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PREFACE

THE theory of traveling electric waves on transmission lines and
in transformer windings has undergone extensive developments in
the past few years, as indicated by numerous techmcal papers in the
Transactions of the American Institute of Electrical Engineers and
clsewhere. In particular, the recently formed concepts of the laws
of cloud discharge and consequent lightning wave formations, of the
transmission and reflection of waves of arbitrary shape, and of elec-
trical oscillations in transfoermer windings set up by impulse voltages,
have tremendously advanced our knowledge of wave phenomena and
have made possible remarkably accurate quantitative analyses of
lightning and other transient phenomena. However, as in any new
science, the theory of traveling waves has been built up piecemeal
over a long period of time. Oliver Heaviside, C. P. Steinmetz,
W. Petersen, K. W. Wagner, R. Pfiffner, R. Rudenberg, and many
others have contributed much to its early development.

The consolidation of these theories in book form was undertaken
to provide a convenient reference text for the use of the Advanced
Course in Engineering of the General Electric Company. In carrying
out the work, the attempt has been made to present a fundamental
and generalized mathematical analysis of the subject, that should be
of permanent reference value. Methods for evaluating the effects of
any arbitrary voltage impulse are given. It is hoped, therefore, that
the book will prove useful to professional engineers engaged in prob-
lems of transmission lines and machine transients, as well as to
students approaching the subject for the first time.

That the reader has a working knowledge of operational calculus
is presupposed, since it is so well adapted to the treatment of traveling
wave theory. However, in giving a course of lectures on traveling
waves, substantially as presented here, to a group of engineers unfa-
miliar with Heaviside's methods, I have found that sufficient opera-
tional calculus for the purpose could readily be imparted in a half
dozen one-hour lectures.

The brief bibliographies included in Parts I and II, covering the
development of the theory of traveling waves and transformer tran-

sients, make no pretense at completeness, but merely represent those
k



Vi PREFACE

publications with which I am familiar and have consulted in the com-
pilation of this work. The literature is so stupendous and so scattered,
and so much of it is “lost in the archives of antiquity,” that I can not
hope to do justice to it. But I would appreciate having my attention
called to glaring omissions, so that they may be included should a
subsequent edition of this book ever be called for. Dr. R. Ruden-
berg's excellent treatise ‘' Elektrische Schaltvorgange” * very well
covers the development in this field up te 1926, however.

In tendering my thanks to the many friends who have offered me
encouragement and valuable suggestions, it is not so much a question
of where to begin as where to stop. To Mr. F:W. Peek, Jr., and to his
associates, Messrs. F. F. Brand and H. O. Stephens, in the Power
Transformer Department of the General Electric Company, I owe the
opportunity to work along these lines, and I am greatly indebted to
them for their generous extension to me of the facilities of the depart-
ment in the preparation of this book. I am indebted to Messrs.
P. L. Alger, ]J. E. Clem, and Alan Howard for reviewing the manuscript
and for many helpful suggestions. Messrs. J. E. Clem and W. F.
Skeats kindly gave me permission to make use of their papers in
writing Chapter X, and Messrs. K. K. Palueff and J. H. Hagenguth
likewise generously allowed me to incorporate material from their
papers in writing Chapter XV,

In the preparation of Part II, I have drawn freely from the sources
given in the Bibliography, and in addition I have enjoyed the advan-
tage of close association with the engineers of the General Electric
Company who have pioneered so much of this work. I wish to thank
Dr. V. Bush and Dr. E. J. Berg for kindly permitting me to copy

tables from their books to form the Appendix.
L. V. BEWLEY.

* Springer, 1926, Second Edition.



CONTENTS

PART I

ORIGIN, CHARACTERISTICS, AND BEHAVIOR OF TRAVELING WAVES

Introduction: CLASSIFICATION OF LIGHTNING RESEARCH

CHAPTER

L.

I1.
II1.
IV,
vV,
VI
VII,
VIIIL
IX.

XI.

SINGLE-CIRCUIT THEORY OF TRAVELING \WAVES
CaLcuLation oF Tyeical TraxsiTioN Points .
ATTENUATION AND DisTORTION

SUCCESsIVE REFLECTIONS

PROTECTIVE SCHEMES

TRAVELING WAVEs ON MULTI-CONDUCTOR SYSTEMS

TraxsITION PoINTS OF THE MULTI-cCONDUCTOR CIRCUIT .

REsOLUTION OF WAVES INTO CoMrPonNENT KINDs
TrRAVELING WAVES DUE TO LIGHTNING

GROUND WIRES

ARCING GROUNDS AND SWITCHING SURGLES
Bibliography

PART Ii

PAGE
3

27
49
57
60
%0
111
125
154
151
178
201

HIGH-FREQUENCY OSCILLATIONS AND TERMINAL TRANSIENTS

XII.

XIIL.

XIV.
XV,
AVI.

OF TRANSFORMERS

Introduction; CLASSIFICATION OF TRANSFORMER TRANSIENTS .

IDEAL Two-wINDING TRANSFORMER

TRANSIENT OQSCILLATIONS IN THE PRIMARY WINDINGS |
WAVES OF ARBITRARY SHAPE

TERMINAL TRANSIENTS .

SUPPRESSION OF INTERXAL OSCILLATIONS

Bibliography :

Appendix: TABLE oF OPERATIONAL ForMULAS |
Index

Vvii

207
211
233
258
279
303
319
321
331



Part 1

ORIGIN, CHARACTERISTICS, AND BEHAVIOR
OF TRAVELING WAVES



TRAVELING WAVES
ON TRANSMISSION SYSTEMS

INTRODUCTION TO PART 1

THE ORIGIN, CHARACTERISTICS, AND BEHAVIOR OF
TRAVELING WAVES

The persistent and increasing effort on the part of the electric
power industry to reduce the number of outages and to preserve the
best possible continuity of service has directed special attention
towards the protection of transmission lines and station apparatus
from the principal cause of abnormal system disturbances—lightning.
During the past few years the lightning problem has been exhaustively
studied from all angles, and this study has been facilitated by a com-
mendable cooperation between the public utilities and the manu-
facturers of electrical apparatus, so that today the understanding of
the problem is reaching a satisfactory basis, and economical means
are available for practical immunity from lightning trouble,

In the following chart the principal divisions and subdivisions of
lightning research are tabulated.

The role of the laboratory has been twofold; first, to develop
suitable means for the production, control, and measurement of
“artificial lightning"'; and second, to study the effects of these high-
voltage impulses on insulation structures and apparatus. Out of this
effort have come the impulse generator, for the production of impulses
of predetermined magnitude and shape; the cathode-ray oscillograph,
for the photography of impulse waves; calibrated sphere, point, and
rod gaps and Lichtenberg figures for the measurement of voltages;
volumes of data on the sparkover and breakdown characteristics of
gas, oil, and solid insulation; and finally, the experimental studies of
traveling waves and high-frequency transients of apparatus.

Field studies likewise are in two divisions: the experimental and
the statistical. Experimental work in the field has followed the same
practice as in the laboratory. In some cases semi-permanent field

laboratories have been installed at strategic points along the trans-
3



4 ORIGIN., CHARACTERISTICS, AND BEHAVIOR

mission line; in other cases portable impulse generators and cathode-
ray oscillographs, with their auxiliary equipment, have been mounted
on trucks or trailers and transported to whatever location was con-
venient to carry out the specific mission. There was even one instance
in which a railway car was fitted up with a cathode-ray oscillograph
and living quarters, and used as a mobile laboratory for the purpose
of investigating abnormal voltage conditions on the power lines
paralleling an electrihed railroad.

Statistical studies in the field include such meteorological observa-

tions as the number, severity, and paths of lightning storms, the

Lightning Research

Laboratory Field Theoretical
Experimental Statistical
Cathode-Ray Oscillograph Meteorological
L er Observations

Impulse Generator Record of Circuit

Interruptions

Measuring and Recording

Instruments Efficacy of Protective
Devices

Sparkover and Breakdown

Characteristics Reliability of Apparatus
and Equipment

| Traveling Waves

Machine Transients

heights and apparent size of clouds, and photographs of lightning
strokes. Many operating companies keep detailed records of all
circuit interruptions and carefully correlate these data with the known,
or probable, cause. In this way the number of outages due to light-
ning is known over a period of yvears, and the value of any protective
equipment which is installed in the interim can be evaluated accord-
ingly. Incidentally, the record of apparatus failure kept by operating
companies becomes something of a criterion of its reliability.

The theoretical analysis of system disturbances, with special
reference to lightning, is the main purpose of this book. There
might also be classified under this heading those various and sundry



INTRODUCTION TO PART 1 5

speculations concerning the mechanism of a lightning discharge, the
formation of a thunder cloud, etc., but the mathematical derivations

of this book do not rest on such opinions.

The greater part of the

TRAVELING WAVES ON TRANSMISSION SYSTEMS |

Single-Conductor Theory Multi-Conductor Theory

ORIGIN CHARACTERISTICS

BEHAVIOR

Induced Lightning Forward and Backward

Reflection and

Surges Waves Refraction
Direct Strokes Velocity of Successive
Frﬂpagatlnn Reflections

- Surge Impedances
Arcing Grounds and Admittances

Terminal Apparatus and
Frotective Devices

Switching Surges Component Kinds
System Disturbances Energy Relationships
Steady State Magnitude and Shape
Attentuation and
Distortion
Transformers Coordination of
Rotating Machines Insulation
Reactors Ground Wires
Cables Lightning Arresters
Buses Protective Gaps
Circuit-Breakers Capacitors
Surge Absorbers
- Choke Coils

study of system disturbances involves the theorv of traveling waves
and is concerned with their origin, characteristics, and behavior at a
point of circuit discontinuity. For most purposes the ‘‘single-
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conductor” theory of traveling waves—which considers only a single
conductor with ground return—is adequate. But there are cases
where it is absolutely necessary to take cognizance of the existence
of neighboring conductors, and to consider the mutual reactions
between them. The chart given on page 5 of this discussion is a
classification of the theory of traveling waves and constitutes an
outline of the scope of this book. In Chapter 1 the basic laws of the
single-conductor theory are derived. In Chapter 11 these laws are
applied to a number of typical cases. In Chapter 11l the subject of
attenuation and distortion is discussed and some semi-empirical
attenuation formulas are derived. In Chapter 1V the principle of
superposition is invoked to establish a very simple means for calcu-
lating successive {or repeated) reflections. In Chapter V wvarious
schemes for the control or annihilation of destructive traveling waves
are discussed. These first five chapters end the part devoted to single-
conductor theory. Chapter VI derives the general laws of the mult-
conductor system. Chapter VII shows how to calculate the behavior
of waves at a transition point, and Chapter VIII introduces a resolu-
tion inte ‘‘kinds' of waves which is analogous to symmetrical com-
ponents in polyphase systems. In Chapters I1X and X the theory of
traveling waves is applied to the calculation of disturbances caused
by lightning. The final Chapter XI gives a résumé of the theory of
arcing grounds and switching surges, and terminates Part 1 of this
book.



CHAPTER 1

SINGLE-CIRCUIT THEORY OF TRAVELING WAVES

In the single-circuit theory of traveling waves, it is assumed that
the phenomenon is confined to a single pair of conductors and the
surrounding space. One of these two conductors may be, and usually
is, the image of the other in the equipotential plane of the earth
surface. In ordinary soil it appears to be sufficient to regard the
surface of the ground as a true zero potential plane as far as traveling
waves are concerned, although it should not be inferred that such an
assumption is valid for calculating telephone interference from the

r

& % ;f
Zero Potantia! Plane

- - T ——— g W W BN CEE e e el s a—

images of
¥oftage & Current

F1G. 1.—Traveling Waves and Associated Electromagnetic Fields

zero phase sequence and triple harmonic currents of transmission
systems.

Fig. 1 shows a pair of traveling waves on a single circuit of two
conductors. Associated with the voltage wave e there is an electro-
static flux ¢ and with the current wave ¢ an electromagnetic flux ¢,
such that for each element dx of the line

d¢ = i Ldx (1)
dy = e Cdx (2)

where L is the inductance and C the capacitance per unit length of
7



by ORIGIN, CHARACTERISTICS, AND BEHAVIOR

circuit, to the zero potential plane. The voltage drop in the element
dx due to d¢ is —a(d¢), 9¢ to which must be added the resistance
drop —1t Rdx, to give the total drop 1 in the direction of positive x,
so that

-—dff“—gfdl—tﬁdi-l- (dqt-)—(R—{—L%ﬁ)idx (3)

The charging current of the element dx is — d{dy) '8¢, to which must be
added the leakage current —e Gdx, to give the total change of current
in the direction of positive x, so that

e i B Bl +  (dy) = (G+ C-a—)edx (4)
ax d?

Canceling dx from both sides of (3) and (4) there is

ﬂe :
- (R + L ,,) = Z(p)1 )
D) a

in which $ = 3/3¢ is the time derivative. Equations (5) and (6) are
the well-known differential equations of the single-circuit transmission
line. Differentiating (3) with respect to x and substituting (6),
there 1s

e i p)
i Z(ﬁ)‘a = Yip)-Z(p) e

= [RG + (RC + GL) p + LC p?] e (7)
Or differentiating (6) with respect to x and substituting {3), there is
a-1 2
- YD) = Z(p) V()

= [RG + (RC+ GL) p + LC p?| 2 {8)

Thus it 1s seen that the differential equation is the same for either
the voltage or the current, and thercfore the solutions for ¢ and 7 will
differ only in the terminal and initial conditions. Solutions to this
equation—which mathematical physicists refer to as ‘‘the telegraph
equation’''—were obtained many years ago by Heaviside in England
and by Poincaré in France, and today it is dealt with quite commeonly
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in electrical engineering literature.* Solving (7) and (8) as ordinary
differential equations in x

e = e?VZ¥ fi(f) + €V fop) - (9)

| Y
i =— fsdx = ——‘\/;[E“’f”fl(ﬂ — e-IVZY fo(f)] {10)

where f1(f) and fo(?) are integration constants with respect to x only,
and are therefore possible functions of £ Equations (9) and (10) are
general operational solutions to (7) and (8), but in this form are not
readily evaluated because of the radical

VZV -y [E*E (545 ]
ZY L6 LC+ L+Cp—f-p (11)
Heaviside noticed that if RC = GL then (11) simplifies to

2 — .
VZY =\/LC(3>+%) =~/Lc(p+%) (12)
and if the losses are negligible

VZY =vIC p (13)

Now by Tavlor's theorem

2
fe+a) =0 +af®) + “Ef”(r) S

as
= +ap+ 07+ ... ) 0

=e”fy (14)
Comparing (9) and (10} with (14) it is evident that if (12) holds
¢ = gVCL R/ f(f ‘f"\/ﬂ x) + g— VL R/LIZ fa(f — \/C_L x) (15)

{ = —‘\/'E"[Em ®/Lz f(t+4/CLx)—e~VCLRWIfH(t—/CL x)] (16)

and if the losses are negligible, R = 0,

e=fi{t ++/CL x} + f2{t —/CL %) (17)
C
1 = —\E [f1t ++/CL x) — fa(t —~/CL x)] (18)

¥ See, for example, Steinmetz's ** Transient Electric Phenomena and Oscilla-
tions.”
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Now f(t =V CL x) represents traveling waves, because for any ¢

a corresponding x can be found such that f{¢ +V CL x) has the same
value. Corresponding values of x and ¢ which define the same point
on the wave are given by

! —~+/CL x =+/CL ) for the forward wave } (19)
! ++/CL x =+/CL ) for the reverse wave
The velocity of propagation is
9 = jf = j& for the forward wave
(20)
9 = ax _ = for the reverse wave
dt +/CL

Thus the voltage and current distributions are propagated as traveling
waves, and each may consist of a forward wave f2 moving in the direc-
tion of positive x, and a reverse wave fi moving in the direction of
negative x, and both waves have the same velocity v = 1/+/CL.

For parallel wires in air whose distance apart is large compared to
their radii, the constants per wire are

2 h
L = (% + 2 log. _r-) 10-2 henry per cm. (21)
10-11 '
C = o7 farads per cm. (22)
(13 log. ——)
r

where 2 h is the spacing between conductors and r is the radius of
each conductor. Therefore, neglecting the factor 1/2 in (21)

1

p = Vic = 3 X 10'° cm. per sec. = 985 ft. per microsecond

= velocity of light in free space. (23)

In traveling-wave literature, ¢ is usually measured in microseconds
(millionths of a second) and x is measured in thousands of feet.
Then v is approximately unity.
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In the case of a cable with a solid inner conductor of radius 7,
inside sheath radius R, and insulation of permittivity &,

re o y0
— e i ey — -'g
L (21"’5‘ k2 '332 2R 30 RS ...)10 (24)

k10—t
Cim = ' (25)

A very rough approximation for v based on ignoring all except the
first term in L 1s

3 x 1010
v = R CIM. per sec. (26)

In most commercial cables, & varies from 2 = 2.5 to 2 = 4, so that the
velocity of propagation in a cable is from one-half to two-thirds that
of light.

Substituting (19) into (13) and (16) respectively
e = £ TR P eRDVELM f1(\/CL A ) +e- ®REVEL M fo(N/CLA2) } (27
CRBH (M) + Fa)]

= PN £y (2 + 0h) + fi (v — u)] (28)
i = Ef-R,-"LH{ _f3 (x -+ vf) + fi (x — !’f)}@ (29)

Thus the decrement factor may be a space decrement as in (15)
and {16), or a f{tme decrement as in (28) and (29). At the initial
instant, { = 0

e = gVCLWR/L i (x) + £~ VL ®/L) z fa(x)

= falx) + Ja(x) (30)

It is therefore evident that, if the voltage distribution along the con-
ductor is specified at ¢ = 0, it is more convenient to use (28) than (15),
for then the shape of the wave is the same as the initial distribution;
whereas if (15) is used it is necessary to divide the ordinates of the
initial distribution through by the exponential factor in order to find
the wave shape. On the other hand, if the shape of the wave is
specified as a function of time at x = 0 it is more convenient to use
(15) so as to avoid a division by the exponential Rt/L in order to
obtain the wave shape.
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From (28) and (29) it is seen that the following relationship exists
between corresponding potential and current waves:

e=++iVL/C or t= e\/C,_ L for forward waves (31)
e=—1iVL/C or t =— e‘\/C, L for reverse waves

The quantity VL C = z is called the surge impedance of the circuit.

Its reciprocal, V' C L = vy, is the surge admitiance. They are measured
directly in okms and mhos respectively, because they have the dimen-
sions of resistance and conductance. It will be noticed that the per-
unit-length factor does not enter into their description.

[t is interesting to note the following identities:

=1 ‘\/—'EJL—— (32)

Thus if L is known, then € = 1 2L and z = vL. These relationships
are of practical importance in many cases where, for one reason or
another, it is difficult to measure certain constants.

The fact that the solutions obtained in {28) and (29) contain both
a forward and a reverse wave does not mean that both waves must
actually be present. Either wave by itself is a solution of the differ-
ential equation, and if a single wave satisfies the line conditions, then
the other wave is unnecessary in the solution. Nor should it be sup-
posed that a single forward and a single reverse wave will satisty all
line conditions. More generally, (28) and (29) satisfy the differential
equation for any functions f3 and f;, and therefore all such functions
satisfy the differential equation, so that the complete solution takes
the form
g~ FO 3 fa(x 4+ vf) + filx — vt)] (33)

i = ye” WY =falx + vt) + falx — o) (34)

e

These solutions are based on the premise that RC = GL. A line
for which this condition holds is called the Heaviside distortioniess line.
This, and the absence of losses, are the only conditions under which
pure waves can exist on a transmission line. It is telephone engineer-
ing practice to add loading coils to the line at intervals so as to approxi-
mate the distortionless condition RC = GL and thereby minimize
such distortion.

On a power-transmission circuit, distortion 1s always present.
Nevertheless, experience has demonstrated that lightning surges may
be treated as pure waves, and that the decrement may be taken care
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of by an external factor, such as in Equation (32), called the attenua-
tion factor. The conventional transmission-line theory supposes the
line parameters R, L, G, C, to be true constants, but as a matter of
fact they vary over a wide range depending upon the voltage and
shape of the surge. Thus the resistance R increases and the induc-
tance L decreases as the steepness of the wave becomes more abrupt,
because the transient skin effect drives the current from the inner part
of the conductor. Both the conductance G and the capacitance C
increase with the formation of corona, when the critical disruptive
corona voltage is exceeded, The law by which this change in G and C
takes place has not yet been established, and even if it were known,
there is no reason to suppose that the transmission-line differential
equations could then be solved, or if a solution was found that it
could be used in engineering calculations. For these reasons it is not
felt that a discussion of wave distortion, based on the solution for
constant values of R, L, C, and G, is worth while from the point of
view of this book.

The energy content of a corresponding pair of potential and current
waves 1s, making use of (31),

C L
W = W,+W‘-=~2-f¢'2d:c+—2f£2dx
i £ e
i L 3 sl R
= zfﬂd.’t‘-{- szed:c
=Cf£9d.t=Lfi2dx='VLCfeidx (35)

Or integrating with respect to time

W =f££ dt =\Efe2dr, =\[%__ffi2dt (36)

In both (35) and (36) the integration is to include the entire wave
length. Equations (35) and (36) are continuations of each other
through the relationship #dt = dx from (20). These equations show
that the total energy of a pair of traveling waves is divided equally
between the potential and the current waves, for

C W
W, — Efegd:c

2
Lf_i, W
W‘_Z 1dx—2

Il
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However, when a pair of traveling waves reach a transition point,
or when waves traveling in the opposite direction pass through each
other, the energy balance is upset, and more energy will reside in one
field than in the other. Equations (35) and (36), however, give the
correct energy distribution for each component wave.

