proportion of outages

the crest of induced traveling waves are respectively: due to direct strokes increases. The induced voltages
V = a G h can be roughly halved by the use of one or more ground
V a'Gh wires.

where h is the height of the line conductor, G the field The most feasible way of correlating the direct versus
gradient, and a and a' factors depending on the law
of cloud discharge and the distribution of bound 1.00 [L -=
charge.' For an instantaneous cloud discharge (an - - - -
impossible assumption) a = 1.0 and a' = 0.5. (Fig. \
1) As the time of cloud discharge increases both a

0.60-and a' decrease, and rapidly approach equality; so - ____
that for a cloud discharge slower than 10 microseconds - - - _ _ 4000 FT.
they are practically equal. The equation for a' based 040 - 3000 FT
on the assumption of an exponential law of cloud dis- 2000 FT.
charge is: 0.20 - 1000 FT.

a'= (- 0 2 4 6 8 10
2 / M.S. TO DISCHARGE 95 PER CENT

where x is the length of the bound charge in thousands 0.50 \ - - -
of feet, and t is the time of cloud discharge in micro- 4[ 040L4To .

seconds. The length of the wave is: 0 -= 2000FT
1000 FT.

andthefront of theLL=x +t 0.10[ 10-00 -T.and the front of the wave is x or t depending upon 2
which is the smaller. It is evident that induced strokes MS. TO DiSCHARGE 95 PERCENT
become harmless for long periods of cloud discharge, FIG. 1-REDUCTION FACTORS FOR INDUCED LIGHTNING
and that high potential induced strokes are possible POTENTIALS
only with very short waves. For the accepted maxi-
mum value of G = 100 kv/ft., an average line height induced stroke arguments is through the simple theoret-
of h = 60 ft., a 3,000-ft. rectangular bound charge, and ical relationships between the traveling waves originat-
10 microseconds for the cloud discharge, the maximum ing from these two causes. It was found in a previous
induced traveling wave that can occur on the line is: investigationl that the law of cloud discharge has a

V'-a' G h -0.30 X 100 X 60 = 1,800 kv. greater effect on the shape of the traveling wave than
the distribution of bound charge, and therefore that

*General Transformer Engg. Dept., General Electric Co., the assumption of a rectangular bound charge may be

1. For references see Bibliography, made without involving any marked departure from
Presented at the Winter Convention of the A. I. E. E., New York, the true shape of the traveling wave. Then the

N. Y., January 26-30, 1931. determination of the wave shape reduces to the problem
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of finding the law of cloud discharge. If the wave The third cause of abnormal voltage oscillations on a
measured by the cathode-ray oscillograph station was transmission line is arcing grounds)' Theoretically,
due to a direct stroke, then the shape of the current voltages as high as 712 times normal line-to-neutral
wave in the lightning bolt is known. But if Q is the voltage are possible. But many assumptions underlie
charge on the cloud, this current is the present theories of arcing grounds. When the

2) Q a results arrived at by theory are judiciously shaded to
P= ~ F (t) compensate for the assumptions introduced to simplify

the analysis, it is doubtful if an arcing ground can
where QO is the total charge at the beginning of cloud actually cause a voltage in excess of 5 times normal
discharge, and F (t) is the law of cloud discharge. line-to-neutral voltage on an isolated neutral system.
Therefore Arcing ground surges are oscillatory in nature, and

i t consist of a normal frequency oscillation which
F (t) = fi dt gradually builds up to several times normal, and a

0°° superimposed high frequency oscillation, whose fre-
The actual numerical values of Qo and i are unim- quency depends chiefly upon the length of line between

portant. All that is necessary is to arbitrarily choose the station and the arcing ground.
Switching surges exhibit the same class of character-

istics as arcing grounds, although they are more ir-
regular in shape. Their proper consideration is out-

Law of Cloud Discharge side the scope of this paper.
SHAPES AND SPECIFICATIONS OF TRAVELING WAVES
The principal shapes of most natural waves are

Iniduced LW§1a ALLves2\ ...included in Fig. 3, that is, may be represented by the
difference of two exponentials, but of course actual
waves are usually serrated by minor irregularities.
As far as mathematical simplicity is concerned the

Direct Stroke Waves

FIG. 2-INDUCED AND DIRECT STROKE WAVES CORRESPONDING a = 0

TO DIFFERENT LAWS OF CLOUD DISCHARGE I (A) b- O0 E
E=1I

QO of such value that F (t) reaches a final value of
unity at the completion of cloud discharge. And the a0.05 a=--
cloud discharge is complete when i has ceased. Sup- o1 E 1.0 (F)
pose that the direct stroke wave has the typical shape, -
Fig. 3D,

Ebt) a 0.10 a-t
b 2.0 b=+.jw (G)

Then the law of cloud discharge is (C
It

F (t) f(IEt E tdt a= 0.10 =0=0.20 a=xjQO 0E(D) = 4.0 b- j

= (H)

1-e at 1_e-blE_~~~~~~-bt~

a b FIG. 3-EMPIRICAL WAVE SHAPES GIVEN BY
e = E(e -at - e-bt).

In Fig. 2 are shown a few simple direct stroke waves,
and the corresponding laws of cloud discharge and most simple wave to calculate the effects of, is the
induced waves. Thus if a cathode-ray oscillogram is infinite rectangular, shown in Fig. 3A. Also, as a rule,
definitely known to be that of either a direct or induced such a wave is the most dangerous to terminal equip-
stroke, then the character of the other may be derived. ment, and therefore calculations based on it are apt to
Of course the length and shape of the bound charge err on the side of safety. Still other reasons that have
distribution will influence the shape of the induced favored its usein analysis are that it is byfar the easiest
traveling wave, but not nearly to the same extent as to study pictorially, and that until recently the actual
the law of cloud discharge. The above expressions shapes of lightning surges were not known. However,
follow from the premise that the electrostatic field of durng the past few years a great many cathode-ray
the cloud collapses uniformly. Possibly there is con- oscillograms of natural lightning waves have been
siderable departure from this assumption. Neverthe- obtained under many different conditions, so that
less, the above equations do correlate the two types of fairiy definite information as to their general shape and
lightning waves as near as our present knowledge of characteristics is available. It is therefore essential
the mechanism of cloud discharge will permit. that calculations be made with these characteristic
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lightning waves, in order that the influence of the substantially the same defects, except that the trouble
fronts, tails, and lengths of the waves may be evaluated. with it is in making a difficult integration. It is

Three different methods for calculating waves of t a
arbitrary shape are given in the following: f (t) = E (o) . 4 (t) + f (T) E (t - r) d T

1. Express in operational notation, combine with 0 a t
the function representing the reflection or refraction where
operator, and solve the resulting operational equations. ) (t) = solution corresponding to unit function

2. Consider the wave as made up of a series of E (E ()=applied wave of arbitrary shape
f (t) = solution corresponding to E (t)
The graphical representation of a wave of arbitrary

shape as a set of rectangular components, is of course
only an approximation, but in a great many cases of
engineering importance it is quite sufficient, and has
the advantage of simplicity. In any event it can always
be made as accurate as required, merely by subdividing
the wave into a sufficiently large number of small
rectangular components. In many cases the incident
wave may be so complicated as to defy analytic expres-

KIIZ+ sion, and then a graphical break-up into rectangular
components is the only way out of the difficulty.
The third method, that of representing the wave as a

sum of functions for which the solutions are known, is
=7Z ~ l +very powerful and practicable. There are a few simple

functions for which the response of a network can
usually be computed with reasonable ease, and by
compounding such functions almost any desired wave
shape can be reproduced to a good approximation.
These elementary waves are:

J1.c.f~ . LH {A a. Infinite rectangular
b. Simple exponential
c. Uniformly rising front

FIG. 4-COMPOUNDING OF SIMPLE WAVES TO OBTAIN COMPLEX c. Damly sinusont
WAVES d. Damped sinusoid

e. Difference of two exponentials
As a matter of fact, by a suitable choice of theinfinite rectangular waves, arameters in the difference of two exponentials, all

corresponding to each component rectangular wave.
This superposition may be done graphically as shown
in Fig. 5 or mathematically by means of Duhamel's - --
theorem.