Behavior of a Traveling Wave at a Transition Point.—When a
traveling wave reaches a transition point at which there is an abrupt
change of circuit constants, as an open- or short-circuited terminal,
or a junction with another line, etc., a part of the wave is reflected
back, and a part may pass on to other sections of the circuit, The
impinging wave is called an tncident wave, and the two waves to which
it gives rise at a transition point are called the reflecfed and iransmilied
waves respectively. Such waves are formed at the transition point
in accordance with Kirchhoff’s laws. They satisfy the differential
equations of the transmission line, and are consistent with the princi-
ple of the conservation of energy.

Suppose that the line is closed at the transition point by a general
impedance consisting of any arrangement of inductances, resistances,
capacitances, and other lines. Let the operational equation specifying
this general impedance be written as Zo(p). Let the transition point
be taken as the origin of coordinates, and distance along the line away
from the point be counted as negative, so that an approaching wave
is traveling in the positive direction. By Equation (31) the potential
and current incident waves will then have the same sign. Denote
the incident waves by e and ¢, the reflected waves by ¢’ and 7/, and the
transmitted waves, if they exist, by ¢ and ¢”. Then the total poten-
tial at the transition point is, using (31),

ew=¢e+e=0+7)Z(p) = (e — &) yZa(p) (37)

where ~ —
4y = 1/3 =\/C_ = surge admittance.

Solving this equation for e’ there is

e = [EE ES _T_ Z] e = reflected potential wave (38)

The total resultant wave at the transition point is the sum of the
incident and reflected waves,

— ' — _?.Zﬂ(fi'}]
= B [Za[?)-l-z : 42)
£E=£-f—£’=y(e-a’)=[Zﬂ(p§+z]ﬂ (40)
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In general, Zp ($) may consist of any number of branches in parallel.
One of the most general types of transition points met with in trans-
mission systems consists of a junction at which there is a general
impedance network to ground Z, (); and # transmission lines of
surge impedances (21, ...2.) joined through networks Z, (p) ...
Zn (p), respectively. Such a system is shown in Fig. 2. When an
incident wave e; approaching along the line 7 reaches the junction,
it will give rise to a wave ¢’ reflected back on line z,; transmitted

{ n=if

Lind

R ]

I'rg. 2.—General Transition Point

waves e2', . . . &’ on lines 23 to 3, respectively; and a potential ¢ at
the junction. Now the total impedance at the end of z; is

Zo(p) =Z1(p) + Z(p) = Z:1(p)

1
-+ : = (41)

Z, () +%sk ¥ Z: ()

and the reflected potential wave on z; therefore is

, |20 (p) — 51]
£ = [Zﬂ @) 2 €1 (42}

The total potential at the reflection point is

2 Zo () ] - (43)

e1” = (e + &) = [Zu T
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The current transmitted across Z; (p) is

1:1” p— 61” = [ Z :’ &1 {44}
Zo(p) LZo(p) + &

The potential at the grounding impedance network 1s

_Z@p) ,,_[ 2Z (p) ]
@ TLlzp+al” ()
and the current through Z, (p) therefore is
B ¢ Z(p) e
YZ(p) Zo(p) Z, ()
[ 2z ] &1
B [Zu () + =11 Z, (p) 40)

The current and voltage waves transmitted to any line 2 (where
2 £k = n)are

‘?.: L € | : Z (p) El”
T Zi ) e Zo(p) Ze(p) + a
| 2Z(p) ] el
_[Zn D) +nlZ @t a O
1 » Z (PJ zkﬁl”
€ = Bty =

T Zo(p) Zi (P) + 2

=[ 2 Z (p) J 2181
Zol(p) +21] Zo (p) + 20

The potential drops across the lumped impedance networks are

_ (P) e 22 (p)

(48)

By =ea” = “Ze ) T Zop) +a &
[T [ Z (p) ]pr)ﬂl,,
¢ T Lzi () + 2l Zo (p)
x (P) ] 2 Z (p)
{ ) + 2ed Zo () + 21 " 20}

Thus if e; is known at the transition point as a function of time,
then the other voltages and currents are determined by solving the
above differential equations. In particular, if ¢, i1s a rectangular
wave with an infinite tail, it may be taken as Heaviside's unit funciion
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], and the solution obtained by means of operational calculus. The
solution for a finite wave of any shape may then be found from
Duhamel’s theorem, Equation (36) of the Appendix.

The division of energy during the transition period at the junction
furnishes a valid check in any specific case on the above relationships,
and is of interest on its own account. At any time {, counting from
the instant that the incident wave ¢; arrives at the junction, there is
(dropping the p's for simplicity)

c fe B . ,
f e (-—1-) dt = energy remaining in the incident wave (51)
[ z'l
i E]:
fel’ (z_) dt = energy in the reflected wave (52)
3 1
i -Ek”
fﬂg”( ) dt = energy in the wave transmitted to line % (33)
Zk
0

fEk (J) d! = energy absorbed by impedance network Z, (p) (54)
0

fe (g—) di = energy absorbed by impedance network Z, (p) (553)
o # '

Equating to the energy of the original incident wave, by the con-
servation of energy,

= - &} I r
f gl(ﬂ)d:=f al(ﬂ)dﬁ+f€1'(ﬂ-)d£
£ 21 : z] 0 21
LT (5N o g (B
+2[ [f‘.ﬂ.- (Es; +Ek(zk)] di
.El : £
Eil—=—1)d¢ — ) d! 56
+[ I(ZI) +[€(zﬂ) (56)

But the two terms involving €; may be combined as

[ @)
0 Z1 ! %1
:
=ff: (ﬂ) at (57)
0 =1
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Then, discarding the integrals, there is the general relationship

£ ]e)+n(2)
S +22, '\ =) + Bl

2)+e(3)
T e &l
+ £ (Zl + e Z, {58)

Substituting throughout, in terms of e;, from the previous equa-
tions of reflection and refraction, this expression reduces to an identity,
thus proving that the reflection and refraction operators are con-
sistent with the energy relationships.

Shape and Specification of Traveling Waves.—An examination.
of the cathode-ray oscillograms of natural lightning waves which
have been obtained
during the past few
vears, Fig. 3, dis-
closes that the most
of them are of rel-

sl P bued
atively simpleshape, i Be1 M
although nearly all

of them are serrated

bo00s

« 0 =0

(A) :um E=1l0 (E)
E

by minor irregulari- 2+0.10 8-

. . . bh=20 ba ) fat

ties. The principal () E=12 E:} /\ )
features of the wave & z
shapes caused by ——_— \_/

. . - 0. R-x-jw

flatural llg‘htmI}g are A e l/\ b & 4w -1
included in Fig. 4, g f’“\u_
that 1s, may be

represented by the FiG. 4. —Empirical Wave Shapes Given by
difference of two e=FE (™% — g~ %)

exponentials. This

is an extremely fortunate situation, since calculations of the effect
of traveling waves on terminal equipment are more easily carried
out for exponential components than for any other wave shape,
except the infinite rectangular wave. So many of the cathode-ray
oscillograms have the same general outline as Fig. 40 that it 1s prob-
ably permissible to speak of that shape as the typical lightning wave.
A traveling wave is characterized by four specifications. The crest of
the wave is its maximum amplitude. The fron? is that part of the
wave from the beginning to the crest. The fa# is that portion of the
wave behind the crest. The polarity of the wave i1s the polarity of the
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crest, or in the case of an oscillatory wave, is given as the polarities
of successive loops. Practically, in designating a wave, it has become
customary to disregard that part of the tail beyond the point at which
the wave has decreased to half value. Thus in speaking of a wave as
20 ms. long it is understood that the length of the wave to the 50 per
cent value on the tail is 20 ms. For brevity, a 730-kv., positive
polarity wave with a 3.5-ms. front and a 22-ms. tail (to the 50 per cent
point) may be designated by 730 kv. 3.5,22/+.

As far as mathematical simplicity is concerned, the simplest wave
to calculate the effects of is the infinite rectangular, shown in Fig. 44.
Also, as a rule, such a wave is the most dangerous to terminal equip-
ment, and therefore calculations based on it are apt to err on the side
of safety. Still other reasons that have favored its use in analysis are
that it is by far the easiest to study pictorially, and that until recently
the actual shapes of lightning surges
were not known. However, during
the past few years a great many
cathode-ray oscillograms of natural
lightning waves have been obtained
under many different conditions,
so that fairly definite information
as to their general shape and
characteristics 1s available. It 1s

Fic. 5.—Approximation by Rectan- therefore essential that calcula-

gular Components tions be made with these char-

acteristic lightning waves, in order

that the influence of the fronts, tails, and lengths of the wave may be
evaluated.

It is always possible to employ the graphical representation of a
wave of arbitrary shape as a set of rectangular components, Fig. 5,
and the approximation can be made as good as required. The solu-
tion corresponding to such a wave is the sum of the solutions cor-
responding to its rectangular components. In some cases the applied
wave may be so complicated as to defy analytic expression, and then a
graphical resolution into rectangular components may be the only
way out of the difficulty. Duhamel's theorem, Equation (36) of the
Appendix, is the analytical counterpart of this method, and is, in fact,
the mathematical expression for the principle of superposition.

When a wave shape is too complicated to be represented by the
difference of two exponentials, possibly it may be formed by com-
pounding waves as illustrated in Fig. 6. This method of representing
the wave as a sum of functions for which the solutions are known 1is

h-T P T — ——

I_i-_ — i i —
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very powerful and practicable. There are a few simple functions for
which the response of a network can usually be computed with reason-
able ease, and by compounding such functions almost any desired

wave shape can be reproduced to a good approximation. Some of
these elementary waves are:

a. Infinite rectangular. d. Damped sinusoid.

b. Simple exponential. e. Difference of two exponentials.
¢. Uniformly rising front.

=
_7/\./ i

y AC S b

FiG. 6.—Compounding of Simple Waves to Obtain Complex Waves

e W
I~
S~

As a matter of fact, by a suitable choice of the parameters ¢, b,
and E in the differences of two exponentials

e=E{ ™ —¢™ (59)

all these elementary waves may be considered as special cases of
Equation {(59). Thus:

If ¢ =0, and & = =, then ¢ = E, The applied wave is infinite
rectangular,
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If a =@, and b =, then e = E 7%,
abrupt front and an exponential tail.
If a = 0but b= 0and E — o in such a way that (b E) remains
finite, then

This 1s a wave with an

b2?
e=E(1—e-“)=-E(—m+T—...)=b£.¢

This is a uniformly rising front, or infinite triangular wave.
Ifa = (¢ — jw) and & = (x + jw), and E = Ep,/2 j, then

g = @ g™ (¢ — 7 = Ege”% sin wf

27
which is a damped sinusoidal wave.

If a =— a and & =+ « there results the infnite hyperbolic sink
wave

¢ =E (e — ¢ ) = 2 Esinh af

If a and b are both finite and real, then Equation (59) defines a
wave with rounded front and exponential tail. It i1s of interest to
examine this case in detail, since it is the most typical of actual
lightning surges.

The three parameters a, b, and E, are sufficient to determine
uniquely the crest, wave length, and front of the wave. The wave
maximum occurs when

dﬂ_ _ - R
dt_O_E( ae”~" 4 be™")

hence at that value of ¢ for which

logba 1 (lng b_-"'a,) B
Al — i -
; 1 b —a a \b'a —1 a (60)
and the crest voltage therefore is
El = K (E—ﬂl . E—M} = F (E_E o E—ﬂ{ﬁ';"ﬂ}) (51)

Now from (60) and (61) we may plot a/1 and E;/E against &.a, since
B is a function of b/'a only.
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The time {2 at which the wave decreases to half value on the tail
1s given by

_E_l - K (E—m‘z s E-m) = F (E—El’.&ﬁﬂ s E—{b;’n}ﬂfﬂﬂl}) (ﬁZ)
2
Hence by (61) and (62)
_:1! (E—-B . E—H{b,ﬂ'{:}) — (E—Bh‘tﬂ'ﬂ . E—HEDMJ 'l.'l‘f:.-’lﬂ) (63)

This equation shows that there corresponds a definite value of
t2/01 for any assigned value of b/a. Since the equation is tran-

f"’fff {4
.0 .7 r4 [ 16
""l" —*ﬂ
57—"\__ 50
k ﬁ M —— fyé'- ey
g E \ "'t; " '4
5% e=£fe e 1A / 40
.
g 5 94 12
7
e ¥
7 4 v = e
h, ",d Ff_..r" 20
& 3 ! r4 - r/’ i % i | &
Fi
™, Graphical Determination of Waves 10
5 2 \.. - Expresasd by E'E[E""-E‘”] 8 "y
at For @ known £, and ¢, find KL
-:.f__\ b, at; and &4 from &2/,
4 | P than find @ from af, and 4
F_—r—""‘"f : e '-L:Limm 2
S 0 2
h3d 4 56 B 10 20 S0 40 5060 30 100 200 300 400 500
b/

F1G. 7.—5pecifications of a Typical Lightning Wave

scendental it is necessary to find £/, by plotting or other methed of
approximation. We now have:

at;  as function of &,'a from Equation (60)

w

E,/E as function of §/a from Equation (61) (64)

t2/t1 as function of b/a from Equation (63) |
These functions have been plotted * in Fig. 7. As an example of
their use let it be required to find parameters g, b, and E to specify a

* " The Solution of Circuits Subjected to Traveling Waves,” by H. L. Rorden,
AT EE Trans.,, 1932,
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1000 kv.;/3.0,21,/(+) wave. Then 3/t = 7, and from this value
on the i3/t curve we find b/a = 28.5. But for this value of b/a the
curves give af; = 0.122 and E,/E = 0.852. Therefore

g = 01221 = 0.122 3 = 0.041
b=1285a =285 X 0.041 = 1.15
E = E, 0.852 = 1000 0.832 = 1175

and the wave is specified as

e = 1175 (E—ﬂ.ﬂ*l-H . E—L'l-.')l}

The foregoing refinements are not ordinarily necessary for deter-
mining the parameters of a typical lightning wave, because & 1s usually
very large compared to @, and thus the tail of the wave 1s practically
independent of b, so that (62) may be approximated by

e Ee “fori>® i (63)

Therefore, if i> and #3 are two points well down on the tail of the wave,
we have

go = Fe~ "
ez = Fe™ "
and 2 gaw
£3 _
10 Ez.-‘xﬂ
therefore R g (e2/e3) (66)
iy — [=
and E =2 eoe™? 22 o3 (67)

Then for a point f about half way up on the front of the wave

e=¢ = E (g% — g™™)

from which
g™ = (g7 — g'E)

1 E )
b = x log (Et:_‘"" = a (68)

or
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SUMMARY OF CHAPTER 1

The differential equations of the ideal single-circuit transmission line characterized
by the four circuit constants R, L, C, G are:

j:= [RG + (RC+ GL) ¢ + L C Y e
9%
—Tz=[RG+{RC+GL]ﬁ+LCp?]£

If RC = GL, these equations are solved by traveling-wave functions

e=e ML f(x —w)+ F(x+o)) = 2( — 1)

;= g~ R/ (x = pf) —F{x+w}]\E= Yi{e—1¢)

where
f{x — o) = forward wave.

F{x + ¢t) = backward wave,

v = = velocity of propagation.
oL
Z : \/E : 2 impedance
= — = —_— = — = — — = SUuI¢gei1m ance.
vy~ N¢ ™ N Grpe

If the losses are negligible, the exponential decrement factor vanishes. The energy
content of a traveling wave 1s

W =fefdc — V{edt = Zfz‘?d.e
- v’f&femx ~ Cfedx = Lff?dx

This energy resides equally in the electromagnetic and the electrostatic fields,
\Vhen a traveling wave impinges on an impedance £, () at the end of the trans-
mission line of surge impedance z upon which it is traveling, it gives rise to a reflected
wave
. Zalp) — =
e = e
Zolp) + 2

and the total potential at the transition point is

2 Zy () .
Zolp) +2

g =et ¢ =

The complete relationships at a transition point are derived in the text,
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The shape of a traveling wave may be specificd in terms of rectangular com-
ponents, combinations of exponentials, and compounding of simple waves. For
most purposes the typical lightning wave may be represented by the difference of
two exponentials 3
e = E{g~% — g—¥)

A graph is given in Fig. 7 for readily determining the parameters E, a, and & for a
wave of any specified crest, front, and tail.

Solutions for waves of arbitrary shape may be found by means of Duhamel’s
theorem,



CHAPTER 11
CALCULATION OF TYPICAL CASES
By way of illustration of the general equations and methods of

analysis described in Chapter I, consider the circuit shown in Fig. 8,
which is a special case of Fig. 2 where

Zl {PJ = P Ll L= 2
Zﬂ (PJ = IPC Za = %9
Z2(p) = Rz ey =E(% —&7%)

It is required to find the reflected and transmitted waves, as well as
the voltage at the grounding impedance and across the series impe-
dances, and the corresponding currents.

e
4 L Ry e;

A I ¢ <2

Fic. 8.—Typical Transition Point
By Equation {41) the total impedance at the transition point is

1
1
2e + Ro

Zo (p) = pLla +

pC +

_ (22 + K2) L, Cp* + pLi + (32 + Ra)
(z2 + Ro) pC + 1

The reflected voltage wave then is, by (42)

o = {(53+R2) LiCp2+[Li—= (32+R2) C] p-i—(Rz-F-zg—zl)}

(z2+Re2) LiC p*+[Li1+21 (22+Re) C)] p+ (Re+32+21)
27
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This 1s the operational equation. The solution is the difference of the
solutions for Ee™* and Ee™ ™. Substituting the former, there is

, PPF+2ap+ 4

2 E - &t
U T pr28p+ B
in which ]
2 i 51
0 =
(22 + R)) C Ly
| 1 21 ]
28 = —
P Lo Bt 2
4 = Ra + 22 — =

(22 + Ra) L1 C

Rt mta
(72 + Rz} L1C

Applying the shifting theorem, Appendix, there is

. ;_EE—n¢?2+2{a—a}p+{A —z.m+a2)1
. p2+2(8—a)p+ (B —28a + a?

and making use of Equations (69), (70), and (71) in the Appendix,
there results (calling w2 = B — 8%,

, A -2aa+ta® _, _m{[ _A—Zaa-{-a:!]
Eh_EB—Zﬁa-I—ar-’E + Eg 1 B— 28 + & cos wi

2 (¢ — a) (ﬁ_a)( A—Zaa+a2)]_ }

—|—[ - - I+B—~2ﬁa—l—ﬂ2 SIN wi

An exactly similar expression results for Ee~¥, and the solution for ¢’

therefore is

¥ I ¥
€1 = €1 — €1p =E[

A—-2cata’ , A—2ab+40 _M]
B ~28z+a B — 28b + b

_ A —2ab+ b A—Zaa+ﬂ2:|

i

+ Ee {[ 2 85 i 2 82 + o7 cos wé
[b—a (8 —aYAd — 2ca + a

¢ @ B —28z+a?

+(a—b)A—2ab+bE] . :}
w B-—2p0 +6]°"°
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The current in the reflected wave is

and the total current flowing into Zp is the sum of the incident and
reflected currents, or

!

: i : gy — &

w=nu+4 =—
Z1

This current causes a voltage drop across L; of

: L
Ey =pLiw =TIP(EI — e1')
: ~1

Now the total voltage at the transition point is the sum of the incident
and reflected waves, or

o = € + €1

and therefore the voltage across the capacitor C is

L
e=¢ — E, = (e1+ e&1') -Tlf?(fl — e1")
1

The current which will flow into the capacitor C due to this voltage is

: CL, , ;
¢F=Cpﬂ=Cp{el+e1’)—?llp-(£1—el)

Subtracting the current ¢, which flows to ground from the total current
19 flowing through L, gives the current

[ ' . ! 1 r CL o ’
B2 =do =iy = (1 — @) — — crp(e1+el)+?‘p-<e1—m

= (14 CLip2) 25 — Cpler + &)

Z

which flows through K2 and enters line 22.  This current causes a drop
; R ;
Es = Rei” = —= (1 + CLip?) (1 — &) = ReC p (1 + 1)
1

in the resistor, so that the transmitted voltage wave is

Eg” = g - szz”

1
(1 4+ RoCp) (e1 + &1)) — ;1‘ (RaCL1p* + Lip + Ra) (e1 — ¢1')
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and its accompanying current wave is 2’ = es’’'/32. Of course, if 22"
has already been calculated, then e2” = z2t2’’; but more likely, in
any actual case, the voltages e1’, e, ¢, and e2’” will be calculated first,
and then the other quantities are readily found: 4" = — e//a1,
eo==¢e'4+e,E =e —e Ex=¢— e, ta=1 + &/, i2" = &' /z,
i, = 49 — i2'". It is evident that the order in which the unknowns
are found is immaterial, and the procedure can be varied to suit the
convenience of the calculator. If In a particular instance it 1s only
desired to find the transmitted voltage wave, and the other voltages
and currents at the transition point are of no immediate concern, it
would be foolish to go through all the calculations outlined above.
In such a case the refraction operator given in Chapter I as Equation
(48) would be used.

It 1s sometimes possible to obtain the solution for a given transition
point by an ingenious interpretation of the solution for an entirely

R A
Z; EE ) zr
® Y 4 ReZs
R-’
z-.' z*. R* z.p il
® © A0
L R £

FiG. 9. —Mutually Convertible Networks

different case. This possibility is illustrated in Fig. 9, in which the
variations shown in (e), (b}, (¢}, and {d) are mutually convertible
combinations, and therefore, under the conditions of a proper interpre-
tation, the same equations can be made to apply to each. Moreover,
by letting the different constants become infinite or vanish as required,
this single set-up contains 24 special cases.

Since the surge impedance of a connected line, as Z2, enters in the
generalized impedance Zp ($) in exactly the same way as a resistance
to ground R, it is evident that Fig. 9B is the analytic equivalent of
Fig. 94, so that the same equations apply to each when R: and Z:
are exchanged. In Fig. 9C the grounding resistance Re: = (}, and R
has been expressed as the resultant of two resistances R’ and R’ in
parallel. But now again, the form of the generalized impedance is
not altered if R”" be replaced by the surge impedance Z = R” of an
outgoing line. Fig. 9D then follows as a natural consequence,
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Although such an equivalence is quite interesting and allows many
combinations to be expressed by a single general equation, yet under
many conditions it is quicker, and there is less chance for error, if the
result is derived directly from the differential equations of the par-
ticular case. In performing a reduction from the general equation

(3) > (f) ? ) ’%

------

1 e T
:

{c)

3
@ i 0 %? ® M'%

e) ok ) @ oL
T ¥ ' ¥

F1G. 10.—Terminal Conditions on Single-Conductor Circuits

applying to Fig. 9, great care must be taken in evaluating the indeter-
minates which appear for limiting values (zero or infinity) of the con-
stants, and in transforming functions of imaginary variables to
functions of real variables, etc.

Most of the circuits encountered in transmission systems reduce
to relatively simple
combinations under ——

i
traveling-wave condi- @ 0
tions. Thusacurrent- —_— r'"":l
limiting reactor is ® &
simply an inductance, 3
a transformer acts as [y (h) wn -
a capacitance and in- o ,
ductance in parallel, @ ) m
rotating machines are 1 _
practically the same {e) G

as short transmission Fic. 11.—Junctions between Single-Conductor Circuits
lines, etc. The circuits

shown in Figs. 10, 11, and 12 are representative of those which simu-
latec many actual conditions. By a fortunate coincidence, nearly all
these cases arc included by two general equations, through an appro-
priate adjustment of the coefficients thereof. The process of deriving
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these equations for any of these particular cases is in no wise different
from that of Fig. 8. Therefore all that is necessary here is to give

the equations and tables with the proper coefficients for each case.
Working out some of the cases will prove profitable to the student

m%__ m?
n:mi_ cz}m-f'_

—

—
! ik

_ ) ?

{e} 5_ G ::}_JI-_

FiG. 12.—Junctions between Single-Conducter Circuits

approaching the subject of traveling waves for the first time. The
two equations for an exponential applied wave

e = Eg~™ ®
are
EA[H-+IIE_ﬂI_CE+ﬁE—ﬂ:] (IJ
a— a— 3
L [w;;f — 2ga + af ot _ 2 Ecr — B 1}
wy- — 2 af + a- w (wp* — 2 aB + a*)
{(wuf — af}) sin wt + dw cos wrl} ] (II)
in which

w? =1 LC and ? = wy? — g2

Tables I, 1I, and III give the reflected waves ¢ and the transmitted
waves ¢’. In all cases the total voltage at the transition point is
eo = ¢+ ¢. The reflected and transmitted current waves are
i = — ¢ z; and ¢ = ", 22 respectively, and the total current at the
transition point is 4 = ¢ + 4.

Figs. 13 to 24 inclusive illustrate in a general way the variation in
the shape of the reflected and transmitted waves caused by different
circuit conditions at the transition point. Each figure shows a sketch
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of the circuit under consideration, defines the variable parameters,
and indicates the range in shape of the reflected and transmitted waves
corresponding to both an infinite rectangular incident wave and a
characteristic 20-ms. incident wave., Although these cases are fairly
self-explanatory, a few pertinent remarks may be helpful.

Fig. 13. Line Closed by a Resistance Ro.—This figure shows a
transmission line of surge impedance Z grounded through various
values of terminal resistances Ryp. When Ry = 0 the reflected voltage
wave ¢’ is negative and equal in magnitude to the incident wave e, so
that the total voltage at the transition point is eg = 0. On the other
hand, the current reflection is positive and equal to %, so that the total
current which flows into the ground connection is i = ¢ + ¢’ = 2 4.

g ' g . &
e R P &
o o=
Lint Shot Ciccuited Line Closed by R - 2 Lita Dpea Circoited
+2
+1
A
. S TS R mmm )
- L |
~ I
5 1 E{k i
7

F16. 13.—Line Closed by a Resistance R,
o (0 2 =¢+e = 2ty e
T \R+2z/" T T \Ro+Z

For the critical value of resistance Ro = Z, that is a resistance equal
to the surge impedance of the transmission line, there i1s neither
voltage nor current reflection and the entire energy of the incident
wave is absorbed in the resistor., But as Ky is increased beyond this
critical value of Ry = Z, the voltage reflection turns positive, and
eventually, for Ry = o —an open circuit—the voltage reflection is
positive and equal in value to the incident wave, so that the total
voltage at the transition point is double that of the incident wave,
eo =¢+ ¢ = 2e Thus a lightning surge striking the open end of
a transmission line will double in value and may then spark over the
insulation. The current reflection for an open-end line has full
negative value, and the total current is therefore zero. The way in




34

TABLE 1

ORIGIN, CHARACTERISTICS, AND BEHAVIOR

R | =
N N
NN S EIE
n N[ =] ﬁ; + | ~—-|'=.;~ +| o
A I &1 N oy
[ ]
-~ BN
M kg || ™~ |
C By | — BE:
S NE | xS B N
o
g
=
5
V]
&
| w —_ o -~ - i, ey
| | Il I ] I Il Il Il
T T EY " g T S KT "
: s |
HlEla |22 (& |2 & |& 12
— p— ] b ] - el — e ] r—
k




TYPICAL CASES

OF

CALCULATION

Iaa0ydeds 1a1)e 2~ Se ey
Ianoyaeds ded asojaq u-(| se aweg

O-{}

_ 7 & Cr =2
Z+ A Z— __ ’.
TI TL
— —— i — -.u_
" - — I wep]
T 7
* = 3
] T+ 7 q— 7 W=21 o
7+ ¥ ¥+ 2)7 ¥ —2)0 1) =2
Z— N I I ‘ 301
0fs — =3 (o1




AND BEHAVIOR

ORIGIN, CHARACTERISTICS,

30

s

(7 + 7).

: = o
H..‘.ﬂ‘ H. ._. _..u n“ u“_ i
ﬁN + u..u.___. __.HN_. + _._“._.__.5__ ) _“.ﬁ.ﬂm1 L _Nru”__ _”: _ _,u_
‘g — 'z 1 | SR
ﬂ.q 15... ﬁ. wn — I
Lo i i e A — _? — .__ua.u
Y. "y~ 7 BT e
_ T 7 |
7+ 7 7=z D=0 e
Y nl e B
M = :__ﬁ_..,
H.“W N
mw___. R i _ 5
¥+'2—-3 211
1741
J N = :m___
L |
[Aeaed ut saurg mEcmEa 1B JO 2oUBINWPE [Bj0) = 0] Pl = 3
o L et | q-11
I [
bt N. |_| .N_. — .:ﬂ
e
1 &
& _M__. J_l .___._w. = nh
__N__ i ﬂu..w. ._.wu——
E f o ucijenhi “H1.]

11 '1HV.L



OF: TYPICAL: CASES

CALCULATIOXN

Fi d — n
- TR — :m__:w_ i ot 3 e .____...m.F
¥+ 7+ 'y A2
7 T
I (‘N =,
¥+ 7+ 'y ¥ —fy — 'y i [-11
ty + 7 (Z+*0¥1T 1M (T) =
o YRR ] , "
ki (724" 2V0¥1 Z= e S
I =ty ¥+'24 7 N | o
S Gz + 12V ¥ DA i
Ty T by Ny 4y 1 e
Ly Cz+ 700y Cz='2)0¥ (O =
Py R bl oy 2y 17— 1y ﬁ -1
7+ Ty (e + %717 ¢
b 1) = L.
‘7 T _
17 + iy "2+ 201 7 - 7y01 RS
_M.__. P ﬂu..\ | — . ’ ,m-.._u
A7+ FZ+'2+ 47 Cz+ a1 (1) = .0
(o + %7 1 G+ 2o iy -
'Z+iZ+H Fz+'74+ 47 i 1) = 2
L | Py 4t o (fz — 1720 Y ’ 11




ORIGIN, CHARACTERISTICS, AND BEHAVIOR

38

2 |T = .72
(Fzly + 129+ 7 YT (FZ\Z =78 —*Z¥)7T
o/ 27N ST (1) =, | pTI
DT\ E { - wvﬁiﬂm| 7
iz + 3y 'z — %7 - e e 4
0%2'Z n*z'z |
o — 1
‘_,,uh_lw_._m.. o ,uu_.lw_ HuW....ﬂ.l-l . = °
1z £y ('zZ+:*2)7T 'z —*z)7T
A b s Y (D=2 | 41
"ZZ+A'ZTHAZ ,
MHNN [¥)
22+ y'2+ A7
iz lz — Nz —yiz B-71
v g X uotrtenbyg "
11 979vV.L



39

CALCULATION OF TYPICAL CASES

(I1) = .3
suolnog oj [ A Jndey) 29g 1) = ,2 71
11} = .2
SUONNOS 10y | 4 Jadeyy g C11) = ,2 y-71
CID = .2
BUOIINIOG 10 | A tndeyy 235 Cip = ,? 3-71
A+2=,2
I QYZZT JHZ'ZE
i dhld o Lo ot s "ETF U — A CID =2 | 12
.-.“ + u = .q.__m
_ A*TZT g B
2 +\2 R (I = .2 | ;)
g— 0
ﬁu.m__lw - u__..__ur.u_”_ q 1+ H.m =
DAZ'Z DHZZ
! Z'Z Yz 2 Y Z'Z - 2o 7N D=2 a-71




40 ORIGIN, CHARACTERISTICS, AND BEHAVIOR

which the reflected voltage wave e, total voltage e, and energy
content W’ in the reflected wave change with Ro/Z is clearly shown in
Fig. 13.

Fig. 14. Line Closed by an Inductance Lo.—At the first instant of
impact of the incident wave the current through the inductance is zero,
and therefore the line acts as an open circuit at that first instant, and
the voltage is doubled if the wave front is abrupt. But the inductance

. 12 Surge Impedance ol the Line
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FiG. 14.—Line Closed by an Inductance Lg
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gradually permits the passage of current, until it eventually acts as a
short circuit, and then the current reflection is equal to that of the
incident current wave. As Ly passes through the intermediate values
between zero and infinity, the reflected waves are first elongated and
then contracted, and each reflected wave changes sign from positive
to negative as it develops. Except for an infinite value of Lo the total

voltage € at the transition point is never double for a wave of finite
front.
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Fig. 15. Line Closed by a Capacitance Cy.—The form of the
equation for the reflected wave is the same as for the case of the induc-
tance given above, but the signs are reversed. Thus the capacitance
acts as a short circuit at the first instant; but passes through a transi-
tion stage to its final fully charged condition, when it acts as an open
CItCuit,

Fig. 16. Line Closed by Ry, and L, in parallel.—Although it is
impossible by this combination to dissipate the incident wave com-
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Fic. 15.—Line Closed by a Capacitance €,
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pletely, yet, for values of Ry of the order of the surge impedance Z,
the reflected wave is considerably reduced in amplitude, and spread
out. If Ro 1s greater than Z, then the reflection will change sign; but
if Ro is less than Z, the reflection will always be negative,

Fig. 17. Line Closed by R, and Cp in Parallel.—The reflections
have the same characteristics as for Fig. 15 when Ry > Z, but if
Ky < £ the reflections can not change sign, but will always be negative.
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Fig. 18. Line Closed by Ly and C; in Parallel.—Oscillations are
shown in the reflected wave, but it does not follow that there will
always be an oscillation in such a circuit. In fact, if
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there will be no oscillations, and the solution degenerates to that of the
non-oscillatory case in much the same fashion as in the ordinary well-

I Dy B 2,1y« Surge Impedance of Line No. ]
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known L, C, R series circuit. It will be noticed from Fig. 18 that a
circuit of this type may retard the development of the wave front for
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several microseconds—approximately 6 ms. in the last wave on the
left in the figure.

Fig. 19. Junction of Two Lines.—When the incident wave
reaches the junction, a part is reficcted back and a part is transmitted
on to the other line. The relative division depends upon the ratio of
the surge impedances of the two lines. If Z2 < Zi, the reflection 1s
negative and ¢’ < e. If Zz = Z, there is no reflection and the full
wave is transmitted, ¢’ = e. If Z2 > Z|, the reflection is positive
and e’ > e, but can not exceed 2 e. As far as conditions at the junc-
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tion are concerned, the surge impedance Z; could just as well be
replaced by a resistance R2 = Zs, and the equations are identical with
those of Fig. 13. This case has been illustrated with particular waves,
but incident waves of any shape are reflected from, and transmitted
across, a junction between two lines, without change of shape. The
waves in this fizure have been drawn on a #ime axis, and so the
reflected and transmitted waves are of equal length.

Fig. 20. Junction of N Lines.—Incident waves of any shape
are transmitted and reflected without change of shape. Inadent,
reflected, and transmitted waves have the same length on a lime axis,
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but are contracted on a space axis proportional to their respective
velocities of propagation; for

; X1 Xo o
o1 i A
therefore X1 X2 X3...=91 702 :%3...
and of course, v =1"~/LC

This contraction is illustrated for finite rectangular waves, but applies
to waves of all shapes.
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FiG. 23.—Two Lines with Shunt Inductance at Their
Junction

Fig. 21. Two Lines Connected by a Resistor Rg.—As in the two
previous cases there is no distortion of wave shape, but the resistor
consumes part of the energy. By making Ry = (Z; — Z2), it is
possible to wipe out the reflected waves. The curves show how the
waves and their energy content vary with Ry, 2, and Zs.

Fig. 22. Two Lines Connected by an Inductance Ly.—The
reflected wave exhibits the same characteristics as in the case of
Fig. 14. If Lo is large enough, the major portion of the incident wave
can be reflected back, and only a small transmitted wave passed
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through. However, the conventional choke coil of a few years ago
was entirely inadequate in this respect, being too small to affect the
transmitted wave by more than a few per cent. For example, taking

Z1 = Zs = 500 ohms, and Lo = 33 microhenrys (a common standard
for choke coils), and an incident wave

e = F {:E-ﬂl - E—-M) = K (E—-ﬂ.ll . B—U.EI)

Z, 2y Zyz I/vi= Surge impedance of Line#/
Fee Zo= 1/Y22 Surge impedance of Line #2
c Co* Shunt capecitance
w—nmmn-mIL ...... = ey (K = .{JZJ‘ZE;}/Z.{ ZoC

AB=(Z+23)/2,Z2C

I A= oo I
FiG. 24.—Two Lines with Shunt Capacitance at Their Junction
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which has a 7-ms. front and a 20-ms. tail, there results
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Thus such a small series inductance is entirely ineffective against
natural lightning waves, and the entire incident wave is transmitted
with negligible change of shape. Of course, the effect is more pro-
nounced for waves with steeper fronts, but it is never of practical
importance. The choke coil is discussed in greater detail in
Chapter V.

Fig. 23. Two Lines with Shunt Inductance at Their Junction.—
The equations and curves for the incident and reflected waves in this
case hold identically, when Z: is replaced by Ry to ground, and the
circuit reverts to that of Fig. 16.

Fig. 24. Two Lines with Shunt Capacitance at Their Junction.—
The effect of a capacitance in shunt is similar to that of an inductance
in series. This use of capacitance is often proposed in connection
with protective schemes for power systems, but it is economically
limited to low-voltage circuits, because the requisite amount of
capacitance goes up as the square of the voltage. Thus, doubling
the voltage necessitates twice as many capacitor units in series in
order to support the stress, and thereby requires twice as many stacks
in parallel to give the same capacitance. However, capacitors in
shunt are quite feasible for the protection of generators; they are
discussed in more detail in Chapter V.

SUMMARY OF CHAPTER I

The traveling-wave analysis developed in Chapter 1 1s applied to a large number
of specific cases, which cover many practical examples on transmission systems,
Equations for the reflected and transmitted waves are given and the corresponding
graphs are plotted so that the principal characteristics of the different transition
points are evident. Most transition points of practical importance may be classified
under one of three groups:

¢. Those which do not involve a change of wave shape.

&. Those which give rise to exponential terms.

¢. Those which give rise to damped oscillatory terms.

However, any transition point for which the differential equations have a known
solution can be calculated. The procedure is simple and straightforward, and the
agreement with cathode-ray oscillograms is surprisingly good.



CHAPTER III

ATTENUATION AND DISTORTION

As a traveling wave moves along the line it suffers three different
changes: (g) the crest of the wave decreases in amplitude, or is
altenuated: (b) the wave changes shape, that is, becomes more elon-
gated, its irregularities are smoothed out, and its steepness is reduced;
(¢) the potential and current waves cease to be similar. The latter
two changes occur together and are called distorfton. 1t is theoretically
possible to have attenuation without distortion, as in Heaviside's
distortionless line, where RC = GL. But the converse i1s not true,
for distortion is always accompanied by attenuation. As pointed
out in Chapter I, this distortionless feature is practically realized in
the loaded telephone circuit. Attenuation and distortion are caused
by energy losses, and these are due to the conductor resistance as
medified by transient skin effect, to leakage over the insulators, to
dielectric losses, and to corona. The latter is by far the most impor-
tant, as far as high-voltage surges are concerned. Artificial lightning
surges put on transmission lines sustain their shape, and attenuate
very slowly if below the corona voltage, but attenuate rapidly and
become badly distorted if high above the corona voltage.

Very little is known about the mechanism of corona loss, although
suitable empirical formulas have been devised for computing the loss
under power frequency conditions. Whether or not the corona loss
continues to vary as the square of the difference between the surge
voltage and the critical corona voltage, under transient conditions,
has not yet been established; nor is it known that the critical corona
voltage is the same under the two conditions. Thus, consideration
of the attenuation and distortion of traveling waves hinges upon a
subject about which little is known; as a result, the calculation of
attenuation is only on a rough empirical basis. Moreover, there does
not appear to be any hope of deriving rational attenuation formulas
until the nature of corona under surge conditions i1s established.

An interesting speculation on the effect of corona in distorting the
wave has been given by E. W. Boehne.* Referring to Fig. 25, the

* Discussion, A4.I.E.E. Trans., Vol. 50, p. 558.
- 49
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traveling wave is divided into a number of laminations corresponding
to different voltage levels, and each voltage level is assumed to extend
the conducting corona region by a proportionate amount. Now if
these conducting corona regions increase the capacitance to ground,
but do not change the inductance, that is are conducting radially but
not axially, then to each voltage level there corresponds a different
velocity of propagation:
1

V= TG

and therefore the top laminations, traveling at slower speeds, will
slip back, decapitating the crest, slowing the front, and filling in the
tail of the wave as shown in Fig. 25. This explanation agrees with
observations of both natural and artificial lightning surges, and offers a

Fi1g. 25.—Efect of Corona on \Wave Shape

plausible rcason for the shearing back of the wave front above a
particular level which seems to be the critical corona voltage.
Another explanation * of the part played by corona in causing
distortion has to do with the charge which enters the corona envelope
and reduces the voltage on the front of the wave as it rises above the
critical voltage. When the voltage begins to fall the charge returns
to the conductor, and thereby builds up the voltage on the tail of the
wave. This exchange of charge between the conductor and the corona
envelope is accompanied by a loss of energy, but not of charge.
Attenuation due to corona is greater for positive polarity waves
than for negative. This is because positive corona loss Is greater for
a given voltage than negative. For equal potential waves on several
conductors the attenuation is less than on a single conductor, because

*  Experimental Studies in the Propagation of Lightning Surges on Transmis-
sion Lines,” O. Brune and J. R. Eaton, A.I.E.E. Traus., Vol 30, p. 1132
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the gradient at the surface of the conductor is less and therefore the
corona is not so intense. Ground wires increase the attenuation at
high voltage, and decrease it at low voltage; for at high voltage,
corona appears on both the line and ground wires, whereas at low
voltages 1t appears only on the line wire and the ground wire reduces
the ground resistance. However, neither effect is very pronounced.
On the assumption that the voltage and current waves remain
similar, and in the ratio of the surge impedance of the line, it is
possible to formulate a simple differential equation relating the
voltage to the rate of energy loss, and therefrom to derive expressions
for the voltage corresponding to different laws of energy loss.
Consider a traveling wave e = f {x — #¢) of length D, see Fig. 26,

i, , N

Fraveling Waye
ax

- :

Pl
e vt —l—

Fig. 26

and its companion current wave 7, and suppose that these two waves
are related by the surge impedance:

g
= Z+ = AR
¢ 7 \)Ct (69)

At time ! the toe of the wave is at x = o from the origin, and the
total stored energy of the wave is

C T X L ri ., rr ’ )
W = 2 e*dx + — t'de = C f~(x — ey dx (70)

(tf— 1) (H— £} Lk — 1)

The rate at which the energy content i1s changing with respect to { is

; ri
£ - Cf ch (x—o)y-de+CofP(wt —vi) — Cof2(vi — D — i)
d! L
) a ot deZ
=Cf Sr-myde=Cf| Zdx (71)
{"—D}at {el — I 0!

because f(0) = Gand f{(—~D) = 0
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Now if the rate of energy dissipation due to the line losses is a
function of the voltage ¢ (¢), then the total rate of energy loss for the
entire wave 1s »

f ¢ (e) dx (72)
(el —IN

Equating (71) and (72) and discarding the integrals

d (&%)
_ =2 =@ (73)
subject to the initial conditions
e=L{x) at =10 (74)

The solution of (73) thus defines the wave at any instant {. By
way of illustration, four special cases will be considered.