3. Express the wave as the sum of a number of
functions for which the individual solutions are known
or can be found, and add these solutions. Fig. 4 illus-
trates a few simple examples. L----
Which of these methods to use is entirely a matter

of convenience in any specific case, each method having
certain advantages and limitations. The difficulty FIG. 5-APPROXIMATION BY RECTANGULAR COMPONENTS
usually encountered with the first method is that it
complicates the operational equations so that a solution of these elementary waves may be considered as special
either cannot be obtained at all, or else only by the cases of e, as illustrated in Fig. 3. It so happens that
most laborious and complex process. As a rule, in the solultion corresponding to-a
dealing with the behavior of traveling waves at a 1-E1 -a
transition point, it will be found that the reflection is easily effected by means of Heaviside's shifting
(or other) operator acting on the simple unit function theorem.
(an infinite rectangular wave) is just about as compli- ff (p) >-at = -atf (p-a)
cated a proposition as can be handled with engineering and in many cases with no greater mathematical diffi-
expedience, and that any further complications in the culty than attains with the unit function alone.
operational equations are prohibitive of a solution. The references should be consulted for more details
The application of Duhamel's theorem suffers from concerning the specification of traveling waves."2'6
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ATTENUATION OF TRAVELING WAVES the line is distortionless, the open end of the line finally
It is usually justifiable to calculate traveling waves stabilizes at a voltage of

on the assumption of no losses, and then to compensate 2 X 0.5
for the attenuation by an exponential decrement factor, e 1 + 0.25 0.8
arrived at experimentally.

Corona is the chief factor in causing attenuation GENERAL PROPERTIES OF FREE TRAVELING WAVES
and distortion. It levels off the top and elongates the In Appendix I the general differential equations for
wave, but its effect varies with the weather and other potentials and currents of a multi-conductor trans-
conditions, so that there is no such thing as a definite mission line, (Fig. 6), are formulated. Each conductor,
attenuation on a given line. (Fig. 7), is assumed to have its own resistance to ground
The effect of the line losses on traveling waves are

three-fold: (1), the waves of voltage and current are f

attenuated, (2), the shapes are distorted with time, (3), ,
the current and voltage waves depart from exact Fn

similarity, so that they are no longer connected by the
simple linear proportionality factors called the surge
impedances.

Fig. 8 shows the effect of attenuation in the charging -C f2 N va
of an open-ended line from an infinite voltage source. u_ w
Without losses, the cycle of oscillations repeats indefi- F, N
nitely, but when line losses are present the oscillations
gradually dinminish until the line eventually reaches a FIG. 6-GENERAL MULTI-CONDUCTOR SYSTEM

steady state condition. However, a distortionless line
can never become fully charged to the terminal poten- and to each of the other conductors, self and mutual
tial, throughout its length, for the distortionless feature inductance between all wires, and leakage conductance
requires the presence of both leakage conductance and -from each wire to earth and to all the other wires. For
series resistance. The flow of current in the leakage an n-wire system there results a set of n simultaneous
conductanceresultsin a progressive voltage drop along partial differential equations of the second order in
the line. Therefore, the ultimate level charging of a both the time and distance derivatives. When these
line requires that there be no leakage currents. Refer- n equations are solved for any potential there results a
ring to Fig. 8, which has been drawn for a linear rather linear partial differential equation with constant coeffi-
than exponential attenuation, the voltage at various cients of the 2 n order in both the time and distance
instances of time for an attenuation (1 -at) per trip is derivatives. This general differential equation is given

as a determinate whose formal expansion, according to
algebraic rules, yields the polynominal form. The

Sending end Units of time Receiving end

1 .0 . 0 /R L22

.......................... ,

K, L1

..

1 a4 . a 2 CK1a'1 12,

23 2 a!-' ..a' Kl Gll1 - a.4.2 a -2 a'2
1 .5 . 2aa-2 '3+ Ca5 - a tXx
1 +- a .... 6. 2a-2a' +2ac5 21
1 - o.7.82a.-2 03+2a0g5-2af71

et.. etc. FIG. 7 -CIRCUIT CONSTANTS OF MUTUALLY COUPLED CIRCUITS

The voltage at the receiving end after 4 n units of time differential equation and its coeffigients is identical for

is the potential on anv wire of the n-wire system; but the
boundary conditions, and therefore the integration

e = 2 (a - a3 + a'5-a7+-) constants of the solution, may be different for each
= 2 (ax- a3) (1+ I4± a8+.) wire. The general linear partial diferential equation

XI ~ ~~1-a4(I±+1) with constant coefficients has a formal solution, but it
= 2 (a) (1-a02) > at4r =2 a 1+ has not been included in this paper (see "sTreatise on

O ~~~~~~~Differential Equations" by Forsyth). But the solu-
After an infinite number of oscillat;ions tions are given corresponding to the following special