Case I. Ideal Transmission Line.—The ideal transmission line is
characterized by four line constants R, L, C, ¢, and if Equation {69)
holds, the rate of energy loss 1s

. C RC + LG
¢(E}=R’LE+GEE=REEE+G£2=( 1_ )62 (75)
Substituting (75) in (73) and using (74) there results
¢ = Ee ™™ (76)
where
1/{R G
g +3) )
The attenuation, or rate of decay, is
d
Ej. = R = b (78)

Case II. The Skilling Formula.*—If the loss is assumed to vary
as the excess voltage above the critical corona voltage ep, then

¢ (&) = 8 (e — &) (79)
and {73) and (74) give

D st = (B 1 (E“ ) 80

-Z—C-t—a—(—e)Jrswgg_eu (80)

de___ &

T

* ' Corona and Line Surges,’’ by H. H. Skilling, Electrical Engineering, October,
1931. See also ** Letter to the Editor " in Electrical Engineering for November,
1931.
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Case III. The Quadratic Formula.—If the loss is assumed to vary
as the square of the excess voltage above the critical corona veltage,

then
¢ (&) =v (e — en)? | (82)
Then by (73) and (74)
ty . (E—ee (E— )
TR s L e — (83)
de  —b(E — en) (¢ — en)?
dt eo (E — e) %)

Case IV.—The Foust and Menger Formula,*—If the loss is
assumed to vary as the cube of the voltage, then

¢ {e) = A3 (83)
and by (73) and (74) _
E E
TN g, KB+ G0
2C

This expression was originally given as an empirical formula to fit
observed attenuation data; and its parameter K was found to range
from 0.02 X 1078 to 0.14 X 10-° for different lines and conditions,
E being in volts and ¢ in microseconds. Differentiating

de  —KE?
dt  (KEt + 1)2

= — Keé? (87)

thus showing that the attenuation, or rate of decay, is proportional to
the square of the voltage in this case.

It is interesting and instructive to make a comparison between
the above four formulas for the surge voltage as function of the time
or distance of travel. In Fig. 27 these four different formulas have
been plotted for a 2000-kv. surge, so as to pass through a common
point at 50 per cent of the initial voltage of the surge. It is con-
venient to consider three principal regions.

Region I—from the initial voltage of E = 2000 kv. to the 50 per
cent voltage point of 1000 kv.

* ' Surge Voltage Investigation of Transmission Lines,” by W. W. Lewis,
A I.E.E. Trans., 1928,
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Region Il—from e = 1000 kv. to the critical corona voltage
g = 500 kV.

Region IIl—below the critical corona voltage ep = 300 kv.

In Region I, the Foust and Menger formula agrees almost per-
fectly with the quadratic formula, and Skilling's formula agrees equally
well with the exponential law. The difference between these two
pairs is not great, and of little practical importance. In this region
of greatest interest all four formulas are of practically equal accuracy,

KV
¢ Expomential Attenuation e=ge-%t
2000 a Foust & Menger Formula e:=£/(kEt+!)
+ Skilling Formula ﬂf=ff‘8)*egfay;[ff—&Mre,}]
1800 o Quadratic Law of Corona g, [E-¢ley , jog/E
\ £ = 2000, €= 500 fff.)f—'L&g,) (&2

1600 t,a,b and k are experimental constants.
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Fii, 27.—Attenuation Formulas

and therefore the formula will be used which is the most convenient,
The Foust and Menger formula is the most simple for estimating the
attenuation, but the exponential formula is casier to operate upon
mathematically,

In Region Il the Foust and Menger formula parts company with
the quadratic formula, but the Skilling formula and exponential law
continue to agree until the critical corona voltage is neared, when the
Skilling formula abruptly flattens out while the exponential crosses
to Region 111,
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ATTENUATION AND DISTORTION

Both the Skilling and the quadratic formulas are asymptotic to
the critical corona voltage, and therefore do not appear in Region III.
The Foust and Menger and the exponential formulas enter Region IT,
but at widely different points, and diverge considerably.

Although these formulas appear on the surface to have been
derived by a rational process, it should be noticed that all of them are
based on the assumption that the current and voltage waves are
exact replicas of each other—in other words, the distortion 1s ignored.
Moreover, the experimental constants «, a, #, and K have to be deter-
mined from tests on the transmission line in guestion, and under the
actual conditions that are to prevail. Thus none of these formulas
can be used to predict attenuation until the constants have been
ascertained for the particular conditions and line in question. The
very abrupt flattening of the Skilling formula as the critical corona
voltage is approached is not always evidenced by experimental data;
and of course, the failure of both the Skilling and the quadratic formu-
las to cross into Region III is contrary to actual facts.

Influence of Ground Wires on Attenuation.—The presence of a
ground wire necessitates a higher charge on a hine conductor to main-
tain the same potential. Therefore the gradient at the surface of the
conductor is higher and (if above the critical value) increases the
corona, so that traveling waves of a given initial veoltage are attenu-
ated more rapidly on lines equipped with ground wires than on those
without. On the other hand, if corona does not tform, the ground
wires may actually decrease the attenuation by lowering the effect of
the ground resistance. However, neither of the above effects 1s very
clecisive.

SUMMARY OF CHAPTER III

The effect of corona and transient skin effect in distorting and attenuating trava-
cling waves is discussed briefly, and it is pointed out that corona is the principal
cause in this respect, as far as high-voltage surges are concerned. On the assump-
tion that corona increases the capacitance of the conductor without offering a
corresponding increased diameter te the flow of current in the direction of the
conducter, it is easy to account for the peculiar distortion experienced by high-
potential traveling waves, for parts of the wave above the critical corona voltage
must travel at a slower rate in accordance with the relationship

1
" Vic

o]
L

Thereiore the top laminations of the wave, traveling at slower speeds, will ship hack,
decapitating the crest, slowing the front, and filling in the tail of the wave.
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If it i5 assumed that the potential and current waves remain similar during atten-
uation, the differential equation defining attenuation is

d (e?) :
e - ¢ (¢e)

where ¢ (e) is the [unction expressing the rate of energy loss. Corresponding to dif-
ferent assumptions as to the nature of ¢ (¢} there are derived four formulas for attenua-
tion: ideal line, Skilling's formula, the quadratic formula, and the Foust and Menger
formula. Down to half voltage there is little to choose between any of these formulas,
but all of them depend upon empirical constants.

There is perhaps a greater need for a reliable and comparatively simple attenua-
tion formula than for any other single item in traveling-wave theory.



CHAPTER 1V
SUCCESSIVE REFLECTIONS

In many important problems, such as in the theory of ground
wires, the effect of short lengths of cable, trunk lines tapped at
intervals, and the process of charging or discharging a line, it is neces-
sary to consider the successive reflections of traveling waves. Some-
times it i1s exceedingly difficult to keep track of the multiplicity of
these successive reflections, so a lattice, or time-space diagram,* has
been devised which shows at a glance the position and direction of
motion of every incident, reflected, and refracted wave on the system
at every instant of time. In addition, this lattice provides the means
for calculating the shape for all reflected and refracted waves and
gives a complete history of their past experience. Ewven the effects
of attenuation and wave distortion can be entered on the lattice, if
the defining functions are known.

The principle of the reflection lattice is illustrated in Fig. 28.
Three junctions, Nos. 1, 2, and 3, placed at unequal intervals along
the line, are shown. These junctions may consist of any combina-
tions of impedances in series with the line or shunted to ground. In
fact, no restrictions are placed on the generality of the impedances at
the junctions as far as the lattice is concerned, although their com-
plexity may preclude a mathematical solution of the differential
equations which the lattice gives. The circuits between junctions
may be either overhead lines or cables, having, in general, different
surge impedances, velocities of wave propagation, and attenuation
factors. To construct the lattice, lay off the junctions to scale at
intervals equal to the times of passage of the wave on each section
‘between junctions. Then choose a suitable vertical time scale, shown
in Fig. 28 at the left of the lattice, and draw in the diagonals. The
great advantage of laying off the junctions at intervals equal to the
time of wave passage instead of to the actual lengths between junctions
1s that the diagonals all have the same slope, and the time scale is
applicable to every branch. At the top of the lattice, at any con-
venient place centered on the junctions, place indicators with the
reflection and refraction operators marked on them. In the notation

* Discussion by L. V. Bewley, A.I.E.E, Trans., Vol, 19, 1930.

57
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of Fig. 28 these indicators are shown as little double-headed arrows
labeled as follows:

¢ = reflection operator for waves approaching from the left,

r

a’ = reflection operator for waves approaching from the right,
b = refraction operator for waves approaching from the left.
b’ = refraction operators for waves approaching from the right.
« = attenuation factor for section between junctions.
R : 1 1 1
eflection | — al A - 32 dy =83
Refraction b} — b, h; — by I:r; - Dy
Attenuation s 4 i3
No.1 No.2 No.3
4 1 IE 23 I,.
b
ﬂ Ty e PR
Ot
e .
1 D
1H— ‘-:-.L\

-=—T|ME SCALE ——
o, B W N

F1c. 28.—Lattice for Calculating Successive Reflections

Now starting at the origin of the initial incident wave at the upper
left-hand corner of the lattice, obtain the operators for the reflected
and refracted waves at each junction by applying the reflection and
refraction operators at that junction to the incident waves arriving
there from both the left and the right, and proceed until the lattice 1s
completed. It will be observed that:

1. All waves travel downhill.

2. The position of any wave at any time is given by the time scale
at the left of the lattice,

3. The total potential at any point at any instant of time is the
superposition of all the waves which have arrived at that
point up until that instant of time, displaced in position from
each other by intervals equal to the differences in their time
of arrival.

4. The previous history of any wave is easily traced, that is, where
it came from, and just what other waves went into its com-
position.
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5. Attenuation is included, so that the amount by which a wave is
reduced in traveling between junctions is taken into account.

6. If it is desirable to carry the computations to a point where it 1s
not practical to place the various operators directly on the
lattice itself, then the arms may be numbered, and the cor-
responding operational expressions tabulated in a suitable
table. It is sometimes possible to devise purely tabular
methods which can be filled in automatically. If the
junctions contain only resistances, then it is most simple to
fill in the numerical values directly on the lattice.

The use of the lattice will be more fully appreciated after a few
typical examples of its application are studied in detail.

Charging of a Line from a D-C. Source.—Fig. 29 illustrates the
part played by the attenuation and successive reflections in the
charging of an open-ended transmission line from a fixed d-c. source
of infinite capacity. The reflection operator at the open end of the
line is (+1) and at the generator end it is (—1) because the voitage
is maintained there at a constant value and so any wave returning to
the source is immediately nullified by an equal and opposite wave.
For the sake of simplicity the attenuation has been made linear and
equal to 50 per cent. Without attenuation, the cycle of oscillations
repeats indefinitely; but when line losses are present the oscillations
gradually diminish until the line eventually reaches a steady-state
condition. However, a line possessing both leakage and series resist-
ance can never become fully charged to the terminal potential,
throughout its length, for the flow of current due to the conductance
to ground causes a progressive voltage drop in the resistance of the
line. Therefore, the ultimate level charging of a line requires that
there be no leakage currents. Referring to Fig. 29, the voltage at
various instants of time for an attenuation (1 — a) per trip is:

= A |
Sendi:'lg End | Units of Time Receiving End
1 0 (0
1 1 o
1 4+ & 2 2 o
1 3 2o — a?
1 — o 4 2a — 2ol
1 5 2a — 2at + at
1 + b i) 2o — 20t 4+ 2 ab
1 7 la—2a4 2aF —af
1 — af 8 a—2a*t+2at—2a
el Loy Lo
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b= (-/) {+1) =

I

IJWT
/ %8 /
"-——-____.ﬂ-__—'__
4
1% ;
I 4%
/ 174 /
fS,ﬂrg""‘
/ ) 3
w—l
e 23z 3

FiG. 29.—Charging a Line from an Infinite D-C Source
The voltage at the receiving end after 4 » units of time is
e=2(a—od +a —a' +...)
=2(a—a?)(l +at+a%+...)

Il

2a(l —a?) 2 a¥
0
{ — A+
2 o e (88)

After an infinite number of oscillations

2

1 4+ a*

e = (89)
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Thus if the attenuation is (1 — «) = 0.5, and the line is distortionless,
the open end of the line finally stabilizes at a voltage of

2 X 0.5
X = 0.3

c = 1+025

Had the line been grounded through a resistance R its potential
would have eventually stabilized, even though the line were absolutely
free of losses. This can be easily seen by making « = 1 and placing
on the lattice of Fig. 29 the reflection operator

R—-2Z
R+ 2Z

a = < 1 {90)

Then e= (1 +a)(l —a+a?—a* +...)
— (-l —-a+a+...)

2in+1)

1 — :
(1 — a*) I_{Iﬂz =1 —-—a"""Y =1lasn—o w (91)

Charging a Line from an Impulse Generator.*—The impulse gen-
erator used for studying the effect of artificial lightning surges on
transmission lines, or on insulators and power apparatus, consists of
a capacitor charged to some voltage K and arranged to discharge
through an impedance such that a voltage wave of arbitrary shape is
impressed upon the circuit under test. The simplest form of the
impulse generator 1s a capacitor arranged to discharge directly into
the circuit under test. Fig. 30 illustrates an impulse generator con-
nected to a transmission line with both an open and grounded end.
The reflection operators are:

+1 = reflection operator for an open end.

—1 = reflection operator for a grounded end.
I . ; :
g = — —— = reflection operator at capacitor, Fig. 10E,
PTB8  inwhichg =1 Cz
b=1-+ ZP fracti t t it
= ¢ = —— = refraction operator at capacitor.
b+ B & 4

* ¢ Attenuation and Successive Reflections of Traveling Waves,” by J. C.
Dawell, A.I.E.E. Trans., Vol. 50, p. 551.
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It is this refraction operator which gives the total voltage at the
capacitor for each incident wave,

The first wave due to the imitial discharge of the capacitor into
the surge impedance Z of the transmission line is exactly the same as
the discharge of a charged capacitor into a resistor R = Z, the well-

known equation for which i1s
e, = Eg™¥

The subsequent voltages at the impulse generator due to successive
reflections then are, for the open-end line

ea = abey = 2 a2ERte™

es = algbey, = 2atEBE (Bt — 1) e ¥

2 o 92
The free traveling waves leaving the capacitor are:
e1 = Eg~¥
alge, = ofE (28 — 1) g ¥
a‘a’er = o*E (2 8% — 4t + 1) &7 (93)

4 :
a’ale; = o°E (3 B3 — 6 B2 + 6 8t — 1) <

A similar set of equations for the voltages at the impulse generator,
and the corresponding free traveling waves, obtain for the grounded-
end line. The voltage components have been plotted in Fig. 30
when the attenuation is negligible, for both open-end and grounded-
end conditions, and the total voltage at the impulse generator is found
by superimposing the overlapping parts of each component wave.
By a direct comparison between the calculated voltages and the
observed waves recorded by the cathode-ray oscillograph, the attenua-
tion factor « can be estimated. But the attenuation is dependent
upon the voltage and therefore will be different for each reflection, so
that it would have been more rational to use values of ay, a2, o3, . . . .
instead of the same o« for each reflection. This method is not to be
recommended for determining the attenuation, because the wave
shape changes at each reflection, and the calculations ignore the
distortion.

Fig. 304 shows an impulse generator at an intermediate point on
the line, the corresponding lattice, and an oscillogram of an actual
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case. This example 1s interesting chiefly because the lattice shows
that at the fifth transition the voltage at the impulse generator will
double up, for waves arrive simultaneously from the right and left;
and this prediction is verified by the cathode-ray oscillogram. The
equations for this case are given in Dowell’s paper, but his notation is
different from that used in this book.

It will be observed %, X3

e B B namn el ST

that these successive L Impulse —1— _1
Generator T

T

reflections exhibit the

following character-

IStICS

a. Reduced maximum
crests.

b. Increased lengths.

¢. Oscillatory com-
ponents.

The lengthening of
the waves at each
reflection is respon-
sible for the piling up
of waves at the impulse
generator, so that after
a few reflections there
are always several
waves at the transi-
tion point simultane-
ously.

Reflections hetween
a Capacitor and a
Resistor,—The mech-
anmism of successive
reflections in eliminat-

: Fi1G. 30a.—Successive Reflections from Impulse
ing the effect of the Generator at Intermediate Point on Line

surge impedance of a
transmission line i1s beautifully illustrated by this case. The lattice
is shown in Fig. 31. The reflection operators are:

__R—z
R4z
b*l—ch 8 — p

= e = T = reflection operator at C (94)

a = reflection operator at K
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Assuming the capacitor to be initially charged to a voltage E, the

initial wave 1s
e = Eg™* = Eg~*
The (n + 1)th reflection at R gives
cmsn = (1 + a) a"be |

i 9 — Bt
_EQ (_ ‘
T+ a)d\grp) e
%% —
Iﬁﬂ?fﬁﬁf;m *’?:5‘?%_

-____'_"'_-—-—-—-—._,-
Efiva)et

fa ﬁ’fﬂ)t‘-mffﬁ:‘ﬂ')

Ea’lira)e ®Yi-48t+2.82¢2)

[— = — —-—

-.——.--—-r———..—._._
o
Pl

-ﬂ

i

[

4
E‘.-:f—-f
by

T

Calculaicon

Osciifogram

Fic. 31.—Successive Reflections between a Resistor and a Capacitor

(and by the shifting theorem of the Appendix)

= E{l + a) ae P (28 — pj"%
=E(l+a)ae™®28—-p) &
|n
(and expanding by the binomial theorem)

5 n

_ (—1}"( g ) o
- n,, — Bt n—k,k ¥
=F{l +a)a's E P _”_k[_Zﬂ) plﬂ

k= L

PR =nn=1)...(n—k+ D]OP = —==— D

(93)

(96)

(97)
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Therefore

# Hof  axk 7
cwin = E (1 +a)— e > (|H|—f'k) (28770 (98)

The total voltage at R at any reflection (# + 1) then is
Epip=ea{fltet—1)+e@—2)+ ...+ ey t —nr) (99)

where (£ — k7) denotes that the function starts at { = kr, counting
from the instant of arrival of the first wave at R.

If R =, then a =+ 1 and Equation (98) reduces to those of
the previous section.

Equation (98) has been plotted in Fig. 31 for the case of a 0.75-
microfarad capacitor charging an overhead line 600 ft. long grounded
through a resistance of 60 chms. At the right of the lattice the first
three component waves have been plotted, and the accompanying
oscillogram shows how closely the calculations check the test results.
The successive reflections wipe out the effect of the surge impedance
of the transmission line, and thereafter the voltage across the resistor
decays according to the law

¢ = Ee™ "¢ (100)

Effect of Short Lengths of Cable.*—It was at one time thought
that a short length of cable as an entrance into a station for a trans-
mission line was very effective in reducing the surge that could be
impressed on the station apparatus, because the surge impedance of a
cable is only about a tenth that of an overhead line. But in spite of
this great difference in surge impedance, the voltage at the end of the
cable rapidly builds up by successive reflections if the incident wave
is long compared to the length of the cable; and about the only effect
of the cable is to slow down the wave front. As an example of how.
the effect of short lengths of cable can be calculated by means of the
lattice, there are shown in Fig. 32 two short lengths (600 ft.) of cable
separated by a short length (500 ft.) of overhead line. The surge
impedance of the line is taken as Z; = 500, and that of the cable as
Z2 = 50. The velocities of propagation for the line and cable are
1000 {t. per ms. and 600 ft. per ms. respectively, so that on a time axis

* ¥ Study of the Effect of Short Lengths of Cable on Traveling Waves," by

K. B. McEachron, T. G. Hemstreet, and H, P. Seelye, 4.1.E.E. Trans., Vol. 49,
p. 1432,
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Fic. 32.—Effect of Short Lengths of Cable

the cable lengths are one microsecond long. The reflection and
refraction operators are:

a1 = —a@as=da=—a4=0a4' = —aa’ =a'= —m’=§z 4_' ii = — (.818
22
= = k = E = - U‘,I
by = b3 = by ba 7ot 7 82
by = by = by’ = by’ 22 _

Do By

In this example, the numerical values of the operators have been
entered directly on the lattice in order to facilitate the calculations.
This procedure is always preferable when dealing with pure resistance
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or surge impedance junctions. Attenuation has been neglected in this
calculation, because the purpose of the analysis is to show the effect
of the two different surge impedances on the transmitted wave when
successive reflections are taken into account. The short lengths of
cable do not prevent the transmitted wave from ultimately reaching
100 per cent of the value of the incident wave if the incident wave is
sufficiently long. However, the effective wave front of the transmitted
wave 1s lengthened considerably, which represents a real advantage
as far as the stresses on machine windings are concerned.

SUMMARY OF CHAPTER IV

Successive (or repeated) reflections may be kept track of by means of a lattice,
and therefrom the equations for any junction may be written. This lattice gives the
position, direction, shape, and previous history of every wave at all instants of time.
Attennation and distortion may be included, if their defining functions are known.
By means of this lattice such problems as the charging of a line from a d-¢. generator
or an impulse generator, effect of short lengths of cable, ground-wire calculations,
etc., may be easily computed. \When the incident wave is a simple exponential, or
compounded of exponentials, the solutions for successive reflections can usually be
found, but the equations are laborious and awkward (often leading to double and
triple summations in series). Fortunately, however, in many engineering applica-
tions, only the first few terms of these multiple series are of importance. For exam-
ple, ordinarily not more than three or four terms are required to determine the max-
imum veltage due to repeated reflection in the circuit of Fig. 38, Other examples of
successive reflections will be found in Chapters X and X\,



CHAPTER V
SOME PROTECTIVE SCHEMES

The oldest method of protection against the harmful cffects of
high-voltage traveling waves is a simple gap set to spark over at a
voltage below the impulse strength of the apparatus to be protected. -
The gap is used in modern practice to establish the voltage level in
schemes for the coordination of system insulation, in which the insula-
tion links are graded so that the less essential and most accessible
parts protect the more vital components. An important link in the
coordination scheme is the lightning arrester, whose function is to
limit the impulse voltage to values such that the gap does not flash
over. If the gapisallowed to flash over, the power frequency follow-up
current will not be interrupted and discontinuity of service will
result. The impulse sparkover characteristics of insulator strings,
oil circuit-breaker and transformer bushings, bus insulators, gaps, etc.,
are usually quite different and sensitive to small changes; that is,
even for the same wave the sparkover voltage varies as much as
+10 per cent and depends also upon the polarity of the wave. There-
fore, in order properly 10 coordinate the system for all waves and
conditions, it would be necessarv to carry the idea far beyond its
economic limit, However, a compromise can be worked out and the
plan used as an cffective second line of defense in case the lightning
arresters fail (o work., In this connection 1t becomes necessary to
inquire into the sparkover characteristics of the different insulators
and gaps.