2 ae cases:
e = 1 + 2The No-Loss Line

+ ~~~~~~~TheCompletely Transposed Line
Thus if the attenuation is (1-a) = 0.5 as in Fig. 8, and Solution for Alternating Currents
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If a line is free from losses the differential equations Pure traveling waves of voltage and current on an
of the system are satisfied bv pure wave functions. n-wire system, are related to each other by a set of
These waves travel without attenuation or distortion simultaneous linear equations having constant coeffi-
until a transition point on the circuit is reached, where cients called the self and mutual surge impedances of
they reflect and refract in accordance with the general the line. These equations3 are
laws given in Appendix II. In an n-wire no-loss sys- + e1 z11i1 + z21i2 +.+ Z,i7,
tem there are n possible velocities of wave propagation,

- e2 =Z12 il + Z22 2 . . . . . . . . + Zn2 in
but in the case of overhead conductors these n veloci-
ties all become equal to the velocity of light. ± en - Zin ii ± Z2n j2 ± z*n

If the line is completely transposed, so that every
conductor occupies the same relative position as every where the (+) sign is used for waves traveling in the
other conductor, and for the same distance, then the forward direction, and the (-) sign for waves moving
possible average velocities between terminals are in the reverse direction. Also
reduced to two in number. If the line is made up of g X 2h \
groups, and the conductors of each group are completely Zrr 60 log ) = self surge impedance of con-
transposed with respect to their own group, then there ductor r
are (g + 1) possible average velocities. a

Zrs9 60 log ( =) mutual surge impedance be-
0 0 0 00 0 0 tween r and s

0° h height of r above ground plane
0 0 1T i a = distancebetweenrandimageofs

_u U1T b = distance between r and s

1 1 1 1 ¾ p radius of conductor, 4 ~~~~~~~~~1/2
T 1/ These equations, in conjunction with the principle

112 2 3 M8 1 of superposition and the conditions of voltage and cur-

-' i 3 1 z2T rent continuity at a junction or transition point, define
2 22 2 the behavior of pure traveling waves on transmission

5I14z systems. The principle of superposition is involved in
2T calculating the effect of more than one independent

a5'j16~± 9¾ 1 wave at the same point simultaneously, such as occur
for successive reflections, meeting of circuits, etc.

1111I51i6 7S Instead of writing the voltages in terms of the cur-
3T rents and the surge impedances, the arrangement may

be reversed and the currents written in terms of the
1 0 0 ~o voltages and surge admittances as follows:7T

±il = y,l el + Y2, e2 + . . .... . +Yni en
0 0 0 1362 i2 = y12ei+y22e2+ ....... . +/n- en.4T

FIG. 8-EFFECT OF ATTENUATION ON CHARGING A LINE in = YIn e1 + 12n e2+.+ 'y en

IfThe conventional method of calculating the steady
state alternating-current behavior of a transmission Z1l Z21. Znl
line by using "constants to neutral" is a very special Z12 Z22. Zn2
case, but is rigorous for a single-circuit, three-phase, . .. .....

completely transpose.d line. To obtain these simplified D znd Z2n.Znr
equations directly from the general alternating current a
solution is a matter of considerable manipulation. yll 21.Ynl
The reduction is carried out in detail in Appendix I. Y12 Y22 . . . . . Yn2

In Appendix I it is shown that in an n-wire circuit......
the energy of free traveling waves is equally divided D= Yin 1/In.****Ynn
between the electrostatic and the electromagnetic then the y's and z's are related to each other as
fields. However, when these waves reach a transition
point, or when waves traveling in opposite directions (minor of D for which the cofactor is Zr,)
pass through one another, the energy balance is upset. 1/ru = D
Whether the energy resides mostly in one field or the
other during a transition period depends entirely upon =(minor of D' for which the cofactor is tIr)
the nature of the transition. Zrs D
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For instance, in the case of two conductors The reflection and refraction operators, by equations
| 21 (18) and (19) of Appendix 11 are respectively

YY21 Zo- Z 11____ 2z
=Yll Y21 Yll Y - Y12 Y21 ZO + z 1 + N (W + z) JZo + zI
Y12 Y22

where Z. is the total impedance, expressed in operational
form, at the transition point as viewed from the ap-
proaching incident wave, z is the surge impedance of

Y22 Y22

Z11 =Yl1 Y21 Yili Y22 - Y12 Y21 (a) (f)k
T

Y12 Y22
(h) (g) (I)

TRAVELING WAVES ON A SINGLE-CONDUCTOR CIRCUIT
In the majority of problems dealing with traveling

waves, it is sufficient to make the calculations on the (c) (h) (in)

(d) (n)

R
CsBL)(e)-6D(

FIG.~~2T7771 77 FIG. 1O-TERMEINAL CONDITIONS ON SINGLE-CONDUCTOR
--II-- ~~~~~~~~~~~~~~~~~CIRCUITS

(A) (C)

(B) (D) (F)'
FIG. 9-EQuivALENT CIRCUITS OF TERMINAL APPARATUS TO __________

LIGHTNING SURGES (h)

(A) Transformer, ideal -d)
(B) Transformer, approx. (d)
(C) Rotating machine, ideal
(D) Rotating machine, approx. _ | * r _
(E) Reactor with shunt resistor, ideal (e)
(F) Reactor with shunt resistor, approx.

FIG. 11-JUNCTIONS BETWEEN SINGLE-CONDUCTOR CIRCUITS

basis of a single-wire circuit. The return part of the
circuit may be either a second conductor or the ground. (a)
When the single-circuit theory is applicable, the

potential and current waves are proportional to each
other by the surge impedance of the circuit; I

e (x-v t) = Z i (x- vt) for forward moving waves (cj l"i
e (x + v t) = -Zi (x + v t) for backward moving I I

wvaves
where
Z = V L/C = surge impedance in ohms (e)
Y = l/Z = surge admittance in mhos I

L = inductance in henrys FIG. 12-JUNCTIONS BETWEEN SINGLE-CONDUCTOR CIRCUITS
C = capacitance in farads

It is to be noticed that for waves traveling in the positive the line, and 1N and W are impedances having the same
or forward direction that e and i have the same sign; meaning as in Fig. 6. When these operators are ap-
but that for waves traveling in the reverse or negative plied to any incident wave e, expressed as a function
direction they have opposite signs. However, it is of time t counted from the instant that e arrives at the
immaterial which direction along the line be chosen as transition point, they derive the reflected and trans-
positive or forward; provided that the positive sense mitted waves e' and e" respectively.
be strictly adhered to throughout the calculations. The solutions and graphs of most of the thirty-five
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circuits shown in Figs. 10, 11, and 12 have been given
in previous papers but the equations will be repeated {(o2- aB) sin wt + a cos wt}J E (2)
here for ready reference. By a fortunate coincidence,
nearly all of these circuits are included by two general co2 = 1/L C and W2 = (WO2- 32), e = E E -at
equations, through an adjustment of the coefficients In the following tables the reflected wave e' and the
thereof. Therefore, all that is necessary here is to transmitted wave e" are given. In all cases the total
give these equations, and a table with the proper voltage at the transition point is
coefficients for each case. The equations are eO = e + e'

The reflected and transmitted current waves are
A[ a + a at + - e- ] E (1) respectively

it =- and i" -
z1 2

A Fr o-2 a a ± a2 2 (a-) f-t and the total curTent at the transition point is
L L02 2 a 3 + a2 a+ (Co02-2a3 - a 2) o= i+ i

TABLE I

Fig. Equation a f3 A

10-a el =e
(1) *

10-b R-Z
(1) e'= R+Ze

IJ-c e' = -e

10-d z z
(1) e' = (I) L L1

10-e 1 1
(1) e' = (I ) z cZ -1

10-f ZR ZR R-Z
(1) et (I.) L (R-Z) L (R + Z) R + Z

10-g R -Z R +Z(1) et = (I-) ZRC ZRC

10-h 1 1
(1) e' = (II) 2CZ 2Z -1

10-i Z-R Z + R
(1) e' = (IIC) 2RCZ 2 RCZ -1

10-j e' =e -Zio
(10)

10-k 1 1 R-Z
(6) e' = (I) C (Z - R) C (Z + R) R + Z

10-1 e' - (I-) Z-R Z + R 1
e, ~~~~~~~~LL

10-rn -_ zZ
(5) e' = (II.) 2L 2L 1

10-n R-Z R± 1
(5) (6) e' = (II-) 2L 2L1

10-o Same as 10-n before gap sparkover
(5) - Same as 10-c after sparkover

*See Bibliography references.
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TABLE II

Fig. Equation a A

11-a Z2- Z
e Z2+ Zi

(1) e" 2 Z2

11-b e = 1 -Z1Y0
le' 1 + z yeY Yo = total admittance of all outgoing lines in parallel

(1) e"
2

e 1+ Z1 YO e

11-c Zit2 -Z,±+ R
e' =Z2 + Z +R e

(1) ,, 2 Z2
e = ++Z I F-Re_. e

11-d ZI-Z2 Z1 + Z2
e' = -.) L L

it
ct

(E-at()ae -at-
11-e 1 1 Z2_ ZI

e (.) C (Zl -Z2) C (Z1 + Z2) Z2 + Z

e= (I) 0 C (Zl + Z2) Z2 + Z

11-f R (Zl-Z2) R (Z1+ Z2) R + Z2-Z1
Ie'= (I-) L (R-Zl + Z2) L (R +Z +Z2) R + Z2 + Z

R Z2 R (Z1+ Z2) 2 (Z2 + R)
:e = (I-) - L (R + Z2) L (R + Z, + Z2) R + Z2 + Z

11-g 1 1 Z_ - Z
e' = (II) 2 C (Z2-Z1) 2 C (Z2-Z1) Z2 + Z1

9e" = (II-) 0O 2 C (Z2 + Z) Z2 + ZI

11-h R-Z1 + Z2 R + Z1+ Z2 Z2-Z/T=(I.} R C (Z1-Z2) R C (Zl + Z2) Z2 + Z

1 R +Z1 +Z2 2Z2
Ie" = (I-) R C| R C (Z1 + Z2) Z2 + Z

11-i '()Ze-Z± + R Z2 +Z±+I?R Z2-Zl=- .) 2 R C (Z2 - Z1) 2 R C (Z2 + Z1) Z2 + Z
(1) 1 Z2+ Z + R 2 Z2

e" = (II) 2 R C 2 R C (Z2 + Z1) Z2 + Z

11-j Z1-Z2-IR Z±+Z2+| 1e = (I.) ~~~~~~~~~~~~LL

el
2Z2 (c-tEo)ZI ± Z2 + Re - L( B (E-at - L

TRAVELING WAVES ON MULTI-CON4DUCTOR CIRCUITS of the lines and the transition points. These equations
Equations (9) and (10) of Appendix II are the two are considerably simplified when the networks N12,

general equations which must be satisfied by the inci- NV23, etc., connecting the different lines at the junctions
dent, reflected, and transmitted waves on all wires at are equal to zero. In that case they become
the transition points of the general system represented (1 + Nr Ur) [Yr1 (e - e1') +.
in Fig. 6. Therefore the solution of these simultaneous
equations yields the reflected and transmitted waves + Tr (er- en')]- NT (er + er')
in terms of the incident waves and the circuit constants = (Yrl e11' + . ..+Yin entJ)
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(e, + er') - U, [Yr1 (e1- e1') + .... Yll (el- el') + Y12 (e2- e2') = yll el" l
+ Y (e. - e.')] Y21 (e1- e1') + Y22 (e2- e2') = 0

= erl' + Wr (Yrl e1.+. + Yrn en") (e1 ± e11)-e1(e2 + e2') = e

where n is the total number of conductors of the sys- The solution of these simultaneous equations gives
tem, and r is any particular conductor. Each of the
above equations must be written for each r so as to Z11- Z
provide the necessary 2 n simultaneous equations from e1-l +l

which the 2 n unknowns (e3' . . . . . en'1"e.. .)
can be found. A few examples will be given to illus- 2 Z12
trate the use of these equations. In the interests of e2' e2 - + ,e
brevity, the illustrations are for a two-wire and ground Zii + Z1.
circuit.

Fig. 13a. One of two lines suddenly terminates. e" - 2z, el
N, = N2 = U1 U2 Wl = W2 = 0 z11 ± Z11
Yl =1l/Zll, Y22 Y=12 = 0

Substituting these values in the general equation there where Z =I Yll Y22 Y-22
is

TABLE III

Fig. Equation a A

12-a Z2R -Z1R -ZZ2
Z2R +ZlR +Z,Z2

e -Z2 R + Z1R + Z1Z2

12-b Z1 Z2 ZI Z2 _Z2Z
e'= (IL)(Z2-Z L (Z2-+ z) Z2 +Z)

(1) ee ± c(E
ell~ ~ a(a E at -f3 E-ft)

12-c Z2_-Z Z2 + Z
e= (I) z1 Z2 C Z Z2 C -

() e" =E a±f3
-a

(1) |e E ; ~(e-at - E-dt)|
i2-d R Z1 Z2 R Z, Z2

e' (I) L (R Z2-R Z, -ZI Z2) L (R Z2 + R Z, + ZI Z2)
e= e + e'

12-e R Z2-R Z, -Zl Z2 R Z2 + R Z, +Z1 Z2 |

e= -E (e-atE -01)
a_-

12-f Z1-Z2 ZI + Z2
e' -(II-) 2 ZI Z2 C 2 Z, Z2C -1

e" =e + e'

12-i Z1R-Z2 R + Zl Z2 Z1R + Z2 R + Z1 Z2
e'= (II-) 2 Z1 Z2 RC 2Z,Z1Z2RC -1

(1) e' = e+ e'

12-g |e' -(II.) See| See | See

l(22) e"-=II.) r Sefee|c referenee referencee

(2) |e' - (II.) reference referenc referencee
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-Y12 Y__-_Yi 2_Y12
z12 yll Y22 - Y122 1 Y +- llYY +Y1 e2

If e2 was induced on line No. 2 by ei on line No. 1 then e2 =-e2
Z12 2YY11el 2Y12

Z= Yi + Yi+ Y11 + Yll

Or conversely, if el was induced by e2, then Fig. 13c. Isolated conductor introduced.
Z12 AT1 = N2 = U1 = U2 = W1 = W2 = 0

elZ= e2 yll= iZ11, Y12 = Y22 = 0

If, as would likely be the case, the line to the right is Y (e, - ei') = yii e" +± Y12 e2"f
simply a continuation of No. 1 wire, then (e 0+ c1') = e, t

ZIIt = Zii e2 + e2' = e2t
Therefore

(a) (g), Z11 + Z11
777777- 77777777777777777>'7'77?77'27