The sphere gap is practically instantaneous and will spark over
without appreciable time lag and at consistent values for given
atmospheric conditions, provided that the spheres arc clean and
polished, that their spacing is well within their range of precision, and
that they are sufficiently removed from the influence of foreign equi-
potential surfaces and fields, such as adjacent grounds. But although
the sphere gap is practically instantaneous, it is not absolutely so, and
oftentimes fails to record extremely high-frequency oscillations super-
imposed on the crest of an impulsc.  No definite data are available
on the time lag of sphere gaps of various sizes and spacings; but the

69
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time lag of all other gaps and of insulation failure is so great compared
with that of the sphere gap that the latter establishes the reference
level, ;

Sparkover Characteristics of Insulators and Gaps.*—The spark-
over characteristics of needle or point gaps, insulator strings, bushings,
and other insulators, all follow a law which can be empirically expressed

by
(I ) ; (I )
e=ec\l+ 7 or 8 =— = -+ T

in which e is the ultimate d-c. sparkover, ¢ is the time lag, and 4 an
empirical constant depending upon the type of gap, shape and
polarity of the wave, temperature, barometric pressure, and humidity.

It 1s an interesting conjecture that sparkover depends upon the
the corona energy absorbed by the gap. Assuming that the mechan-
ism of sparkover is a progressive corona, and the minimum d-c.
voltage at which such a corona can form is ep—the ultimate d-c.
sparkover voltage—the corona energy absorbed by the gap, according
to the quadratic law, is

i
f (e — eg)? di
to
I ‘fe . .
or a-=—2=f ~—1)da=f @B-124 (101)
€0 ‘o €0 '

where ¢ = f (¢} = applied impulse as function of time.
instant at which e = f (&) = e.
! = instant of sparkover.

I

14

S
I

Integrating (101) for any specific case there results an equation of the
form

a* =f(ﬁ - 1)2dt = F({@) — F () (102)
fo

from which the instant of sparkover, {, may be found and therefrom
the sparkover voltage ¢ = f (f), assuming that W is fixed for a given
gap and a given mode of application of voltage, that is, a given wave
shape. If (102) integrates into a transcendental equation, or if £(2)

*"“The Effect of Transient Voltages on Dielectrics. IV,” by F. W. Peek, Ir.,
A.>EE. Trans, Vaol. 49, p. 1456.
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can not be expressed analytically, then the following graphical method
of Fig. 33 is applicable:
1. Draw the curve of the applied impulse ¢ = f (¢) and the ¢ line

intersecting ¢ = f ({) at I = b
and ¢ = on the front and
tail of the wave respectively.

2. Construct the curve of (8 — 1) 4 {ﬁ-#’-{i-g}r
between the limits & and . I i t
3. By trial find the area A under the AW 1
(8 — 1)2 curve out to a time /' | ﬁﬁ:& ;

(where fo £ ¢ £ 1) such that o . r
a2 = A. Then ¢ is the instant  Fig. 33.—Graphical Determina-
of sparkover and e = | (t') is tion of Sparkover Characteristic

the sparkover voltage.

A few examples will make the application of (102) clear.
1. Sparkover on a Uniformly Rising Front, Fig. 34.

e =f(l) = et lo = applied impulse.

8 = ¢ eg = | to = impulse ratio.
§ 2
I r“ ' 3
B-—1_ 3¢ _3d (103)
8 Blo £

1. Sparkover on Top of a Reclangular Wave, Fig. 34.
e = E = applied impulse.

lo = 0O,

g8 = E gy = impulse ratio.

a- -—-f(,[-:— 1)2dt = (B — 1)24

a
=14 — 104
Therefore B3 + T (104)

111. Sparkover on Tail of an Exponential Wave, Fig. 34.
¢ = Fe~™ = applied impulse.

o = 0.

8 = E/ep = impulse ratio.



72 ORIGIN, CHARACTERISTICS, AND RBEHAVIOR

3 @z &, t/tﬂ
;3'13,3#3&3.33; LAY
2
A
|
0 t
0 | 2 3 4. 5 o 7 8 9 10 ]| 4
% e=r
‘{ 2
Bty E&_
14
2 Wie?
2dp1
."3 gw
s
.20
I
0 _ _ t

<
ro
N
b
¢n
o
-
oo
D
=

] 12

0 t
0 y 2 5 4 5 6 7 8 9 10 H t2

F16. 34.—Sparkover Characteristics for Different Wave Shapes




SOMLE PROTECTIVE SCHEMES 73

) : E = i :
- = —F — 1} dt
o 21

:(I_P')ﬁu—z{lﬂs'“tjf—l-{f (105)

7 x i &

The time £ bevond which sparkover can not occur is

_log B
X

o = Fv™ ™ or 4 (106)

The above three cases have been plotted in Fig. 34, The most
surprising point brought out by a comparison of these curves with
actual sparkover data is the considerable difference in the energy
that it takes to break down a given gap with different types of waves.
[t appears that much less energy is required to cause sparkover on a
rising front than on the crest or tail of a wave, and therefore suggests
that the rate of application of voltage has considerable effect on the
sparkover characteristics. '

[t is theoretically possible, on the basis of the above analysis, to
predict the complete sparkover curve if the impulse ratic at the
50 per cent sparking point 1s known., If the impulse ratio where the
tail of the applied wave crosses the e line at ¢ = #; is 81, then, since
the sparkover characteristic follows the empirical law

g=1+—r
Vi
it follows that
a = {81 — 1}‘/5
where {) corresponds to en = 8,4, Therefore
. [ﬂ _
B=1+ (8 — 1)y (107)

!

Thus by taking sphere gap measurements at the 50 per cent
sparking point (which occurs approximately at ¢ = #), it is theo-
retically possible to calculate the complete sparkover characteristic.
However, sparkover is quite erratic under even the best of controlled
conditions, and the variation is especially great on the falling tail of
the wave, so that no great amount of reliance can be placed on a curve
calculated from the 30 per cent sparkover data.
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Coordination of Insulation.—Fig. 35¢ illustrates the ideal scheme
of insulation coordination, in which each successive link protects the
preceding link throughout the entire sparkover range. Owing to the
difference in sparkover characteristics of different insulators, this ideal
situation can not be entirely realized.

Lightning Arresters.—The simplest form of surge limiting device
is a sparkgap of some kind or other—spheres, points, rods, and horns
are all in common use. But, as has been previously pointed out, a
gap by itself is unable to interrupt the system frequency power arc,
and consequently may involve a circuit-breaker operation to clear the
fault, with the resulting discontinuity of service. The ‘hghtning
arrester was therefore introduced to circumvent this defect of the
simple gap.

One of the best lightning-arrester materials so far developed is

| Lightning Arrester Fogigr — ~—=

1 IDEAL COORDINATION COMPROMISED COORDINATION

:

2

E aAsiriarion

LY

o “

3

L

- 1]

1

+._ Geoyr
|
|
i

Microseconds Microseconds
Fi1G. 35.—Sparkover Characteristics and Insulation Coerdination

Thyrite.* Thyrite is characterized by its volt-ampere characteristic,
EI“VY=RIr=C (108)

in which a is the * exponent "’ and C is the * constant "’ whose value
is dependent on the amount of material used. Taking the logarithm
of hoth sides of this equation there is

logE+ (@ —1)logI =logR+a-log! =logC (108a)

Thus the equation is a straight line if plotted on log-log paper, Fig. 36.
If @ = 1, then E = C for all values of I, and therefore the voltage
across the arrester can not exceed the limiting value E = C. This is
the ideal sought by designers of lightning arresters.

The surge impedance of the transmission line plays an essential
part in the functioning of the lightning arrester. Referring to Fig. 37,

* «* Thyrite—A New Material for Lightning Arresters,” by K. B. McEachron,
A I.E.E. Trans., Vol. 50, 1930,



on

SOME PROTECTIVE SCHEMES i

which represents a Thyrite arrester at the end of a transmission line
of surge impedance Z, the equation at the arrester is

2¢e =eg+ Z13 (109)
100 1000 10000
o 2 3 4 5 67839, 0 30 40 % &0 1N’ }
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<11 8000
7000
~\\ ‘__,...-l"" 6000
\\ __...---"""""—';— G
- #;/" o
10000 = B 3000
S (7, 0 T,
H>-<:H#
<
//f Ilh““m“.""""‘“---... %
/-1 L1 >
P b
. R T
e . 800
— ~ 700
- \J\Pﬁ e 1= eC0
X, =TT 500
..----""""'-F-'.'--'-'--I
Xh“ ] o
300
sLo1! AT ~—
[
s L ] 200
57
d’%h,%
22
10 100

F1G. 36.—Thyrite Characteristics

where ¢ is the free traveling wave, ep the voltage across the arrester,
and ¢ the arrester current. This equation may be solved graphically

Thyrire
Characleristic

.-—fI Ir_—.

FiG. 37.—Graphical Determination of Voltage Across a Thyrite Lightning Arrester
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as shown in Fig. 37, in which 2 e is plotted against ¢, and (eg + Z 1) is
plotted against 2. Then for any ¢ there is a certain eg and a correspond-
g ! from the 2 ¢ curve, so that ey may be plotted directly against ¢.
It 1s usually quicker 1o solve the equation by tabular method as follows:

! Z e e =240 + e f

(11 {2] {3) (4 (3}

For any ¢ find Z i and ez and their sum, which must be equal 1o 2 ¢
and therefore defines £ on the ep ~ £ curve.
For a Thyrite arrester at the junction between two surge impe-

|

200kv 9t \\:’@

Infinrfe 150 e

Recrangu - _ \\{:“'-35‘

¥/ ' i >

o Ped N | 100 NCH

. G
Trensmitted wWave ~ “
Zy = Generafor Wind:ing -

FiG. 38, —Protection of Generator Windings

dances Z) and Z», for example an overhead line and cable junction,
the equation 1o be satished is

A

2e=¢n+ L1t = e + 2y (i"rt + ?) = (1 ‘!‘E‘) en + £ty (1“9-‘1}

This equation may be solved either by the graphical or tabular method
in the same way as described for a single line terminating at the
arrester.

Protection of Rotating Apparatus.*—A scheme that has been pro-
posed for the protection of rotating machines which are directly
connected to overhead lines is illustrated in Fig. 38. The winding of
a synchronous generator acts like a surge impedance Zs of 600 to 1200

**“Voltage Oscillations in Armature Windings under Lightning Impulses,”
by E. W. Boehne, A.I.E.E, Trons., Vol, 49, 1930,
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ohms, shunted by a small terminal capacitance. An average figure
for the velocity of propagation of waves in armature windings is 33
ft. per ms., thus only about one-twentieth that of waves on an over-
head transmission line. The gradient, or turn-to-turn stress, in gene-
rator windings, is directly proportional to the steepness of the wave
front, for the steeper the wave front, the greater the voltage across
a given length of the winding. In order to reduce the steepness of
the front a large terminal capacitance € 1s connected to ground at
the line end. A capacitor by itself, however, will not limit the ulti-
mate voltage for sufficiently long apphed waves; and it 1s therefore
necessary to have in parallel therewith a lightning arrester. If the
neutral end of the generator winding is isolated, reflections take
place, and the internal voltages to ground are doubled in value.
These reflections may be elimirated by connecting a resistor R equal
to or less than the surge impedance of the generator winding between
the neutral and ground. Of course, any resistance less than Z» i1s de-
sirable from this standpoint, because the reflections therefrom are then
waves of reduction. The equatien to be satisfied at the line
terminal is:

d
2e=v¢ep+ 2111 =€R—|—Z|(i"'u+;{£+f£§) (110)

This equation may be solved through a step-byv-step process, upon
replacing the differentials by increments and rearranging the equation
111 the form : o .

[26’ — Lt~ (1 4=Z| Zs) EH:IJ“’

111
Z, C e

Aep =

where 2 e, 75, and eg are the average values over the interval A2
As an example of 1ts application, take

71 = 500.

Z» = 1000,

(' = .12 microfarad.
2 e = 200,000,

N = 13 Thyrite disks 2 = 0.72, C = 580, Fig. 36.

Now fill in the following table, assuming trial values of iz for each
incremental step, until one is found such that the corresponding value
of er 1s equal to the previous value of ¢z plus the calculated increment
Aer. The method is greatly facilitated by plotting the Z, 7z and eg
curves as the calculation progresses and therefrom extrapolating ahead
over each internal Af in order to estimate more closely the next value
of i to assume,
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A ! 2e Liz AR en Aeg
4 21 0 {} 0
3 16
3 2I¥) 0 4.5 | 14
3 13
10 200 76 | 38 29

gl
o
I

20 2(K) 270|135 415
10} 0.0
3] 200 270 133 41.5

The effect of the capacitance has been to lengthen the wave front
some 20 ms., while the Thyrite lightning arrester holds the voltage
down to 45 kv. as compared with 200 kv. without the arrester. In the
example given, it has been assumed, for simplicity, that the Thyrite
is in the circuit all the time. Actually, there would be a gap in the
lightning-arrester circuit, and the Thyrite would not come into play
until a predetermined voltage was reached, but during this period the
capacitor would be effective in reducing the wave front.

Choke Coils.—The use of choke coils as an adjunct to lightning
arresters has been discontinued. However, occasionally choke coils
are used on transmission lines for other purposes. When so used the
possibility of high-frequency oscillations must be taken into account.
Fig. 39 represents an inductance L (for example, a choke coil) in series
with a capacitance C {representing the effective capacitance of the bus,
transformers, oil circuit-breakers, etc.), a small damping resistance R,
and the surge impedance Z. The system is protected by a gap G,
which in one case i1s assumed not to spark over and in the other case
to spark over in 4 ms. Calculations are made for an infinite rectangu-
lar wave on the right, and for a 7/20-ms. wave on the left. It is evident
that the slower wave front does not cause as high oscillations as the
abrupt wave front. In the event of a sparkover, R, L, and { com-
prise a local oscillating circuit, and if the natural frequency of internal
oscillations of any connected apparatus, such as a transformer, is in
the neighborhood of this frequency, there i1s danger from severe
resonance. If there were no reactance in the circuit the voltage across
the capacitor could do no more than double, as compared with 270 per
cent for the abrupt front wave, and there would be no oscillations.
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Current Limiting Reactors.—Current limiting reactors are used to
limit the short-circuit current of important feeders and generators,
and as their inductance may be several hundred times that of the con-

L
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FiG, 39.—Oscillations Caused by a Choke Coil in Series with a Transformer

ventional choke coil, they may have a decided influence on lightning
waves and surges. A typical installation of such reactors is indicated
diagrammatically in Fig. 40. In order to prevent the reactor from
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entering into oscillation with the capacitance of the terminal apparatus,
and thereby building up excessive voltages, it is advisable to shunt the
reactor with a resistor,* as illustrated in Fig. 41, where C is the total
capacitance of the terminal equipment {bus, transformers, generators,

etc.}), and Z: 1s the net

LA T“_E(% surge limpedance of all
@’t’“ﬁ’_WT"'E 8 outgoing feeders and
®© WRTL boReE machine windings. To

B 3p B-Bus complete the picture there

L [*:EE:"‘,,,';MW should be an inductance

Ot | ¢~ Catle 8 L in shunt :with C, to repre-
o M- .....__..]_“_%l sent I_.he inductance of the

' windings, because the

F1c. 40.—Single Line Diagram of a Typical cquivalent circuit of
System Using Current Limiting Reactors grounded neutral trans-

formers and windings is

a large inductance in parallel with an effective terminal capac-

itance.

But the inclusion of this inductance in the analysis only

unnecessarily complicates the mathematics, and adds nothing

essential to the character
of the oscillation, be- &, e R ;
1 Fl

Fi
cause, at the high fre- W

quencies with which we & LT ¢
are concerned, the induc- I
tance acts as an open Fic. 4l.—Equivalent Circuit of Lines,
circuit. The small series and Terminal Apparatus

resistance 7 shown in Fig.

41 represents the reactor resistance as modified by skin effect.

The generalized terminal impedance at the junction 1s

; i _R{r+ Lp) ot
ZU{P)_élip}+Z(P}_r-I-R-|-pL+1-|-zg{,'p

The reflection operator is
Zo{p) — o _ (R—z) p-+dp+ B
Zo (p) + =1 (R +21) p* + 2 e p + wo®
The refraction operator 1s

2Z(p) p+ F
Zoip)+ 5 C(R+z1)p° + 2ap + w?

I~

Reactor

* * Shunt Resistors for Reactors,” by 15, 1. Kwrsteadd, H. L. Rorden, and L. V.

Bewley, Jd.LE . Trans., Vol 49
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where R+ m+mL+ (R+rm+Ru)uC
2(R+20)5LC

, (31 +s)(r+ R) +r R
(R+z1)z2 L C

=

w? = wyt — o =— 2

__(R—z.-f—zg)L-l—(rR—rzl—R:I}s-_.-(j.'

A =
(R —z1)z2 L C
B_{:g—:[}[r-i-R)-i—rR
(R —51)5: L C
. r+ R
=7

Let the incident wave be given by
£] = Elﬂ‘m

where time is counted from the instant when the wave arrives at the
junction. Applving the reflection and refraction operators and using
Heaviside's shifting theorem, there is, after some simplification,

er’ = x Eie™ 4+ v Eie7 ™ sin (wt + ¢)
=x Eie™ + Eie” (W™ — Wee™) (112)
= reflected wave

e = w Eie”® 4+ v E1e7% sin (wt + )
=u Eje™% + Eig~% (J1e% — Jag™™) (113)

= refracted wave

where . Bad ¢ —ad+ B
xﬁR-i—z; wp?P — 2aa + a*
R — 5 v + n-
y =

_R+51 (wp*—2aa+a?)w

¢ = tan~! (E)
m

[(A -~ a - a) (w* — 2aa + a°)
—(g®* —a A+ B) (¢ — a}].
wlwy —2aa+ad — B)

m

H
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2 (F — a)
u = ,
C(R+z1) (g — 2aa+ a¥)
)= 2 Vok® 4 [

C(R+21) (w? — 2aa+a%)w

¢y = tan ! (E)

E=[w®— aa — (e — a) F|.

l=1(a — F) .
Tffrﬁ:R_Ei {.:H_j”} =
R4+:z:120(w* —2aa+ a”)

W _ R -2 (m + fn)

2_R+E|2£3(wlrf;2ﬂﬂ+uf).

I 1 (# — 1 1)

'UOCR A m) Qe — 2aa +a¥)
1 &+ )

J2 = | .

C(R+25) Qiwm” —2aac + a?)
The total voltage at the rcactor is
el = e1 + e

From the above equations it is evident that a simple exponential
incident wave striking the junction gives rise, in both the reflected
and transmitted waves, to an exactly similar wave plus a damped
oscillation. This damped oscillation has a frequency and decrement
factor depending on every circuit constant present. In case a? > wo®,
the oscillation ceases to exist, and the oscillatory component degen-
erates to simple exponential decay.

As a check on the computations it is worth observing, from the
previous equations, that (making ¢ = 0)

K — 5
R -|— 21
w4+ vsinygy =0 (114)

These conditions are alse evident from physical considerations,
for at the first instant the inductance acts as an open circuit and the
capacitance as a short circuit to grouncl. Therefore at this first

instant the potential at the capacitance must be zero, and ) reflects
as from a line grounded through a resistor K.

x + ysing = (113)
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Owing to their transcendental

character, the Instantaneous

maxima of these equations can not be found except by trial or graphi-
cally. However, the maximum amplitudes of the damped oscillations
are readily obtained by differentiating with respect to f and equating

to zero. These maxima occur at’

1

(T3
fL = —(tan" = ¢-)
(F 3] o
1 @
fp =—ltan=1— —
(11 (4 §

and the maxima of the oscillations are

(m
YA
O

) H' E-cﬂ;

(i
T ("‘) E] ['_mrﬂr
)

Obviously, they can not cxceed (vE;) and (vE;) respectively,
but approach these limiting values as a — 0.