~~~~~2zil
(b) h

777//,,///////f 7/////// 7/77

Z12
t

2ZZ12
(TuZi.1 elNZol + Z1l

I(c),I,I,IIIIIIIIIIII111111777 , ,,, ,,7777 Thus if No. 1 is a through conductor, so that z11 =Zil,
there is no reflection.

.411Z171 iZZZZD'KIZZiiiIiI = ==Fig. 13d. Grounded conductor introdquced.
,,,,(d,),,, , 6U) N1= U1 = U2 = Wl = W2 = 0, N2 =O

yll= 1/Z1, Y12 = Y22 = 0

-_______________. Y11 (el- el') = Yi el"+ Y12 e2"
(e) (k) e2+ e2' 0

/////////_////_/_////7______________ (el +ei') = eil
e2 + e2 =e2

< (1) Therefore

FIG. 13-TRANSITION POINTS OF A DOIUBLE CIRCUIT Ye= +

and the equations become el'= 2 Y el
=i 0 Y11 ± Yii

Z e2" = 0
e2f =e2 - e1 Fig. 13e. Break in one conductor.

N1 N2 = U1 = U2 =Wl = 0, W2 =°
el" = el Y11 (el- el') + Y12 (e2- e2') = yii e,1' + Y12 e2"l

that is, there is no reflection on line No. 1, and the full Y21 (ei - el') + Y22 (e2- e2') = Y21 eil' + Y22 e2ft
wave is transmitted. In this case, had e2 been induced (e1 + el') = el" f
by e1 there would be no reflection on No. 2 conductor o = Y21 e1 + Y22 e2
either. Therefore, taking
Fig. 13b. One of two lines is terminated and grounded. Y = Yii, Y22 = Y22, and Y12 = Y = Y12 =Y2

N1 - U1 = U2 = W1= 1472 = 0, N2 = a)e1' = 0

tlii l/Z11, Y2 Y112 =0Z1
Y11 (ei- ei') + Y12 (e2- e2') = y11 e11 ] e2' = e2- el

(e1 1)(e 2 +e2) = 0l e1" = e

e2+e = e2' ,, Z12
Solving these simultaneous equations there is e2" = e
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Fig. 13f. Broken line-far section grounded. Yll(el-el') + Yl2(e2-e2') = yl1e1l"+y12e2" ±(el+e'l)/1R
U1 = Wl= W2-N1 = 0, U2 = N2 = O Y21(ei-eIt)+ Y22(e2-e2/) =Y21 e"tt+Y22 e2t'

Yll (el- el') + Y12 (e2- e2') = yii el" + Y12 e2" e -e1' = I"
Y21 (el- el') + Y22 (e2- e2') = 0 e2+e2' e2

(el + el') = e1"( Therefore
Y21 (e1- el') 4- Y22 (e2 - e2') = 0 -Z11
Therefore, since e2" = 0 e1 2 R + Zil

1 -Zll Yii - Z12ele1+ Zll ii -12

2 2 Z12 ylle 2R
e2 =e2+1 + 31Z el el1= e2

2 Z11l 1 +4 Zil yll, e2" e2-2 eli -t- z11 Y~~~ e2 =e2-2 R + Zii
e2= 0 These equations are of importance in connection with

Fig. 13g. Broken line-near section grounded. the theory of ground wires.3
U1 = U2 = Wi = N1 = 0, W2 = N2 = 0 Fig. 13j. T'ransposition of a line.