A large number of specific
cases calculated from these
equations are given in the
A.LLE.E. paper referred to, of
which two representative cases
are reproduced in Figs. 42 and
43 of this book. The voltages
e;” and e2’ on both sides of
the reactor, with and without
a shunt resistor, are shown. In
Fig. 42 the values corresponding
to an Infinite rectangular In-
cident wave are plotted positive,
and those corresponding to a
7/20-ms. wave are plotted nega-
tive, to avoid interference.
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Fig. 42.—r = 100, L =0.002, Z, = 400,

Zy =

o0, C = 0.0005 X 10—%

These curves show that, when the reactor is not equipped with a
shunt resistor and no other feeders are connected to the bus (Z. = =),
there 1s danger of very high oscillatory voltages appearing on the bus,
approaching a magnitude equal to 400 per cent of the crest of the
incident traveling wave. When the incident wave front is lengthened,
the magnitude of the oscillatory voltages is greatly reduced. If a
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suitable resistor (R = 1000 ohms) is shunted across the reactor, the
oscillations vanish. In the case illustrated, the stresses on the bus

g 8,
e ;]
e —— _ . L, lgr

2 ~Rroo T 21T EHF 1414k B - A ;
| P ¢, | — ’
0 10 20 30 40 %0 7 10 20 30 4 50

O e il iy ] I:;i. . tlh_
¢ =t !!n;.m_ |. 2 ﬁl.img I : ¢
] | Iil | Eli 1 I:I : AI B
iril By ] i | 1 T
010 20 3 40 50 0 10 20 30 40 50 , .
Fic. 43.—r = 100, L = 0.002, Z: = 100, Fic. 41.—Test Circuits

o 400, ¢ = 0.0005 x 10—*

A. Impulse generator
B. Circuit under test

are reduced some 40 per cent by the addition of the shunt resistor.
But if one or more additional feeders are connected to the bus, Fig. 43,
the surge impedance thereof
suffices to damp out the
oscillations without the
assistance of a shunt
resistor. The shunt resistor
will, however, reduce the
voltage on the line side of
the reactor, and may thereby
prevent a flashover of the
_ line insulators. Fig, 44
b= mlzuhaﬁm_Lﬁ_ s 1u120 w4 shows the laboratory set-up
emploved for making im-
pulse studies on reactor

43:#E_:‘Ez}f!'::fl{"{_t"ﬂ-"fﬂi g s circuits, and  corresponds
::i*f"! Em ]' | affgia,;L:ﬁﬁ;n{flrﬂn; _— to the simplified system of
o :._+-=é— i i_j'mm:mmm Fig. 39, where the surge
16—~ ———H+ *  Calculated Points impedance Z» has been re-
I EEEE placed by resistance K.
Fic. 45.—Impulse Tests on Reactor—XNo Typical cathode-ray oscillo-
Shunt Resistor grams and calculations are

given in Figs. 45, 46, 47,
48, and 49, the latter having been taken with an actual transmission
line. These oscillograms illustrate the effect of the shunt resistor in
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completely damping out the oscillations. The almost perfect check
between the oscillograms and the calculations will be noticed. In
Fig. 45 there are no oscillations because (s = 0 for that case,
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Fic. 46.—Impulse Tests on Reactor—With Shunt Resistor
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FiGg. 47.—Impulse Tests on Reactor—No Shunt Resistor
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Figs. 50 and 51 show the internal distribution of voltage along the
windings of a reactor with different shunt resistors. When there is
no shunt resistor (R = =), high-frequency internal oscillations are
present, caused by the periodic transfer of energy between the induc-
tance and capacitance elements of the winding. In subsequent
chapters, the theory of internal oscillations in distributed windings
will be discussed in detail. For the present it is convenient merely
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Fic. 48.—Impulse Tests on Reactor—With Fic. 49.—Ilmpulse Tests with Trans-
Shunt Resistor mission Line

Top: Open-circuited line

Middle: Reactor in series with trans-
former

Bottom: Reactor shunted by a resistor

to point out that such oscillations exist, and that they can be wiped
out by a tied-in shunt resistor of sufficiently low resistance.

It is apparent from the above discussion that a resistor in shunt
with a reactor has three beneficial results:

1. The reactor can not enter into oscillation with the capacitance of
a bus or connected apparatus, thereby mitigating to a large
extent the possibility of resonate or cumulative oscillations
in the windings of translormers and rotating machines, as
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well as greatly reducing the voltage which can appear on the
bus.

2. The voltage on the line side of the reactor is reduced at the
instant of impact, and the possibility of a line insulator
flashover on account of positive reflection is less.

3. Internal oscillations between the inductance and capacitance
elements of the reactor winding are destroyed, and the turn-
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Fic. 50.—Qscillograms Showing Internal Fi1a. 51.—Eflect of Tied-In Shunt
Voltage Distribution in Reactors Resistor on Internal  Voltage
Distribution

to-turn stresses to which the winding 1s subjected are cor-
respondingly relieved.

Two essential conditions are to be met in the design of shunt
resistors for reactors. First, in order to give effective protection
against lightning or other high-potential surges, the resistance should
not be more than 400 ohms for overhead lines, or 50 ohms for under-
ground cables. Second, the resistor must not overheat when the
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reactor it is used with is undergoing short circuit. (The purpose of
the reactor is to limit the short-circuit current.)

To meet the latter condition, a high resistance is necessary. The
rate at which energy is absorbed by the resistor is P = E2/R, where
E 15 the voltage across the resistor and R 1s its resistance. Thus, in a
13,800-volt circuit, the voltage across the reactor during short circuit
is 13,800 /3 = 7980 volts, and if the reactor is for use with an
underground cable, the resistor (in order to have maximum effective-
ness 1n reducing transient voltage) should have a resistance of the
order of 50 ohms. The energy absorbed would then be at the rate of
1274 kw. A resistor capable of absorbing so much energy without
overheating would be prohibitive in cost. For these reasons, a
material having lower resistance at high voltages than at low voltages
is essential. For instance, if the resistor is 1000 ochms with 7980 volts
rms. across it and 50 ohms for 35-kw. crest (which is approaching
the danger zone for a 13.8 kv. circuit), it has the proper characteristic
for the above case. These conditions are admirably fulfilled by
Thyrite. Thus, for the standard disks,

1

X fea - 3.57
et ()

At E = 35,000 and »# = 10 this gives R = 36.5 ohms; for E = /2 X
7980 = 11,300 it gives R = 1030 ohms.

SUMMARY OF CHAPTER V

The protection afforded electrical apparatus depends upon the characteristics
of the transmission circuit, of the terminal equipment, and of the protective devices,
These protective devices aim at control of the crest, front, and length of traveling
waves. Schemes for the protection of electrical equipment from high-voltage surges
contemplate:

1. Contro! of the surge at its source, through the use of ground wires, low tower
footing resistances, sufficient line insulation, insulator arresters, expulsion
fuses, etc, (See Chapter X.)

2. Control of the surge near its point of impact on station apparatus, through the
use of insulation coordination, gaps, hightning arresters, by-passes, capacitors,
choke coils, Petersen coils (see Chapter XI), surge absorbers, etc.

3. Control of the surge inside the apparatus, through the use of electrostatic
shields, tied-in shunt resistors, adequate insulation rationally disposed,
proper neutral impedances, etc. (See Chapter XV].)

The present chapter dealt briefly with a few of the schemes under (2) above, that
is, the control of the surge at its point of impact with station apparatus. Effective
coordination of system insulation is based upon taking advantage of the impulse
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breakdown, or sparkover characteristics ol gaps, lightning arresters, insulators,
bushings, etc., in such a way that the several voltage levels established thereby
successively protect the most vital and least accessible parts of the system, just as
in a defensive battle position the ground is organized with an outpost area, a main
line of resistance, a support line, a battalion reserve line, and a regimental reserve line.

The basic voltage level is established by the coordinating gap, and its sparkover
characteristic is therefore the reference level on which the designer bases the rest
of the system insulation.

The impulse sparkover characteristic of gaps, insulators, etc., has the general

shape:
e a
F T
0o ’\/I

in which eg 1s the 60-cy¢le breakdown and g is an empirical constant depending upon
the type of gap and the applied wave shape.

But a gap by itself can not interrupt the normal power frequency follow-current,
and therefore a lightning arrester should be provided whose function is to limit
the impulse voltage to values such that the gap does not Aash over. Maost commer-
cial lightning arresters consist of a gap (or gaps) in series with a material having either
a decided negative volt-ampere characteristic, or definite valve action, and this char-
acteristic usually precludes an explicit mathematical equation, so that the solution
must be obtained by approximate graphical or step-by-step methods from the
equation:

1l

2e =eg+s3i

in which the voltage across the arrester (eg) is itself a function of the arrester cur-
rent £. The turn-to-turn and coil-to-coil stresses to which the windings of trans-
formers and rotating machines are subjected by traveling waves can be greatly
relieved by increasing the wave fronts. On low-voltage circuits, say up to 253-kv.,
this can be economically and effectively done by capacitors in shunt. Thus a
synchronous generator may be protected by a lightning arrester to limit the crest of
the applied wave, a capacitor to increase the wave {ront, and a neutral impedance to
prevent reflections.

Choke coils of the conventional size are ineffective in reducing the transmitted
wave crest by more than a few per cent, and are of little use beyond increasing an
abrupt wave front one or two microseconds. However, they may become a source
of resonate oscillations by entering into oscillation with the capacitance of connected
apparatus, unless bridged by a resistor.

Current limiting reactors have several hundred times the inductance of the con-
ventional choke coil, and they should, therefore, be shunted by Thyrite in order to
prevent oscillations, act as a by-pass to the surge, and improve the internal distribu-
tion in the reactor winding. Thyrite shunts have also been used as by-passes on
current transformers, for bridging transformer ratio adjusters, and similar appli-
cations,

| % T l'|_
- q.%ur'h"‘.:l'i :\::_
e .
nn-:' '
5 P



CHAPTER VI
TRAVELING WAVES ON MULTI-CONDUCTOR SYSTEMS *

The conventional treatment of transmission-line transients given
in the previous chapters is based on consideration of a single wire and
its return, and ignores the presence of other conductors. However,
there are many cases in the study of traveling waves where the effect
of the other conductors can not be neglected. Sometimes their
influence is so vital as completely to change the characteristics of the
phenomenon, and entirely erroneous results are obtained if they are
not considered. Problems of this type are of special engineering
interest in connection with the design of ground wires and other
protective schemes, and in general, in the study of mutual effects due
to traveling waves.

Mazxwell’s Electrostatic Coefficients.—Consider a system of =
conductors of any shape and arrangement, fixed in position and
uncharged. If a unit charge be placed on conductor r suppose that
the potentials acquired by the conductors are (Pn1, fr20 -+ s Por v o - s
£..). Had a charge (., been placed on conductor r, instead of unit
charge, the potentials would have been (, times as large, or ({; $n, .. .,
(.$-x). In this notation the first subscript denotes the conductor
on which the charge was placed (in this case r), and the second sub-
script the conductor taking that potential. It follows by the prin-
ciple of superposition that the effect of simultaneous charges
(@1, Q2, ..., Q.) on all the n conductors is to give rise to the system
of potentials

=P“.@]+p‘?1@2++.;+pnl@|nl
=p2Qr + P22 Qe+ o+ P2 On | (120)

e

]
1

En = Panl +?En@? + e +pﬂ-ﬂ@ﬂJ

* * Induktionswirkungen von Wanderwellen in Nachbarleitungen,” by K. W.
Wagner, ET.Z., 1914. * Critique of Ground Wire Theory,” by L. V. Bewley,
A.LE.E. Trans., Vol. 49. ' Traveling Waves on Transmission Systems,’”” by
L. V. Bewley, A.I.E.E. Trans., Vol. 50.

sl
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The above equations give the potentials in terms of the charges and
the coefficients . These linear coefhicients of proportionality depend
only on the geometrical properties of the conductors, as their size,
shape, and position. In a few simple cases, such as parallel cylinders,
they can be calculated, but in most cases they must be determined
experimentally.

Solving Equation (120) for the charges ¢, there is

0= Knnen+Kizea+ ..., 4+ Kinen
QE=K21€1+K22€2+H+,+K:3n€u;_

(121)
QH P Kﬂl €1 _I_KnEEE + - oy +Kﬂﬂ.€h
where
K., = (—1)* (minor of D for which the cofactor is p.,) (122)
D

Py par .. P
il B s P12z P22 . .. Puz (123)

Pln?ﬂn P Pl‘ll‘l

To show that all the potential coefficients p are positive, suppose
that O =41 and Qe=0Pz =... =Q,=0. Then e1 1s the
greatest potential in the field, and the potentials of the other con-
ductors must lie intermediate between ¢; and zero, hence all positive.
If e, =+ 1 and e2 =e3 =... =¢, =0, then 1t is evident that
K11 = Q1 is positive and K,2, K3, etc,, are all negative, since the
lines from (11 must terminate either at infinity or on the other con-
ductors. Therefore K., is negative if » # 5. By means of Green’s
reciprocal theorem (see ‘‘ Electricity and Magnetism,” by J. H.
Jeans, p. 92), it may be shown that p., = p, and therefore K., = K,..
Recapitulating,

Pre = P and K,, = K,

Brerr Pray Ky are positive (124)
K,, is negative if r # s
Now consider a system of parallel cvlindrical conductors which are of

sufficient length so that end effects are negligible, and whose spacings
are large compared to their radu. If these conductors are over a
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zero potential plane, as shown in Fig. 52, then the method of images
may be applied, and from electrostatics there is

2k ¢
P = 2log— X 9 X 10-1! daraf per cm (125)
p
=) lug% X 9 X 10~ daraf per cm. (126)
where
p = radius of conductor r.

i = height of conductor r above the zero potential plane.
a = distance between 7 and the image of s.

b = distance between r and s.

<
! I:""B
O3

TMace
L C R
o -
Fig, 52.—System of Con- F1G. 53.—General Multi-Conductor System

ductors and Their Images

Maxwell’'s Electromagnetic Coefficients.—If, in a system of =
conductors carrying currents and free from saturation eflects, the
flux linkage of conductor 7 due to its own current ¢, 1s (L., i,), and the
flux linkage of conductor s due to the current 4 is (L., ¢;}, then by the
principle of superposition the total flux linkages for all conductors are

¢1 =Ly + Lisdia+ ... Linta
¢2 = Loyt + Laztz + . .. Loatn | (127)

¢'ﬂ. - Lﬂ.l 'E]. + Lnﬂ !:-.'.l + R B | Lnﬂin_]
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From energy considerations (see '’ Electricity and Magnetism,"
by J. H. Jeans, p. 443), it may be shown that

Lr-

= L, - (128)

For the system of parallel wires of Fig. 52

1 2k
L., = (E + 2 log —) 13— henry per cm.

[

L, = (2 log %)m-ﬂ

henry per cm. (129)

The General Differential Equations of Traveling Waves,—Fig. 53
shows a system of » transmission-line conductors, parallel to cach

other and to the ground plane,
and mutually coupled - electro-
magnetically and electrostati-
cally, so that the effects of

currents and potentials on any

wire are felt on all the other
wires. The circuit constants
immvelved are shown in Fig. 34.
Associated with each unit length
of line and conductors v and s
there is

I
I
1
i
i
1

Fig. 34.—Circuit Constants of Mutually
Coupled Circuits

L., = self-inductance coefficient of conductor .

L.. = mutual-inductance coefficient between » and s.
K,. = self-capacitance coefficient of conductor r.

K., = mutual-capacitance coefficient between r and s.
R, = series resistance of conductor r.

g = leakage conductance to ground of conductor r.
g;,, = leakage conductance between r and s.

It will also be convenient to introduce the notation

Grr — (grl + gr2

+gr3+---+grn)

Gn _— Gn‘ = —fgr =~ En
rro (Rr + P er)

Z
Zrl e }'J Ll‘l
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Yrr = (Grr + P Krr)
Fra- — (Gra + p Kra}
p =0 91

The charges per unit length on the conductors in terms of Maxwell's
electrostatic coefficients and the potentials e, e, . . ., €, are given
by Equation (121).

The magnetic fluxes linking the conductors per unit length in
terms of the inductance coefficients and the currents 2y, #2, . .., i,
are given by Equation (127).

The leakage currents flowing to ground and to the other conductors
are
guue +gizler —e) + ...+ g1a{er — €a)

=Gner+ Gizea + ... + Graen

g
I

(130)
i“ = gnl (Eﬂ = El) + EnE {En R EE’) + I —I_ gnn e
— Gnl £1 + GHE £ + .o + Gﬂﬂ. €y

The differential equations of the first conductor are

A e a7 ’

i Y o + Ry =Zun+Zizta+ ...+ ZLiats {131)
dx d !
d1 d

B d tl B &Qfl +i4' ' =Yuner+ Yizee+ ...+ Vise, (132)

Differentiating Equation (131) with respect to x and substituting the
equations of tvpe (132) there is

5*3 £1
d x*

Zin(Yiie1 + YVipea+ ...+ Yinen)

+ Z1a (Vo161 + Yoseo + ...+ Vo, ea)

+Zlﬂ(Fﬂ1 21 = Yngt’g + . e -|— YnnEn}
Zn¥u+Zi2Yau+...4+Zi1a Y e
+ Zn Y2+ Zizg Yoo+ ...+ 214 Yaz) e

+ (Znu Y+ ZioYen 4 ...+ 214 YVau) &4
=Juner+ Jicea+ ...+ Jines {133)
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where
J’ﬂ - Zrl Yla + Zri" YE; + Zr3 YE; A + Zru Fm

P Z.‘lr Yl: -+ A Yi's + z:jr Y:i.; v soballyp K g (154)

Let
a- _
Arr = (-frr - _'_'-) (13‘:})

d x*

Then the complete set of differential equations for the # conductors
may be written in the symbolic form

O0=A e+ Jizes+ ...+ Jinen

[]=f21E1+A22£2+---+"r2“€"}. {136}

0= J-r.],f?l + ]nEEE’-I_‘-r-—I“AHHEﬂ

where the J's are operators in the time derivative ¢ = 8/9¢, and the
A’s are operators in both the time and space derivatives. Solving
these # simultaneous equations for any e, there results a determinate
of which the numerator is zero on account of having a column of zeros.
In order, therefore, that a solution other than zero can exist, it is
necessary that the denominator also be zero {on the assumption that
the indeterminate so formed will evaluate to a finite value). There-

fore, there must be
A Ji2.0 .. J1a

Jaz Aoz . . . Jaa . — 0 | (137)

-)rnl an-t-Anu

Now, dropping subscripts
ZY=R+sLY(G+pK)=LEKp*+(LG+RK)p+RG (138)

so that, ultimately, the expansion of (137) will lead to a polynomial of
degree n in (82/9 x2) and degree n in p* = 8°.0 2. The solution of
this partial differential equation is the most general solution for a
system of parallel conductors.

There are three conditions under which Equation (137) may be
considerably simplified before attempting a solution. These are:
I, The No-Loss Line; II, The Completely Transposed Line; and
11, The Alternating-Current Solution.
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Case I. The No-Loss Line.—If there are no losses, then in (138)
R=G=0and ZY = p°LK, whereupon
-.Jrr.u- e PE {:Llr K]a + Lﬂr KE‘; + ar o + Lﬂ.l’ Kﬂ.l) — P’E I:ru {139)
(#1.- %)
An‘ = 2 Irr R
P L~ (140)

Now if ¢ is tentatively assumed to be a traveling wave

e =f(x+u (141)

Then since
Jne=v" I, (x + vt
Apwe= I, = 1})f"(x+uv) =08, (x + o)
il follows that {137) becomes b (T
2By ths. .. I, -

02 Iy ©°Basr ... ? I,

(142)

M (x+o) =0 (143)

il Pelaresers B
Dividing (143) by «** f* (x + o) there results

Bll IIE P Iln
lr:"l. BEE P )'-rﬂn S U (144}
‘rrll I:H-E* . iBﬂfl

which 1s the equation to be satished by the velocity #, in which
B, = (I.,, — v=2). The determinate (144) is of order #n, and therefore,
its expansion will yield a polynomial of degree » in v—2. It follows,
therefore, that there are #z independent values of #? which satisfy
(144), and consequently on an #-conductor system there are 2 n values
for the velocity of propagation (n positive and n negative) which satisfy
the conditions for wave motion, and these values are given by the
roots of (144). These considerations show that, in general, there can
exist simultaneously on each conductor of an #-conductor system
n pairs of waves of different velocities of propagation (21, #2, . . ., ')
and each pair consists of a forward and backward wave. Thus

£ = [fll (—‘:—"E‘lf) + F1) fI+5'1i)]“|‘--~
+ [f1a (x — v08) + Fra (0 4 2, 1)} (143)
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The current waves follow from (132) upon integrating partially with
respect to x, and remembering that ¥= £X in the no-loss line,

. J :
11 =—af(K1151+K12£2+.“+K1,£ﬂ)dx

= Kll ET-"':" (flr - JFlr) + KIEEE',- (f.ﬂr - -Fﬂr_) + oo
+ Klnzz’r {fﬂl“ T Fnr)

=20, (K1 (fi- — F1.) + K12 (fa, — Fa,) + . ..
+ Kln (fnr S Fur)] (146)

where the summations include all the waves in the expressions such as
(145) for the potentials.

For traveling waves due to lightning, the transient skin effect is
so high that the current is confined to a thin skin at the periphery of
the conductor. Consequently there is no internal magnetic field, and
the factor 1/2 in (129) vanishes (it is due to the internal interlinkages
on the assumption of uniform current distribution throughout the
cross-section of the conductor). Then Equations (129) become

2 h Prr

Liy=2log— X 107 = pr henrys per cm. (147)
p ]
a Pru

Ly, =2 lngE X 1079 = = henrys per cm, (148)

¢ = (3 X 1019 cm. per sec. = velocity of light  (149)
substituting these values in {139), there is

Ira = 5_2 {Pir Kl: —I" Pﬂr K?a + LI + Pnr Kna) (ISD)

Reterring back now to {122), and remembering that D K,, is the
minor, of which the cofactor is ¢, in the expansion of D, it is evident
that (130) is that expansion if the elements of the » and s columns are
identical. But in such a case a determinate vanishes, Therefore

Oif r = s
T = (151)
e AFr =y

Under these conditions

B,=(2—02 =B (152)
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and the determinate (144) degenerates to

BO...0
R [ e (153)
D B

Therefore # = +¢, and all waves have the same velocity—that of
light.
Hereby Equations (146} reduce to

L=Yu(lh—F)+ Y2(fo— F)+ ...+ Yi.(fa — F.)]