Y11(e1-ei') + Y12 (e2-e2/) = Y11 el"+ y12 e2" N1 = N2 = U1 = U2 = WI = W2 = 0
e2h+ e,' = 0 Yii = Y221 Y Yll Y12 Y21 = y

el 1+1-el =lZle2+e2 e
Yll (el -el= ) +y12 (e2-e2_ ) =yllY e" +Y12 e2 ]

Therefore = Y,)i el" ± Y22 z2 Y21 (el- ell)+ Y22(2_e2- e2) = Y21 e1 + Y22 e2 ]
___________1_________+_1_(Y]lel + Yl2 e2) e l+ e l'ZFiYii - 1 2 Y12 Zll e2=e2 + it

I1 =I lin e. , + 1 ewo+ Zii Yii + 1 eh Therefore

e2 = - e2 (Yll- Y22)U1 = U2 = N2z=1eo, =T] ( 1/B Y == Oso thatY11 ± Y22)[(Y + Y22) e1 + 2 Y12 e2]
=l 1, z+1(Yll+Y22122- 4Y1 e,) 2(f -(YoYcd )w2Yre e, + (s + Y e21

el = e1ft ll112l 1 (Y12 e =+ 11 e+ )Yheref+ee +2ye2el 1 eYll

Fig. 13h. One line grounded through a resistor at end of e2s' = e2't± e2
line. If the two conductors are in the same horizontal plane

Ul = U2 = N2 = 0, N1 = 1/R, yii = Y Y22 = s5 that Y11 =Y22, then there are no reflections.
Y11 (e, - elf) + Y12 (e2- e2R)-(el + el')/R = If the two incident waves are alike, that is el = e2 e
Y21 (e, - elf) + Y22 (e2 - e21) + 0 2 then

If R = Zll,then el' =O and ther is no reflcted waveYll +-e,') e"

Therefore e/= - e2(Y Y )eTherefore
yll + Y22 2Y 12

elg. e I Fig. 13k. Line entering a section parallel to another line.
N1 = N2 = U1 = U2 = Vl=12 = 0

e2' =e2- 2Z12-e 1 , l = ZlZ2=Z2

R - z
li

Y
i, ( l - l')~Y2 (e 2 ) = y i1 e " -I Y 12 e2

T-FP-7 -Aiev = e2 Z1 e e1' = (Y11 Yi2)(Y2 + Y22) + Y212 e1t+ 2Y2Y22 e2
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2 Yll (Y22 + Y22) el - 2 Y12 Y22 e2 passage of the wave on each section between junctions.
el = Now choose a suitable vertical time scale, shown in(Y11 + Yll) (Y22 + Y22) - Y12 Fig. 14 at the left of the lattice, and draw in the di-

2 Y22 (Y11 + y11) e2-22Y12 Yl el agonals. At the top of the lattice, at any conveniente2" = ++ 2 place centered on the junctions, place indicators with(Yll + Yll) (Y22 + Y22) - Y12 the reflection and refraction operators marked on

In a case of this kind it is highly improbable that both them. In the notation of this paper these indicators
e1 and e2 would exist simultaneously, so that the equa- are shown as little double-headed arrows marked as
tion could be simplified to that extent. follows:
Fig. 131. Line leaving a section parallel to another line. a = reflection operator for waves approaching from

N1 = N2 = U1 = U2 = W1 = W2= the left.
=l2- O, Z1, = Z11, Z22 = Z22 a' = reflection operator for waves approaching from

Y12 (e - el') ± Yll (e2 -e2') =122 e1" the right.
Y21 (e1- e1') + Y22 (e2- e21) = y22 e2i" b = refraction operator for waves approaching from

e1 + e1' = e~~~1't the left.
e2 + e2' - e2i b' = refraction operator for waves approaching from

Therefore the right.
[(Yll - 1/l) (Y22 + Y22) - Y12 2] e1 + 2 Y12 y22 e2 3a = attenuation factors for section between junctions

el = (Y11 + yii) (Y22 + Yt22) -Y12 It I understood, of course, that these operators are

= [(Yll + Yll) (Y22 - Y22) - Y122] e2 + 2 Y12 Yll Ci Reflection aelala2a. aaa
(Yll + Yll) (Y22 + Y22)- Y122 Refraction blbi bl b2 bIb3

Attenuation 13
,, 2 [Y11 (Y22 + Y22) - Y122] e1 + 2 Y12 122 e2 No.1

(Yll + Yll) (Y22 + Y22) - yl22 1 L2 Z3 Z4

2 [Y22 (Yll + yll) - Y122] e2 + 2 Yl2yi e1 0
'I= (Y11 +A1Yl) (Y22 + Y22) -Y12_ I

SUCCESSIVE REFLECTIONS.
There are many important problems, such as in the O 3

theory of ground wires,8 the effect of short lengths of E4-
cable," trunk lines tapped at short intervals, etc.,4 |
where it is necessary to consider a number of successive ; -0 - a b
reflections of traveling waves. Sometimes it is exceed-_
ingly difficult to keep track of the multiplicity of these
reflections. A lattice has therefore been devised which FIG. 14-LATTICE FOR COMPUTING SUCCESSIVE REFLECTIONS
shows at a glance the position and direction of motion
of every incident, reflected and refracted wave on the operational expressions involving the impedance func-
system at every instant of time. In addition, this tions of the junctions, and no restrictions are placed
lattice provides the means for calculating the shape on their generality. Now, starting at the origin of the
of all reflected and transmitted waves and gives a initial incident wave at the top of the lattice, obtain
complete history of their past experience. Even the the reflected and refracted wave at each junction by
effects of attenuation and wave distortion can be applying the operators of that junction to the incident
entered on the lattice, if the defining functions are wave arriving there, and proceed until the lattice has
known. been completed. It will be observed that:
The principle of the reflection lattice is illustrated in 1. All waves travel downhill.

Fig. 14. Three junctions, Nos. 1, 2, and 3 placed at 2. The position of anyv wave at any time is deter-
uneven intervals along the line are shown. Trhese mined from the vertical time scale at the left of the
junctions may consist of any combinations of im- lattice.
pedances in series with the line or shunted to ground. 3. The total potential at any point at any instant
The circuits between junctions may be either overhead of time is the superposition of all the waves which have
lines or cables; having in general, different surge im- arrived at that point up until that instant of time,
pedances, velocities of wave propagation, and attenua- displaced in position from each other by intervals
tion factors. To construct the lattice, lay off the equal to the instants of their time of arrival.
junctions to scale at intervals equal to the times of 4. The previous history of any wave is easily traced,
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that is, where it came from and just what other waves Ql = K11 el + K12 e2 +
. .

. . .
+ Kln en

went into its composition. . ... . . . . . . . . . . . . . ..(1)
5. Attenuation is included. Qn = Kni el + Kn2 e2 + . ±...+ Knnen
6. If it is desired to carry the computations to a The magnetic fluxes linking the conductors per unit

point where it is not practical to place the various oper- length in terms of the inductance coefficients and the
ators directly on the lattice itself, then the arms may currents i12, . ., in are
be numbered and the operational expressions tabulated oi = Lli i1 + L12 i2 + . . . . . + Lin in
in a suitable table. No difficulty is encountered in this (2)
practise, and sometimes it is possible to devise purely 2n = Lni)i + Lni i2+.+ Lnn in
tabular methods which can be filled in automatically. The leakage currents flowing to ground and to the other

Appendix I conductors are
GENERAL EQUATIONS OF A MULTI-CONDUCTOR SYSTEM X1 = gii e1 + 912 (el- e2) + * * * + gin (el- en)
The conventional treatment of transmission line G

transients is based on consideration of a single wire ignn (en- el) + gn2 (en-e2) + g
. + gnn en

and its return, and ignores the presence of other con- Gni ei + Gnoe - . . . Gnn en
ductors. However, there are many cases in the study 3
of traveling waves where the effect of the other con- (3)

ductors cannot be neglected SThe differential equations of the first conductor areductors cannot be neglected. Sometimes their influence
is so vital as to completely change the characteristics a e1 a i
of the phenomenon, and entirely erroneous results are - b x t A-L i1=Z11 i1+Z12 i2A-.. .ZIn 1n
obtained if they are not considered. Problems of this
type are of special engineering interest in connection (4)
with the design of ground wires and other protective Qil_ ii' Y +Y2 + e
schemes, and in general, in the study of mutual effects - x = at A-i1Y e1 12e2A-. A-Yin n
due to traveling waves. This appendix is a generaliza-
tion and extention of the method of attack given in a
previouspaper3in that line-to-line, line-to-ground, and Differentiating equation (4) with respect to x and
series resistances are included in the analysis. substituting the equations of type () there is

The General Differential Equation. Fig. 6 shows a (2e(
system ot n transmission line conductors, parallel to d x2
each other and to the ground plane, and mutually Z Y Y Y
coupled electromagnetically, so that the effects of A 12 (Y21 e1 A 22 e2 A . . A Yn en)
currents and potentials on any wire are felt on all the . . . . .