1:2 = Ygl (fl = Fl) + YEE (fE = FE) tn s + Yﬂ“{fﬂ ax F“) | (15;.1.}

tn=Ym(f1 — F1) + Yo (fo — Fo) + ...+ Vou(fn — Fu)|

where

Y., = ¢ K, = self surge admittance i
_ (155)
Y., = ¢ K., = mutual surge admittance

Inverting the order of solution which led to Equations {154) there are

e1=2Znlgr —G1)+Zalge —Ga)+ ...+ Za(gn — Ga)

2 . 156
eo = Zi2(gr — G1) + Z22(g2 — G2) + ... + Zuz{ga — G4 (156)
En = Zln(gl ST Gl) + ZEH: {g? _ GE‘) + P —I_ Zﬂ.!‘l (gn s Gn}
where
i 2 I ‘
Ler = By, _ 60 log (—) = gelf surge impedance
¢ P
(157)
Pre a :
e = — = 60 log (Iﬁ) = mutual surge impedance
¢ )
= g {x — 9v¢) = forward current wave
5 =k (158)

G = G {(x + vf) = reverse current wave

If
Zy Zoy ... L

Bals w « o w (159)
Zlnzﬂn-*-zﬂn
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Fll Fﬂl .o oa Y“l
Di=|- o - (160)
Yln Yﬂn--- Pﬂ‘ﬂ

then the Z’s and ¥'s are related to each other as

(—1)*"” (minor of D for which the cofactor is Z,,)

Yr. — 1 l
= (161)
7. — (— 1D** (minor of D’ fﬂ;‘:‘."hith the cofactor is ¥..) (162)

Considering waves going only in one direction

e =2Zuut1+...4 Za t4]
‘ (163)

+en=Zint1+ ... Zuntal

4 =Yne+...+ Faed
(164)

+ 1, = Yicer 4+ ...+ Yine,l

where the plus sign is used for waves traveling in the forward direction,
and the minus sign is used for waves traveling in the reverse direction.

In practical cases it often happens that a certain group of con-
ductors is constrained to carry equipotential waves, in which case it
is convenient to replace the effects of this group by that of a single
equivalent conductor. The properties of such an equivalent con-
ductor are defined as follows. Let there be n# conductors carrying
equipotential waves eo and currents (71, 42, ..., ¢,). Then the total
current 1s

do= (i) +ha+ ...+ i) (165)
and the self surge impedance of all wires in parallel is defined as

&0 £n
A e e , . 166
S 21+t 4 ...+ 2 (166)

Now putting e1 = e2 = ... = e, = ep in {163) and solving for the
currents

A ., 4 . An
E'l=—i£{r, 12=—2‘E{],..., iﬂ=“5€u (16?}

D D
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where
0 0 W
211...1...2:1"
A, =" : : 3 o (163)
Fapes vl 20 Py

that is, A, is the same as determinate D with the rth column replaced
by a column of enes. Then

Lo = {Iﬁ-g)

The mutual surge impedance between the group of wires and an
independent wire % not of the group is defined as

&4 Lyt + Zorte+ ...+ Lok tn
Zox = = .
0 20

(170)

where e; is the voltage induced in & by the group of conductors in
gquestion. Hence by (167}

Ay +Zo Ao+ ...+ Z, Ay
Zor = 171
i Wy sbvedancdom sy (L1}

As an example, for three conductors let

s = 2 = 2 = 0105 (P2 12X ) L g
Ziz = £z = 60 log EE:E) = 03
Z31 = 60 log (% = 35
487 93 55
D=| 93 487 93| = 106.5 X 10°
55 93 487
1 93 55
A, = 1 487 93| =17.01 X 10¢
1 93 487
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487 1 85
A2 =| 93 1 93| =1526 X 10¢
55 1 487 |°
487 93 1t
Az =| 93 487 1 |=17.01 X 10
55 93 1

The equivalent surge impedance of all three wires in parallel therefore
18
D 106.5

T AL+ A2+ 45 17.01 + 15.26 + 17.01

Zoo = 216

If all the self surge impedances are equal to Z, and all the mutual
surge impedances are equal to Z’, then from (163)

5 ol 18 3
Tt D) (172)

"

If the equalities upon which (172) is based do not hold, nevertheless,
by using average values, very close results obtain, Referring to the
numerical example above

_ Zu + Za2 + Zss

A 3 = 487
A
Zng - ZIE + 323 -+ ZEI = 80
hence by (172)
487 + 2 X 80
Zop = +3 i 216

If the surge admittances are already known, the equivalent con-
ductor may be conveniently defined in terms of them. Referring to
(164), suppose that the group of conductors numbered from (m + 1)
to n inclusive is carrying equipotential waves. Let

€0 = €im+1y = ... = By

19 = ££m+l} . itm+2} 5 R o
Y"E' = Y{m+ur + + .- + an
Yoo = Yiusvo+ ... + Voo
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Then combining the equations 7,41, to ¢ there results

i1 =VYune+...+ Vmi €n+ Yio €]

tm = Yime1 + ...+ Ymume. + -'t"w::u‘:uh ¢H3)

tio = Yoer+ ...+ Yno en+ Yoo €0

Hereby the number of simultaneous equations has been reduced from
nto (m+ 1),
The total energy residing in the electrostatic field 1s

W, = %f(@lﬁl + O2ee + ... + Qaen) dx

1
= Ef{Kuﬂﬁ + Kizezer + . . . + Kiaene1) dx

i .
s Ef {Kﬂlﬁ‘lﬂﬁ + Knoeze, + ...+ Knngnz} dx (1?4)

where the integration is to extend over the lengths of the waves.
The electromagnetic energy {Jeans, p. 443) 1s

i . : :
Wi=Ef[¢'li'l+¢212+---+¢nffﬂ}dx

1 G e i 7
=§f(L1111'+L121211+¢--+L1n?’n11)d:’:

|
+Efumi f1in + Luzt2in+ ...+ Landa?) dx  (175)

The total energy of the waves is (considering only the waves moving
in one direction),

W=f(61i1 4 - exte + ...+ enin) di

=f(511’513 + gtz + ...+ S1ninty) di

—{—f(znl'il'in'{'znﬁiﬂiﬂ*}'---+Eﬂﬂiﬂ2)dr
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Then combining the equations Zm.1, to ¢, there results

h=VYue+...+VYVme.+Yioce

T:mzYlmﬂl+---+ymmfn+1”mi}£u|. {1?3}

io = Yooea+ ...+ Yoo ea+ Yoo e

Hereby the number of simultaneous equations has been reduced from
nto (m -+ 1).
The total energy residing in the electrostatic field 1s

1
W, = Ef(&ﬂ + Qze2 + . . . + Qafa) d

1
5_/(5511512 + Kizezer + . . . + Kianer) dx

1 _
+ Ef {Knlglﬂn + Knﬂﬂﬂgn + O + Knnenz} dﬂ.‘? (1?4)

where the integration is to extend over the lengths of the waves.
The electromagnetic energy (Jeans, p. 443) is

f : :
W:’=Ef{¢1?:1+¢212+---+¢nf*n}dx

1 5 .
=§f(L11i12+L121211+---+L1n1n11}dx

2 %f@ﬂ itin 4+ Luztein 4 ...+ Laniad) dz  (L75)

The total energy of the waves is (considering only the waves moving
in onec direction),

W=f(31£1 4-eai2 + ...+ entn) di

=f(511’£12+512?:21:1+---+51n'£ﬂ£1)d“'

+f[3n11*1£n+5n21'2i“+.*. + Zpn inc) di
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=‘/'{}11131'3 -I—JJI-_':.E;"E 21 +. a s -I_}'lnﬁngl) dé

-I-[{y,,l e1€n + ynze2€s + ...+ Yan €a?) di (176)

But for free traveling waves on overhead lines,
s=cl {177)
and dx = vdf = ¢ di (178)

Therefore, Equation (176) may be written

W =f(L11512+L12i2i1+---+L1n‘in£1}dﬂﬁ

—|—f(Ln1 ’.!:1 ‘f:n + an‘izil + U + Lnnin‘?) d?:
- 2 W, _ (179)

thus proving that the energy of the system is divided equally between
the electrostatic and magnetic fields for free waves traveling in one
direction. While waves moving in opposite directions are passing
through each other the total energy is not equally divided, but may
be distributed in any proportion between the two fields. This is
also true at a transition point, where the incident waves give rise to
reflected waves. In such cases the energies must be computed from
Equations (174) and (175) and added to find the total. Equation
(176) applies only to waves moving in the same direction, and
although it serves to determine the total energy by computing the
energles in each system of oppositely moving waves and adding them,
1t does not hold for resultant potentials and currents.

Case II. The Completely Transposed Line.—If all » conductors
are completely transposed with respect to each other and to the
ground, and if the conductors have the same resistance, then in effect

L,=L, K=K, Gw =G
Loyt K. =K' Gee = G’
ZoYe=(R+pL)(G+pK)=2Z7Y
ZoVu=@R+pL) (G +pK)=2V

Zw Ve =pL' (G+pK)=2'Y
ZowV=pL (G +pK)=2Z'V
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-'rrl=zlr Ylu"_zﬂr Y2a+*-*'+'er Yra
+¢--+Zar1ru+--*+zﬂrym

=2V +Z2Y+n-22Y=J (180)

—rrr 2 er F]r + Lo, Y.?r + ...+ AR Yrr

+ ...+ 2. Yo
=ZY+n—-—12"Y (181)
A, = (J,, — 3"2) = [z Y+ —-1)2Z'Y - a] =4 (182)
dJdx Jd x-
(4 = J) = l(Z —ZH (Y = Y') — 5"2] (183)
ax

Hereby, upon dividing each column through by J and calling
A/J = a, subtracting adjacent columns from each other, dividing
out (¢ — 1), adding all rows to the last, and finally expanding the
remaining determinate in terms of the minors of which the lower

right-hand elements are the cofactors, the determinate of Equation
(137) becomes

A v u oz

J 4. ; . J £={A_f)ﬂ—1(A_j+ﬂj)g=n{184)

JJ. . . 4

This is the operational equation of the completely transposed line in
terms of the operators A and J. Upon substituting the values of 4
and J from Equations (180) and (182) it takes the form

a2

n—1 a
(ﬂ12 p*+w; pt ——2) (ﬂzz P2+ 1 P""Hﬂ—a

dx X

3

) e=0 (185)

If the line is free of losses, as well as completely transposed, then
(184) becomes

2 ya-1 2
(1!12 P? - #) (zrz? p? — ;_) e =10 (186)

2
This is satisfied by the equation of wave motion

e = f (x+ v (187)
which substituted in (186) gives

p =49 and 7 =+ 1 (188)



TRAVELING WAVES ON AMULTI-CONDUCTOR SYSTEMS 103

thus showing that there are only two possible velocities of wave
propagation on the completely transposed no-loss line. In the case
of overhead conductors in air, both of these velocities approach equality
with the velocity of light, in agreement with the findings of the previous
section.

Case III. Solution for Alternating Currents.—Suppose that the
line i1s operating under steady-state, alternating-current conditions,
so that the potentials on the # conductors at coordinate x are given by

¢1 = Ejsin (wf + 61) = imaginary part of E, "%
b (189)
en = E,sin (wf + 8,) = imaginary part of E, &“*%
where the amplitudes (E; ... E,) are functions of x. Substituting
(189) in {133) there is
82 E, -_ .. .
3 22 =JnE +JeE + ...+ 1. Ea (190)
where '
E = E ¢
(191)
E.=E&.e™
Ji1 = Jiy when p = jw
(102)
Jin= Ji.when p = j w

The common factor ¢“ has been canceled out on both sides of Equa-
tion (190).

Now according to Equation (137}, the general differential equation
is the same for every conductor of the n wire system, and therefore
each E of (190) must follow the same function of x, but the integration
constants are, in general, different for each E. Since the differential
equations are ordinary linear differential equations with constant
coefficients of order 2 # and homogeneous in d2'd x* it follows that the
solutions are of the form

E,=2(Cir €7+ G2 )
1
(193)

Ey=Z0C et L' )
: _
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where the C's are complex integration constants and the A's are the
roots of Equation (137). There are 2 #? of these integration constants,
of which all except 2 n are redundant. To prove this, substitute
Equations {(193) into the original equations of type (190) obtaining
1 equations of the type

E}"-r2 (Clr Eh; + Clr; E—h.-z}
1 n
=271 (Cir €% + C1 ™)
1

+i§'1u (Car e + Cor’ €) (194)
Collecting terms |
i{[(hrf — ) Crie— J12Cs — oo — J12 Ca)] €7
1 + (A2 =T C = Jiz2Col— ... = J1a G’} €™} =0 (195)

[t is now necessary to digress long encugh to prove (what is
probably self-evident to many) that each of the coefficients in (193)
is individually equal to zero. In the general case let

Afilx)+Bfo{x)+ ...+ Nfu(x) =0 (196)

where the functions f (x) are all different. Assuming that each of
these admits of expansion as a power series in x, by Maclaurin’s
theorem, there 1s

Alagr +bhx+eaxr4+...)4+...
+ N(@, +bx+cx24+...)=0 (197)

Collecting terms
(@A +e:B+...+a, N)
+b A +B+... .+ N)x+...=0 (198)

But by the method of indeterminate coefficients, each term of this
power series in x must individually equal zero, so that there are the
stmultaneous equations

ay A —E-agB—l-...—}—aﬁﬁ":{f
E}1A+b23+i,.+b".¥=ﬂ’* (199}

ad+caBA...+c N=10|
ctc.




TRAVELING WAVES ON MULTI-CONDUCTOR SYSTEMS 107

Since the coefficients (g, b, ¢ . . . ) are entirely arbitrary, the solution
of these equations leads to a determinate of which the denominator is
fiinite and the numerator is zero (by wrtue of a column of zeros),
and therefore

A=B=...=N=0 (200)

Thus in any equation of type (196) the individual coefficients are
separately equal to zero.

Returning now to the equations of type (193), and considering
all = of these equations, there 1s

(jll e }"rz} (l:lr + jlﬂ 'C;fr + .. + jln{fr:r o U1
21 Cle + (J'.u — A7) Cor + . .+ Jan Car

I
<

L (201)

jnlélr‘l_jnﬂcﬂr'{"-vv"'_(jﬂn_}"-rg)Cnr “‘
and exactly the same relationships hold between the ¢’ coefficients.
Now in order that (201) may be satisfied by values of the C’s other
than zero, the denominator of the determinate must be equal to zero,
that is

{jll s lrfj jlf = i Ji-lu
Ja (Ja2 =N .. Ju =0 (202)
jl‘il jr,,g . .o {:jnn - '-hl'-’}

Therefore, if {202) holds, there are (# — 1) independent relationships
between the C's in Equation (201), so that any (n — 1) of them may
be eliminated. But since there are n values of r, there will remain #
integration constants that must be determined from the terminal
conditions. Likewise, there will remain s arbitrary integration
constants among the ¢’ coefficients.

Thus, the n-wire transmission system has associated with 11 # propa-
gation constants A\, and 2 # integration constants ¢, and (’..

If the line is a completely transposed three-wire line, there is by
Equations (184), (180), and (182)

(- - -5

I
<

(203)

PZ+ZZHY+2Yj—;;b§
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Therefore the propagation constants are

%l = (22 (¥ = 1
3 (204)
"2 = (Z4+22) (Y427
Substituting x1% in (201) there results
Cii + Cat 4 Cs1 = 0 (205)
Hence _ _ _
Cit == (C21 + Cz1) (206)
Likewise * . '
Cit' =— (Cz2i' + Car') (207)
Substituting A22 in (201) there results
Ciz = Ca2 = C32 (208)
Cr2' = Co2' = (32’ (209)

Therefore the solution for a completely transposed three-wire line is
Ei=Cl ¥+ Cn €™+ Cra ¥ + Crof ¢
Eo=Co1 €7 + Cot' €M 4+ Crz €7 + C12’ €7
Es = C31 €7 + Ca1t' €™ + Cr2 €% + C12’ ¢ |

and C1; and €11’ are given by (206) and (207). There are thus six
independent integration constants that must be determined from the
terminal conditions. If the system is a balanced three-phase circuit
(no zero sequence compoenents), then Ci12 = 0 and Ci12’ = 0 and (210)
reduces to

T

(210)

E1 — Cll Ehz + {::11, E_MI.
Eo= Co €7 + Cat’ €M (210)
Fs = 6'31 &+ 6'31’ g M |

If for the complex number A; there be substituted
A=a-+jiB (211)

then the equations of (210) may be expressed in any of the following
familiar forms:

E=AE1.L'_|_B{_-EI
=A " (cosfBx+ jsinBx) + B e ™ {cosfx — jsin B x)
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(A + B)coshrx + {4 — B)sinh hx
(A + B) (cosh« x-cos 8§ x + jsinh & x-sin § x)

+ (4 — B) (sinhax-cos 8« +'j cosh e x-s5in 8 x) (212)

This is the so-called vector solution. The actual potential as function
of x and £ 1s

¢ = imaginary part of E &
= imaginary part of (4 €% + B ¢ ) & (213)

[t is worth noticing from (204) that A; is in terms of the so-called
“constants to neutral ”’ used in practical transmission-line calcula-

tions. For if

h = geometric mean height above ground
s = geometric mean spacing between conductors

p = radius of conductors

1 2 i\
Z = R+j(§+21{:-g—f)

2 10~
A =+j(21f_}gT)

: | gy107?
{Z—Z’)=R—|—j(§+zlug*—) ohm
£
(Y = ¥) = (6 - 6) + 7—1—=
s
(18 log —-)
o

From the above discussion and derivations it is apparent that the
conventional transmission theory is based on the following assump-
tions:

1. Completely transposed conductors.

2. Balanced and symmetrical voltages.

SUMMARY OF CHAPTER VI

Traveling waves on the wires of a multi-conductor system react upon each other
and therefore depend not only on the self surge impedance of each conductor, as in
single-circuit theory, but also on the mutual surge impedances, or coupling, between
conductors. These surge impedances are defined in terms of Maxwell's electrostatic
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and electromagnetic coefficients.  The vollage and current waves are related by the
system of simultaneous equations

+e; = Zn £l+---'+znl tn
i£n=zlni1+a--+znn n

+i = Yye+...4+ Ve

[ L] [ -

+in = Finer+ ... + Vau en

where the plus sign is used for waves traveling in the forward direction and the minus
sign for waves traveling in the reverse direction. The £ and ¥ coefficients {surge
impedances and admittances, respectively) are related by these two systems of simul-
taneous linear equations, as shown in the text, Equations (159) to {162), and the
surge impedances may be calculated from Equations {157).

Theoretically, there are as many velocities of propagation on a multi-conductor
system as there are conductors, but on overhead lines these all become equal to the
velocity of light,

Under certain conditions, when a group of conductors on a multi-conductor
system 1s constrained to carry equipotential waves, it is convenient to replace this
group of conductors by an equivalent single conductor having the same potential,
the same total current, and the same external effect on adjacent conductors not of
the group., The transformation is given in Equations {163) to (170) and (173).

Energy relationships of the waves on a multi-conductor system have been derived
in Equations {174) to (179). It is shown that the energy is hali electrostatic and half
electromagnetic for free traveling waves.

When the line losses are included, the differential equations of the multi-conductor
system become very complicated. Great simphfication results when the line is
completely transposed, that is, when every conductor occupies the same relative
position with respect to the other conductors and the ground plane for the same
distance,

The steady-state, alternating-current solution for the n-wire transmission system
involves # propagation constants and 2 n integration constants. If the line is com-
pletely transposed the propagation constants reduce to two, and if the system is
balanced one of these propagation constants vanishes and the other involves the
so-called ‘' constants to neutral” used in conventional transmission-line calculations.



CHAPTER VII
TRANSITION POINTS OF THE MULTI-CONDUCTOR CIRCUIT*

Although there is no limit to the complexity of the impedance
network at a transition point on the multi-conductor circuit, yet for
most practical cases that shown in Fig. 33 is sufficiently general.
Indeed, the procedure followed in setting up and solving the equations
for the reflected and refracted waves, as well as the currents and
voltages in all branches of any transition point network, is the same,
so that the method of solution which will be given applies generally.

Referring to Fig. 53, let

Yii, Yo, ..., Yu. = self surge admittances of lines on the left,

mutual surge admittances of lines on the left.

Yis, Yis, etc,,

Yily Y224 <+ .y Van self surge admittances of lines on the right.

mutual surge admittances of lines on the right.

Yiz, Vi3, etc.,

Uy, Us, ..., U, = series impedance network on the left.
Wiy, We, ..., W, = series impedance network on the right.
Ny, No, ..., N, = admittances to ground,.
Nz, Nay, etc., = admittances from junction to junction.
e, ¢t = potential and current incident waves.
¢, i = potential and current reflected waves.
¢’’, 1"’ = potentiat and current transmitted waves,

When the incident waves arrive at the transition points, they give
rise to reflected and transmitted waves which satisfy the general
equations of the transmission line, and are in accord with Kirchhoff's

* " Critique of Ground Wire Theory,” by L. V. Bewley, 4.I.E. E. Trans., Vol. 49.
* Traveling Waves on Transmission Systems,”” by L. V. Bewley, A.I.E.E. Trans.,

Vol. 50,
111
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laws and the conditions of current and voltage continuity at the junc-
tions.