other wires. The circuit constants involved are shown + Zln (Yni e A- Yn2 e2 + . . Ynn en)
in Fig. 7. Associated with each unit length of line and = (Zl1 11 -+ Z12 Y21 + A+ Zn Yn,) elconductorsrandthereis*A-+ (Z11 Y12 + Z12 Y22 +A... + Zln Yn2) e2conductors r and s there iS
Lrr = self inductance coefficient of conductor r + (Zll Ynnl + Z12 Y2n + . . + Zin Ynn) en
Lrs = mutual inductance coefficient between r and s = J11 el + J12 e2 A . + Jin en (6)
Krr = self capacitance coefficient of conductor r where
K,s = mutual capacitance coefficient between r and s ,r. = Zrl Yls A Zr2 Y2s A Zr3 Y3sA-A Zrn Yna
Rr = series resistance of conductor r . . . .

grr = leakage conductance to ground of conductor r = Zlr Yls A Z2r Y2. A Z3r Y3s .A- ZnrYnT
grs = leakage conductance between r and s Let
It will also be convenient to introduce the notation

Grr = g1A+ gr2 + gr3 +.g. . + Ar Irr= - ) (8)
Grs = Gsr =-rs = gsr

I=(r A-p Lrr) Then the complete set of differential equations for
=r p Lre the n conductors may be written in the symbolic form
=r (Grr A- p Krr) 0 = All e1 A- J12 e2 A- .. A--+ Jln en l

Yrs = (Grs A- p Kr,) 0 = 21 e3 A- A22 e2 A- * - A-+ Jmn en
p = b/E)t . . . . . . . . . . . . . . . . . .(9)

The charges per unit length on the conductors in terms 0 = Jni e1 + Jn2 e2 A *-. Aw-+ Ann en
of Maxwell's electrostatic coefficients and the potentials where the J's are operators in the time derivative
e1, e2, . ., en are p - d/dt, and the A's are operators in both the time
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and space derivatives. Solving these n simultaneous I
equations for any e, there results a determinate of which + f (Lnj1si 'n+LLni12in+. . . . . +Lnn jn2) d x
the numerator is zero on account of having a column of (13)
zeros. In order, therefore, that a solution other than The total energy of the waves is (considering only the
zero can exist, it is necessary that the denominator also waves moving in one direction, and calling the current
be zero (on the assumption that the indeterminate so waves i)
formed will evaluate to a finrite value). Therefore,

W (f il e2 i2 .+ en in) dt
there must be

AlIJ12 .J. . . . . . . Jln fZIi12 Z12i-( ilZ.j..±.z.i2i+ .-. Zlnin il) dt

J21 A22 . . . . . . . . J2n . . . . . . . . . .; . . . . . . . . . . .
+ f (Znl1lin + Zn2 12 in . . . . . . + Znn in2) dt

. . . . . . . . . . . f (yii e12 +Y12 e2 e1 + .... . + ylnenei) dt
inl Jn2 . . . . . .... . Ann e =- (0 (14)

Now, dropping subscripts
Z Y= (R+p L)(G+p K) =L Kp2+(L G+R K)p+R G .

. . . . . . . . . . . . . . . . .

dt
(1) + f' (ynlei en +yn2 e2en . . . n en",) dti

so that ultimately, the expansion of (10) will lead to a But for free traveling waves on overhead lines,3
polynominal of degree n in (82/d x2) and degree n in z = c L (15)
p2 = )2/6 t2. The solution of this partial differential and dx = v d t = c dt (16)
equation is the most general solution for a system of
parallel conductors. Therefore, equation (14) may be written

There are three conditions under which equation (10) W = f (L1 j,12 + L12 i2 i1 . . . . . . + Lln in il) d x
may be considerably simplified in obtaining a solution.
These are I, The No-Loss Line, II, The Completely ± f (Lni i in +Ln2i2 i+.+ Lnn jn2) d x
Transposed Line, and III, The Alternating Current = 2 Wi (17)
Solution. thus proving that the energy of the system is divided
Case I. The No-Loss Line. The solution for this equally between the electrostatic and magnetic fields

case has been given in a recent paper,3 and will not be for free waves traveling in one direction. While waves
repeated here. However, the following discussion of moving in opposite directions are passing through each
the energy relationships was not included in the previous other the total energy is not equally divided, but may
paper. be distributed in any proportion between the two

Consider a system of n potential and curTent waves fields. This is also true at a transition point, where the
(e1 .... en, ii . . . . in). From electrostatics (see incident waves give rise to reflected waves. In such
"Electricity and Magnetism" by J. H. Jeans, page 94) cases the energies must be computed from equations
and equations (1) of Appendix I of this paper, the (12) and (13) and added to find the total. Equation
total energy residing in the electrostatic field is (14) applies only to waves moving in the same direc-

1 tion, and while it serves to determine the total energy
We, = 2J (Ql 'el + Q2 e2 . . . ........... + Qn en) d x by computing the energies in each system of oppositely

moving waves and adding them, it does not hold for
=1 ~ (K11 resultant potentials and currents.

e12(Klle12+K12 e2el.e.+... +Kin eneDde x Case II. The Completely Transposed Line. If all
n conductors are completely transposed with respect
to each other and to the ground, and if the conductors

1 have the same resistance, then in effect
+ f (K., elen+Kn2e2en+..... . +Knn en2) dx2 ~~~~(12) Lrr=L, Krr =K,y Grr G

where the integration is to extend over the lengths of Lrs = L', Krs = K' Grs =G
the waves. Zrr Yrr = (R + p L) (G + p K) = Z Y
The electromagnetic energy (Jeans page 443) by Zrr Yrs = (R + p L) (G' + pK') = ZY'

equations (2) of Appendix I is Z rr,Yr, = p L'- (G P K) =Z- Y
1 ~~~~~~~~~~~~ZrsYrs = p L' (G' + p K') = Z' Y'

W,ryfJn(4iii±4+2i2+..........+(IWtn)dXz ...Jrs =ZlrYis±+Z2rY2s+.........+ZrrYrs
+ +ZsrY.+....+ZnrYns

1 L11 +L=ii ++Lnnidx ir-ZY'+Z'Y+ (n-2)Z' Y' = J (18)
= 2J Ll i2L2 2 l .. .. Ln n l)clX rr= Z17 Y1r + Z2r Y2r+.....+ Zr Yrr

+.+ZnrYnr
=-ZY +(n-1) Z'Y (19)
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(2 62 Ei = E, ee I
Arr = ( Jr- x2) = [z Y+(n-1) Z' Y- X2l =AEn -EnE | (29)

(20) J11 =J11whenp==jco
- a~~~~~~2 . . . . . . . . .... . . ......(30)

(A- J) = ZL Zf) (- YI) a2 ] (21) Jin = Jin when p = (30

The common factor EiWt has been canceled out on both
Hereby the determinate of equation (10) becomes, sides of equation (28).
upon dividincr each column through by J and calling Now according to equation (10), the general differ-
A/J = a, subtracting adjacent columns from each ential equation is the same for every conductor of the
other, dividing out (a - 1), adding all rows to the n wire system, and therefore each E of (28) must follow
last, and finally expanding the remaining determinate the same function of x, but the integration constants
in terms of the minors of which the lower right hand are, in general, different for each E. Since the differ-
elements are the cofactors ential equations are ordinary linear differential equa-
AJ .J tions with constant coefficients of order 2 n and homo-
J A . . J geneous in d2/d X2 it follows that the solutions are

. . . ... . . . . . . of the form
J J . . . . . . . . . . A e =(A-J)n-('A-J+n J)

(22) r=(C EXrX + (lrI E-rrx)
This is the operational equation of the completely 1
transposed line in terms of the operators A and J. ..... .. (31)
Upon substituting the values of A and J from equa- f
tions (18) and (20) it takes the form n= (Cnr EXrx + nrI E-Xrx)

(v12 p2+w1 p+ul- ) v22 p2+W2 P+U2-- e = 0 where the O's are complex integration constants and
(23) the X's are the roots of equation (10). There are

If the line is free of losses, as well as completely trans- 2 n2 of these integration constants, of which all except
posed, then (22) becomes 2 n are redundant. To prove this, substitute equa-

62 nl-I C)2 tions (31) into the original equations of type (28),
(v12 p2 - (X2) 2 p 2 e = 0 (24) obtaining n equations of the type

This is satisfied by the equation of wave motion XA2 (C1r eXTX + (ir' E_)
e =f (x + lit) (25) 1

which substituted in (43) gives - > Jii (CiXrx +± 1(r EXrx)
v= v1and v =4 v2 (26) 1

thus showing that there are only two possible velocities n*
of wave propagation on the completely transposed no- + Ji (C EXrX + C c_) (32)
loss line. In the case of overhead conductors in air
both of these velocities approach equality with the
velocity of light, in agreement with the findings of the Collecting tes
previous section.
Case III. Solution for Alternating Currents. Sup- {[(r2 Jll) ilr - Je12 02r -ln--JnOnriE;X

pose that the line is operating under steady-state 1
alternating-cuiTent conditions, so that the potentials + [(Xr2 Jii) (ir' JlQ (ir'-. . . I-J (nr/i E1 02
on the n conductors at coordinate x are given by (33)
e= E, sin (co t + 6 ) = imaginary part of El E(t +±01) It is now necessary to digress long enough to prove

(what is probably self-evident to many) that each of
e= Ensin (ot+On) =imaginary part ofEn ea'+±Of) the coefficients in (33) is individually equal to zero.

(27) In the general case let
where the amplitudes (E1 ..........E.) are functions of A fi (x) + Bf2 (x) +.±.............. NNfn (x) = 0 (34)
x. Substituting (27) in (6) there is where the functions f (x) are all different. Assuming

that each of these admits of expansion as a power
a2 =1 - E]+ J12 E2 + .........+ Ji1n E ...(28) series in x, by Maclaurin's theorem, there is

x ~~~~~~~~~~A(a1±b1x±c1x+.. .-j- .........)+
where ±N(a + 73nx+cnx2+.........)=0o.(35)
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Collecting terms Therefore the propagation constants are
(a,A+a2B+ .. +a.N) X12 = (Z Z')(Y-Y')
+ (b,A + b2B+ ......... +b, N) x + ... =00 (42)

(36) 22 = (Z + 2 Z') (Y + 2 Y')
But by the method of indeterminate coefficients, each But (\22) does not satisfy (40), so that there are no
term of this power series in x must individually equal r = 2 constants. However, (X12) does satisfy (40) and
zero, so that there are the simultaneous equations therefore the solution for a completely transposed

a, A + a2B 4- . . + a, N = 0 three-wire line is
b1A + b2B + ... +b. N = O0 (37) =-O + C11' CEX1x
c] A + C2 B + ......... + c, NC = O kE2 = 021 6XlX + 021' C--lx 0 (43)

etc. E3 = C31 E +C1
Since the coefficients (a, b, c . . . . ) are entirely arbi- If for the complex number (XI) there be substituted
trary, the solution of these equations leads to a deter-
minate of which the denominator is finite and the = a +j3 (44)
numerator is zero (by virtue of a column of zeros), then equations (44) may be expressed in any of the

following familiar formsand therefore-
E=AExx+B c xx

A = B =.... N = 0 (38) _A Eax (cosI x+jsinI3x)+BCax (cos /3x-jsing0x)
Thus in any equation of type (34) the individual - (A - B) cosh X x + (A-B) sinh X x

coefficients are separately equal to zero. = (A ± B) (cosh a x . cos ,s x + j sinh a x . sin B x)
Returning now to the equations of type (33), and

= (A-B) (shoax.cos x + j shoax.sin3x)
considering all n of these equations, there is .(45)
(Jll-AXr2) Cir+ Ji2 C2r + * - - - +±Jin Cnlr 0° This is the so-called vector solution. The actual
J21 Clr + (J22 - X2) C2r + + J2n Cnr = 0 potential as function of x and t is

JniCl;+i 2Cr++(n-rjCr =° imaginarY part of (A eXx + B e-X e(W (46)+J~2Cr ±.. + (Jn N~) Cn = ~ e = imaginary part Of Ej(W
(3) It is worth noticing from (42) that X, is in terms ofand exactly the same relationships hold between the t sorth notisting fo (4)that usei in termsiof

C' coefficients. Now in order that (39) may be satis- the .so-lle"csatsoto nur u p*, . ~~~~~~transmission line calculations. For iffied by values of the C's other than zero, the denoml-
h

nator of the determinate must be equal to zero, that is h = geometric mean height above ground
(J*i_ 2) s = geometric mean spacing between conductors

(Jll r JJ12 . . . . . J ln.21 *J22 - 2A) r = radius of conductors
J21 (J22 - /\ ****j2n

then. . . . . . . . . . . . . . . . . . the
J77., Jn2 . . . . .n,J-2) = 0 (40) .11 2h \

Therefore, if (40) holds, there are (n - 1) independent Z =R±j 2+2log r
relationships between the C's in equation (39), so that
any (n - 1) of them may be eliminated. But since 2h
there are n values of r, there will remain n integration s
constants that must be determined from the terminal
conditions. Likewise, there will remain n arbitrary / 1 s \
integration constants among the C' coefficients. (Z-Z') = 1 + j 2 + 2 log r J 10- ohms

Thus, the n-wire transmission system has associated
with it n propagation constants (Xr) and 2 n integration (Y Ys_=_G-GJ mhos
constants C,. and O/ (Y-Y)=( -G)+mo

If the line is completely transposed, then by equa- (18 log Jolt
r/

tion (22) there are only two independent roots to the
differential equations, and therefore only four inte- Appendix II
gration constants. BEHAVIOR OF WAVES AT A TRANSITION POINT

If the line is a completely transposed three-wire line, Inapeiuppr3qatoswegvnfrth

there~~~~~~~is'yeutos(2,(8,ad(0 reflected and transmitted waves on an n-wire trans-
[( ) (y y ___] mission system similar to that shown in Fig. 6, but

dx2 ~~~~~~lacking the mutual connecting admittances, N12, N13,
etc. In this appendix these admittances are included

[z±Z 2 Z') (Y + 2 Y')- ]1E = 0 (41) in the analysis, and themoregeneralequationsobtained.
b x2 .iThe application of these general equations is illustrated
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in the paper by a number of practical examples which Irt' Nir (Er- E) + N2r (E, -E2) + .....
have come up from time to time in the investigation + Nnnr (Er - En) (6)
of artificial lightning surges. Even the complicated The condition of current continuity is
circuit of Fig. 6 will not serve for every conceivable ir + ir' = ir"+ Ir + Ir' (7)
case, but it hardly seems profitable to generalize any
further. If a particular transition point cannot be
made a special case of Fig. 6, it will probably be as er" Er-Wr r/' (8)
easy to solve it directly as to reduce it from anything Substituting (2), (3), (4), (5) and (6) in (7) and
more general. In any event, the procedure followed rearranging, there is
in setting up the equations and solving them is the [Yr1 + Yr1 Ur (Nr + Nir ± . . . + Nnr) - Y11 Nir U1
same regardless of how complex the transition points - -Yn, Nnr Un] (e - eil')
may be.

Referring to Fig. 6 let +[Yrn+Yrn Ur(Nr+Nir+ - - . +Nnr)-Yln Nlr Ul
Yll, Y22, . . ., Ynn = self surge admittances of lines . . . -Ynn Nnr Un] (eC - en')

on the left +Nlr (el + el') + . . + Nnr (en + en')
Y12, Y13, etc. = mutual surge admittances of - (Nr + Nir + . . . + Nn.r) (er + er')

lines on the left = (Yri el" + . * * * + Yr. en") (9)
Yii, Y22, ., y, = self surge admittances of lines .Substituting (2), (3), (4), (5) and (6) in (8) and

on the right .rearranging, there is
Y12, Y.13, etc. = mutual surge admittances of (er + er') - Ur [Yrl (e, - el') + . . + Yrn (en -en')]

lines on the right = er" + Wr (Yr, el"' + . . . + Yrn en"/) (10)
Ul, U2, . . Un = series impedance network on For an n-wire system n equations of type (9) and n

the left equations of type (10) can be written, and these 2 n
simultaneous equations suffice for the determination ofWi, W2, . ., Wn = series impedance network on the 2 n unknowns (e1' . . . . e' el" en'). The

the right other quantities may then be found from equationsN1, N2, . . . ., Nn = admittances to ground (1) to (8). These equations are therefore sufficient to
N12, N23, etc. = admittances from junction to completely formulate the behavior of the incident,

junction reflected, and transmitted waves at a general transition
e , i = potential and current incident point. Some simplifications and examples are given

waves below.
e', i' = potential and current reflected Mutual Connecting Networks Removed. Suppose that

waves N12, N23, etc., are all zero. Then equations (9) and
e", i" = potential and current trans- (10) reduce to

mitted waves (1 +NrUr)[Yrl(ei-el1) +. . . + Yrn(-en')]-N,(e,+er')
When the incident waves arrive at the transition = (Yrl el' + + Yrn en") (11)

points, they give rise to reflected and transmitted waves (e, + Cr') - Ur [Y (el- el') + . . . + Yn (en- en')]
which satisfy the general equations of the transmission = er" + Wr (Yr, el' + . . . + Yrn en") (12)
line, and are in accord with Kirchhoff's laws and the These are the general equations derived in a previous
conditions of current and voltage continuity at the paper.3
junctions. Single Wire Line. In this case only el, ei' and el'
The total potential at the junction of any incoming exist, and equations (11) and (12) become

line r is the sum of the incident and reflected waves (1 + N, Ul) Y,, (el- el') -- N, (e, + ei') = yii elf (13)
on'that line

(er + er') (1) - U Y,, (e, - ei') + (e + el') = (1 + W1 yil) el" (14)
and the total current iS3 Solving these two simultaneous equations for the
i ,+,r') = Y~1 (e1 - e1') + + Yi (Cn - Cn') reflected and transmitted waves, substituting Z1l(ir + ir ) =Y., (e eil) + **+ Yrn (en -en (2) = I/Y,, and z11 = 1/y1w, and dropping subscripts,

there is
The potential across the admittance Nr. is;

and the current through N,. thereforeis()e z+W) 1+NU Z+ZN(z+W
Ir =NrEr (4) (15)

The current tranbsmitted to the outgoing line is ,,_2z e
trt= YrliCi" +Yr2Ce2" + .±Y......rnCen" ...(5) (z+ W) (1 ±NU) + U +Z +ZN(z + W)e

and the current transferred to the other junction is (16)
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The conventional traveling wave theory is based on a = energy absorbed by the networks (Ul . . . U[)
single-wire line and is expressed by the above equa- (25)
tions. In terms of the total impedance at the transition
point, (E1- el") iFl' + . . + (En -en") inj dt

0

ZO=_U+ =U + (1+ N U) (11 + z) = energy absorbed by the networks (W .. W,J)
W±z) 1+N(W +zl) 6

(17) f E (Er- E,) Ns (Er -Es) dt
the above equations take the more familiar form 1

= energy absorbed in connecting networks Nrs
el = ° Ce (18) (27)Z + Z The E summation in (27) ranges from s = I to s = n,

1 ~~~2z+N(W+z) 0± e (19) excepting s = r.
Equating the sum of these energies to the energy in

Equations and curves of a great many combinations the original incident waves, by the conservation of
have been worked out as special cases of these expres- energy,
sions. Those shown in Figs. 10, 11, and 12 are in the C co n t
readily accessible literature. It will be noticed that f > e, ir dt = er ir dt- f e,' ir' dt
many of the combinations illustrated are special cases °
of the more complicated circuits, merely by substituting
limiting values (zero or infinite) for the constants R, t
L, C, and Z as required. Moreover, each of these + f > er/' irt dt + f > Er Ir dt
cases is of practical importance in the study of high- ° 1 0

voltage surges. t n

Energy Relationships at the Junctions. The energy + (er + er' - Er) (ir + ir') dt
of a free traveling wave is given by equations (12) to o

(17) of Appendix 1. During the time that the inci-
dent waves are at the junction a redistribution of energy t
is taking place. The division of energy during this + J Z (Er -er") irl' dt
transition period furnishes a valid check on the reflec- 0 1
tion, refraction, and transfer operators, and is of interest n
on its own account. At any time t, counting from the + J > (Er-Es) Nrs (Er-Es) dt
instant when the system of incident waves (e1 . . . . en) 1
arrive at the junction, there is (28)
co

Combining the first term on the right with the term
(en i1 + + e~ i~) dt on the left, according to the rulet~~ ~ ~ ~ ~ ~ ~ ~ O

= energy remaining in the incident waves (21) ff (29)
1' 0 t 0

- (eV' i1' + .. . + en' i.') dt and discarding the integrals, there is
0

= energy in the reflected waves (22) > [er ir + er' irt- er ir"- Er Ir- (er + erl- Er)(ir +r')
t

4 (e1" u1" + . . .+ en>" in") dt r=1

= energy in the transmitted waves (23) - (Er-erl) irf-l (Er- E.) . Nrs (Er Es)] = 0
t .s

(EC' +....+EI)d (30)., (E1 In+.... ~I)d The currents and voltages at a transition as determined

= energy absorbed by the networks (N, ..N) by the reflection, refraction, and transfer operators,
(24) must satisfy equationl (30).

f ~~~~~~~~~~~~~Bibliography
f[ (e, ±e1'-E1) (i1' -1-i1) + . . . ± (en ±en -En) (in ' +i0)] dt 1. Traveling Waves Due tO Lightning, L. V. Bewley, A. I.E. E.

o TRANS., VOl. 48, JUlY 1929.



550 BEWLEY: TRAVELING WAVES ON TRANSMISSION SYSTEMS Transactions A. I. E. E.

2. Shunt Resistors for Reactors, F. H. Kierstead, H. L. 8. "Traveling Waves," L. V. Bewley, Journal Maryland
Rorden, and L. V. Bewley, A. I. E. E. TRANS., JUlY 1930, p. 1161. Academy of Sciences, Oct. 1930.

3. Critique of Ground Wire Theory, L. V. Bewley, A. I. E. E. 9. Electric Oscillations in the Double Circuit Three-Phase Trans-
JOURNAL, September 1930, p. 780. mission Line, Y. Satoh, A.I.E.E. TRANS., January 1928, p. 64.

4. Attenuation and Successive Reflections of Traveling Waves, 10. "Performance of Thyrite Arresters for Any Assumed
J. C. Dowell, A. I. E. E. TRANS., Jan. 1931. Form of Traveling Wave and Circuit Arrangement," K. B.

5. "Calculation of Voltage Stresses Due to Traveling Waves, McEachron and H. G. Brinton, General Electric Review, June
with Special Reference to Choke Coils," E. W. Boehne, General 1930.
Electric Review, Dec. 1929, Vol. 32, No. 12. 11. Study of the Effect of Short Lengths of Cable on Traveling

6. "Reflectio
'TransmissionLineSurgesataTerminalWaves, K. B. MeEachron, J. G. Hemstreet, and H. P. Seelye,6. "Reflection of Transmission Line Surges at aJ Terminal A. I. E. E. TRANS., October 1930, p. 1432. Also discussions of

Impedance," 0. Brune, General Electric Review, May 1929 Vol. t pae byH. G. Biton and L . Bele.
A

32. ' , X * ~~~~~~~~~~~thispaper by H. G. Brinton and L. V. Bewley.
32

7. Arcing Grounds and Effect of Neutral Grounding Im- Discussion
pedance, J. E. Clem, A. I. E. E. TRANS., JUlY 1930, p. 970. See
also discussion by L. V. Bewley. For discussion of this paper see page 557.