The total potential at the junction on any incoming line r is the
sum of the incident and reflected waves on that line

(e + &) (214)
and the total current is, by (154)

(:f:,- + 1}1) = VY, (ey — E]f) + ...+ Y. (En — Enr) (215}

The potential across the admittance ¥, 15

E ={e +e)—U (G +1i) (216)
and the current through .V, therefore is
I e N (217)

The current transmitted to the outgoing line i1s
I.r”I — }'i"l E]_J” + yr‘? 'EE!! -I_ a -I_ }rrﬂ_ Enfﬁ (218}
and the current transferred to the other junctions is

I = Ny (Er — Ey) + Now (Er — Eg) + .0

o N ur (B By (219)
The condition of current continuity requires that
.+ ="+ 1.+ 1 (220)
The potential wave transmitted to the outgoing line is
e = E, -~ W, " (221)

Substituting (2135), (216), (217), (218), and (219) in (220), and
rearranging, there is

Yo+ Va U, (N, + N+ ...+ No) = Yu N, Uy
— ey Yﬂl J'I'?nr Lrn] (El = Elf)

+ [YVein+ Voo U (N + Nir+ ...+ Nop) = YVia N1 Uy
— oo — Yau Now U] (62 — ')
+Ni,laeae+eah+...+ N,len + &)
— (N + N1+ ...+ N e+ )
= {yvaer + ...+ yne.) (222)
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Substituting (2135), (216), (217), (218), and (219) in (221), and
rearranging, there is

(Er + Err) o Ur [Frl (31 R Elr) -[_f- 1. -I' an (En = gﬂ.!}]
= Er” '+' Wr (yrl El” n p URERRE. Yrn ﬂu”::' {223}

For an n-wire system, n equations of type (222) and » equations
of type (223) can be written, and these 2 » simultaneous equations
suffice for the determination of the 2# unknowns (e’ ... e,
e’ ...e"). The other quantities may then be found from Equa-
tions (214) to (221). These equations are therefore sufficient to
formulate completely the behavior of the incident, reflected, and
transmitted waves at a general transition point. Some simplifications
and examples are given below.

Mutual Connecting Networks Removed.—Suppose that Nyg,
Nag, etc., are all zero. Then Equations (222) and (223} reduce to

(1+N, U)[Vales—e)+...+V(en—e")] — Nele.t+e')
= (yae'"" + ...+ yne’) (224)

Grsrenl] = T Bt el . ol Fonllen =i
=e'" + W, (v ei” + ...+ veaen) (223)

f

Single-Wire Line.—In this case only e, ¢', and e,” exist, and

equations {224} and (225) become
14+ N UDVler—er) — Ni(ex+e) =y’ (226)
— U ¥ (31 - 31’} -+ (E -+ Elr) = {1 + W, 3'11) IE’;'1” (22?}

Solving these two simultaneous equations for the reflected and trans-
mitted waves, substituting Zy; = 1 Yi; and 351 = 1 y11, and drop-
ping subscripts, there 1s

e+ WA+ NU) 4+ UO—-Z—-ZN{iz+ W)
G+ NUDYFUH+Z+ZNE+ W)
"= 1z e (229)
T eI WM UL N A UFZHZNGE+ W)
The conventional traveling wave theory is based on a single-wire line
and is expressed by the above equations. In terms of the total
impedance at the transition point,
1 U 1 + ;"H" U W + 2z
2 o s U< ) (W + o)

N (] o
(N+ 1 ) 1 4+ N (W + 3)
W +

F

e

e (228)

(230)
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the above equations take the more familiar forms derived in Chapter 1.

Z{I—Z
Z{p-i—z
1 27

C Tl NWFo Zo+2° (#52)

r

€

(231)

Energy Relationships at the Junctions.—The energy of a free
traveling wave is given by Equations (174) to (179). During the
time that the incident waves are at the junction, a redistribution of
energy is taking place. The division of energy during this transition
period furnishes a wvalid check on the reflection, refraction, and
transfer operators, and is of interest on its own account. At any time
t munting from the instant when the system of incident waves

. €,) arrives at the junction, there is

f {ey i1 + ...+ ent,) dt

= energy remaining in the incident waves (233)
f!{el" i+ ... el s} dt
- energy in the reflected waves (234)
f(fi” 1" L+ el 1) dt
) = energy 1n the transmitted waves (233)
f!(El h+...+E,1,)dt
“ = energy absorbed by the networks (Ny ... N,) (236)

f[(ffl +e'"—E)UE" +10) 4+ ...
1]
+ (e, + e,/ — E,) (i + i.)] dt

= energy absorbed by the networks (U, ... U,) (237)
i
f[(El — e+ ...+ (B — &) 1a] df
L
= energy absorbed by the networks (Wi ... W,) (238)

D) (E,.'- E)-N, (E. — E,) d!

O 1 -T-l

= energy absorbed in connecting networks N, (239)
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The 2 summation in (239) ranges from s = 1 to 5 = #, excepting

r
5§ =7

Equating the sum of these energies to the energy in the original
incident waves, by the conservation of energy,

f Ee,i.dt=f Eﬂri.dt—fze,’ﬁ',’dt
0 1 f ] a1
+f el i dl +fZEr I.dt
0 1 o !

+f e, + e —E) @G +4')dt
0 1

+ f X (E, —e')i " di
o |

+ [ SZ(BE —E)N,(E —E)dt (240)

0 1 #=1

Combining the first term on the right with the term on the left,

according to the rule
[-1-f

and discarding the integrals, there is
E [Er ’I:;- 'l‘ ﬂrf 'I:rj - Er” 'l':r” - Er Ir s (Er + 'Er, — Er} ('ir + ir!)
rml]
—(Er - 3:'”} By — E(Er - Es]'Nﬂ [:'Er — E-’)] =0 (241)

The currents and voltages at a transition, as determined by the
reflection, refraction, and transfer operators, must satisfy Equation
(241).

Special Cases.—In the following examples the application of the
general equations derived above is restricted to two-wire circuits,
since these most simple multi-conductor circuits adequately illustrate
the methods of analysis with a minimum amount of algebraic exercise.
Increasing the number of conductors involved merely magnifies the
amount of algebra that must be done, without serving any other
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useful purpose. In the chapter on ground wires an =-conductor
transition point problem is worked out in detail; and in the chapter
on component kinds of waves, a six-conductor circuit i1s completely
solved. ’

When some of the transition point networks are zero and others
are infinite, then the general equations may become indeterminate.
Recourse may then be had to one or the other of two procedures.
Either evaluate the indeterminate by substituting symbols for the
elements giving rise to the indeterminate and then eliminating the
troublesome terms between equations before allowing them to take

on their limiting values; or else

| set up the equations from the

beginning in the same way that

(222) and (223) were established.
T 7777777777777 777777777777777777777  This latter procedure is by far the

F16. 55.—Two Lines Bussed safer. Consider, for example, the
case of Fig. 55, where two incoming
lines are bussed together at the transition point and there 1s only one
outgoing line. Then
Ni=No=U1=0U0=W,=Wo=0

Nig =

Y11 = vio = 0
The general equations (222) and (223) give
(Y + ¥ Uy Nz — Va1 N2 Uz) (&1 — &)
+(Yie + Yie Uy N2 — Yaa N2y U) (e2 — €2')
+ N2 (2 + ') — Nia(er +e1') =0
(YVie+ V2 Ua Nig — Y1y N2 U) (&1 — &)
+{(Yaz + Voo Uz N1z — Viz N2 Uny) (e2 — e2')
+ Nz (61 + e1r') — N2 (e2 4+ e2') = yaz e2”
e1 + e’ = e
ez + e’ = ez
Adding the first two equations
(Yii + Yi2) (&1 — er”) + (Yoo + Yio) (62 — e2') = ya2 €0
Dividing either of the first two equations through by N3 =0
(e1 +e1') = (e2+e) =0
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From the four equations immediately above

,  (Yu— Yoo —ye2)er + 2 (Voo 4+ Vio) e
Yii + Yoo + 2 Y12 + yae

, _2(Yu+ Vigder + (Yoo — Y11 — ya2) €2
Yipn + Yoo 4+ 2 Yia + yas

Yii + Yoo+ 2 V92 + yao

Of course in a case of this kind much time is saved by writing the
transition-point equations directly, rather than reducing from the
general equations. In the examples which follow, the general equa-
tions are employed, but the reader will find it profitable to work each
case out directly. The derivation of the general equations is princi-
pally of value in serving as a model for procedure.

€1

€2

]

Fig. 56a. Ome of two lines suddenly terminates.
Ni=No=Ur=0U2=W;=Wo=0
yiu = 1211, ¥y22 = y12 = 0
Substituting these values in the general equation there is
Yip(ee —e') + Yie(e2 — &2") = 31161

Yor(er —e’) + Yoz (e2 — 2"} = 0

(e1 + &1) = ¢;"
(e + e3') = gp"’
The solution of these simultanecus equations gives
ey zZ11 — Z11 ”
1 = 1
211 + 211
y 2 72y
ga = ga — £1
z11 + Z11
" 2 213
ey = €1
Z11 ‘|‘ Zu
7 Yoa
11 =
Y11 Voo — V5t
- Vs
Zio =

I;]I:FEE i 15102
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If ez was induced on line 2 by ¢; on line 1, then

g = — €]

AT

Or conversely, if e; was induced by ez then

€1

(a)

(b}

() |

VAT

Zo2

(g)

(h) ?

(i)

()

(k)

0

b

Fic. 56.—Transition Points of a Double Circuit

If, as wouid likely be the case,
tinuation of No. | wire, then

211

and the equations become

431"

eo’

L)

the line to the right is simply a con-

I

Z11

O

€ ZHE

3 — — ]
Zi1

€1
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that is, there is no reflection on line 1, and the full wave is transmitted.
In this case, had e2 been induced by ¢; there would be no reflection on
No. 2 conductor either.

Fig. 56b. One of fwo lines is terminated and grounded.
Ni=U=Us=W, =Wy =0, Np=w
yiu = 17211, y22 = y12 = 0
Yii (&1 — e1") 4 Yz {e2 — &) = yn e’
(es + €2}y = 0
(er + e1') = e

(e2 + e2') = 2"

Solving these simultaneous equations there is

Yin — yn 2 Ve
g’ = €] T €2
1 Yii 4+ yu ! Y1 4+ yu
ea' =— e
Wi 2 Y e 2 Vi
& = €2

Yin + viu Yii. + vy

Fig. S6c. Isolated conductor introduced.
Ni=Ne=U1=Upg=W =We=0
Yiu=12u, Yiz= Y2 =10
Vit {e1 — &) = ynet” + yizes”

0 = var ey’ + ya e2”
(ex + &) = &

(e2 + e2’) = e2”

Therefore

- 211 — Zn "

1 = 1
z11 + 211

31“ = 2 211 21
Z11 + Z11
Z12 2 212

EEH' L El” — e
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Thus if No. 1 is a through conductor, so that z1; = Zyj, there 1s no
reflection.

Fig. 36d. Grounded conduclor introduced.
Ni=Ulh=Use=W=Woe=0  Ng=0o0
Yin=1Zy, Yig=Y =0

Y11 (&1 — e1”) =y et + yiz e’ |
(e2 + e2) = 0
(e1 + e1’) = &y
(e2 + e2") = e3”
Therefore
Voo w
o ;11 Y11 -
Y+ Y11
5 2 ¥y
g’ = e
: Yi + yn !
Ez” = ()

Fig. 56e. Break in one conducior.
Ni=Ne=Uy=Us=W; =0, Wo =00
Vi (&1 — e1r) + Y12 {e2 — e2") = 11 e1” + y12 €™ ]
Yor (&1 — &1”) + Yoz (2 — &)
(e1 + er’)

vor e1’’ + vop e2”

rr

€1

=
I

va1 e1’’ + yaz €2’ |
Therefore, taking

YVii = vi1, Yoo = 392, and VY2 = Yo = y12 = 9y

El" = (}
; 212
g9 = go — — &1
211
E_‘[” - El
Z12
32” = — g

711
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Fig. 56f. Broken line—far section grounded.
Up=Wi=Wa=N =0, Us=2Ns=
Yir (e — e') + Yiz (&2 — &) - yiner” + yiz e |
Yo1 (e1 — er') + Yoz (€2 — &2') = ()
{e1 + ') = e
Yor(er — e’} + Yoz {ez — ') = 0

Therefore, since ex’ = ()

’ L o Zn_’}’u
g1 = £1
1 + Z11 yir
VAT Y11
g’ = g + 5 e
1 + 211 v ;
2
£1” = 2 e
1+ 21 v '
g'' =0

Fig. 56g. Broken line—near section grounded.
Uy=Us=W, =N =0, Wa=Ny=w

Yin (er —'er’) + Yz (62 — e2’) = yi1 &1 + 312 02”7

(ea + e2) = 0
;
('E]'_ + ell‘) _— E]H
0= w1 €1 + ya2 2" J
Therefore
211 I"u == 1 2 Vio oz
e’ = e e
1 311Y11+11+$11Y11+12
e’ =— e
Loy
£1”= YVire + VYise
Va1 (Y11 ex 12 €2)
, 212 2 512
g2 = — ¢ = (Yiie1 + Vioea)

Z1) s11 Y1+ 1

121
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Fip. 56h. One line grounded through a resistor at end of line.
Uy=Uz;=N2=0, Ny =1/R, ym=y2=y2=0
Yii(er —er) + Via{ez — e2') — (1 + &)/ R =0

Vo1 (e1 — e1”) + Yoo (e2 — e2”) = {)
Therefore
lfi],'F - R = ZI] £1
R+ Zn
, | 2 Ly
£2 =€2—R+Zue1

If R = Z,y, then &;' = 0 and there is no reflected wave on No. 1 wire,
However, a wave

is reflected on No. 2 wire,

Fig. 56i. Resistance ground on one wire.
Uy=Us=W,=We=Ng=0, Ny =]1/R
Vi1 (ey — er’) + Y12 (e2 — e2') = yn ey + yizex’ + (&1 +e), R)
Yo1 (1 — e1') + Yoz (€2 — €'} = yo1 1"’ + yoz &2”

(31 + 51;} — e1”’
(ea + e2') = ea’’
Therefore
o! = - Zn
L e
R Zi2
TR LT,
— ? R
=Rz
" m VAT
2 2T A RS Zip

These equations are of importance in connection with the theory of
ground wires.
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f1g. 56j. Transposition of a line.
Ny =Ne=Uy=Us =W, =Wa=0
yir = ¥as, yez = Vi1, Y12 = yor = Yz = ¥y
Y1 (e1 — er) + Yiz (e2 — €2') = yiie)” + yrz 2" |
Yor (&1 — er') + Yoz (e2 — e2') = yo1 1" + yo2 £3” h

(61 + Elr) - 61”

[ + E 4 = .l £

Therefore 2 1’()2 2) 2
11 — Xo2

= Y1 + Yo 2 Yy
o (Y1 + You)® — 4 V2 (Y1 + Yoz) er + 2 Y1z 69

_{Yll - F_:;_g}

e 2 . Vo4 Vo) s
€2 (Y“ 3 y;gz)z " }7122[ 12 €1 + ( 11 + 33} "33]
e = e’ 4+ e
'52” = 321 + £a

I[f the two conductors are in the same horizontal plane so that
Y11 = Yo2, then there are no reflections.
If the two incident waves are alike, that ise; = €2 = ¢, then

ol = gyl — (Y11 — Vag)e
! ’ Yii 4+ Yoz — 2¥,2

Fi1g. 56k. Line entering a section parallel to another line.
ﬂr"1=f'¥":z=U1= U2=W1=W2=D

Yi2=0, 211 = 211, Z22 = 522

Yi1 (&1 — &) =y e’ + yze
Yoz (62 — e2") = ya1 &r”’ + vo2 €2 |
(er + e1’) = ey’
Therefore (e2 + e2') = &

P [(¥V1 — }'11} (YEE ~+ _’}'22]‘ -+ }'122] ) K 2,}'12 Yao &3
- (¥i1 + y11) (Va2 + y22) — v12%
, WY+ yi1) (Yoz — y22) + vi2les — 2912 Vin g
- (Yii + y11) (Yaa + y22) — 3122
o = 2 Y (Yoo + Voe) €1 — 2 viz Yoz €2
(Y11 + v11) (Foz + yoo) — y192
2 = 2V (Yni+yii)ee — 2912 Vi1 g
(Vir 4+ y11) (Vo2 + y22) — 122

€1

€2
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In a case of this kind it is highly improbable that both ¢, and e2 would
exist simultaneously, so that the equation could be simplified to that

extent. -

Fig. 56l. Line leaving a section parallel io another line.
‘Nl = ;T-}_ = Ul — Uz = I'Vl — H"g =

yiz = 0, Z11 = 511, L2z = S22

o
-
oy
[
"
o
~
-
—

Vy (e, — er') + Y2 (62 — e2')
Yoy (ep — e1') + Yoo (e2 — e2') tan @2

I

{El + E-'ljj e 'ﬂl”
(52 =+ EEE} = ez’ |
Therefore
G [(Vii — y11) (Yao + y22) — ¥Vio®le; + 2 Yia van en
i =

{}-'11 -+ }‘1-1) (YE:E: - };22) _ 1,’123

€ (Y11 + w1) (Koo — yoo) = Viz®lea + 2 Yz vi1 e
2 (Y11 + ) (Yo + yz) — Vi’

2 [V (Yo + y2) = Vi2’] e1 + 2 Yiz y22 €2
(Y + 211) (Y2 + y22) — Vio®

[

rr

2 [F:zg (¥ + }'11) — Yl?ﬂl es + 2 Yiavi1 &
(Y11 + yu) (Yaz + y22) — Yie®

'

&2

SUMMARY OF CHAPTER VII

The calculation of the behavior of wavesata transition point on a multi-conductor
circuit is straightforward but usually awkward, since it involves the solution of a set
of simultanecus equations. In the text the routine procedure is illustrated by deriv-
ing the transition-point equations of a general network. These equations define all
the reflected and transmitted waves, voltages across all impedance networks, and the
currents. The equations are also given for a more simple transition point not involv-
ing mutual connecting networks, Equations (224) and (225); and it is then shown
that the general equations properly reduce to the reflection and refraction operators
of single-conductor theory. By way of illustration, a number of cases are worked
otut in detail for a two-conductor system, since calculations on this most simple
multi-conductor system adequately demonstrate the method of attack and the routine
procedure, as well as describe the essential characteristics of reflections and refrac-
tions on such systems. Thus the dependence of a wave on one wire upon the experi-
ence of waves on adjacent wires is brought out, and it is shown how transition points
of different kinds may be identified.



CHAPTER VIII
RESOLUTION OF WAVES INTO COMPONENT KINDS

The introduction of symmetrical components into steady-state,
alternating-current analysis reduces unbalanced polyphase circuits
to a set of balanced polyphase systems, each of which may be solved
as a relatively simple single-phase circuit. It is likewise possible to
employ an analogous sort of argument in the theory of traveling waves,
whereby the waves on a multi-conductor system may be resolved into
a system of components, each of which has a single associated surge
impedance and velocity of propagation. Bekku * has shown that the
waves on a completely transposed three.phase line may be resolved
into two components (Fig.

57), one of which consists of

equal waves on all three wires, o Pt N
and the other of waves adding lgripslg=0 T
up tozero on the three wires. e A~

Satoch ¥ has extended the P b
analysis to the case of two First —~%"find  Second Kind

mutually coupled three-phase Fic. 57.—Single Circuit Three-Phase Line
circuits, each of which is
completely transposed with respect to itself and with respect to the
other circuit. In that case he shows that there are three kinds of
waves, Fig. 58. The first kind consists of the wave between con-
ductors of each circuit. The second kind is the wave between the
group of six conductors on one side and the ground on the other.
The third is the wave between the group of three conductors of
one circuit as one side and the group of three conductors of the other
circuit as the other side.

In the following derivations and discussion the procedure is gen-
eralized.

If (71, 42, ..., t.) comprise a set of current waves having the same

* Journal of Japanese Institute of Electrical Engineers, February, 1923,
t A I.E.E. Trans., 1928,
125
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velocity of propagation v, the corresponding set of potential waves,
upon integrating (131) with respect to x, 1s

El=ﬂ(L111-1+...+L[ﬂ’£n}=ZT:1

(242)
P A (Lﬂ‘l'f:l + i & + Lﬂﬂ‘fﬂ) = Ziﬂ
Convérsely, by (132)
?:1=ﬂ(K11£1+...+KlnEn)=Yﬂll
: : . . . . . . : ) (243}
to,=v(Kmer1+ ...+ Kunea) = Ve,
Y B S
I:::*';!r“:c =0 - *
~Js_A- A TN
L
: W,
m" m , a
Lytlgeip =0 e —t A~ ¥
i i ] 3
First Kind Second Kind  Thirgd—2—""Kind

Fic. 58.—Double Circuit Three-Phase Line

in which Z = 1/V is a coefficient whose existence depends upon find-
ing a solution compatible with (242) and (243). In order that (242)
and (243) may have a solution there must he

(Lll T Zﬂ-l) piw L],.
= [(Zﬂ_] = i_’l[} SRS

(Zp-1 —a,)] =0 (244)
3 (Lnﬂ i ZI'_I)

(K]l — Fﬂ'-l}... Kin
L _ = [{¥Yo 1 =08)...
(Vo1 — b)] = 0 (245)

Ka ... (Kew— Yo7l
Where the ¢'s and &'s are roots of the equations. Therefore
Zvl=a

YVo-1=5%

(246)
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Then, since Z ¥ = 1, the velocity is

1
P = —— (247)
Viab
and the corresponding surge impedance is, by (246)
L= 2. —\F (248)
=7 =er =Ny

Now as far as the above equations are concerned, any a from (244)
may be associated with any & from (245) and therefore vield a cor-
responding # and Z. However, the necessity of satisfying the general
condition, from (144)

Bll o oe Iln
=[@2 —¢)... @2 -¢,)] =0 (249)

i v vi Ban

for the velocities of propagation places a restriction on the pairing of
the roots of (244) and (2435), so that only those values of ¢ and & may
be paired for which v as given by (247) checks a value of v as given by
(249). Thus there are just as many kinds of waves as there are
independent velocities as given by (249).

As a matter of fact, it may be stated without proof that the ¢
coefficients in (249) may always be put in the form

c=LC

where L is an inductance term and C a capacitance term. Then the
corresponding surge impedance is

LZ=VLC

so that (249) defines both the velocity and the surge impedance of
each wave.

Inserting the »n values of Z as determined above back into (242),
there result » relationships between the currents, some of which may
be identical. These relationships define the characteristics of the
component waves.

At a transition point the conditions of current and voltage con-
tinuity must be satisfied in accordance with Kirchhoff’s laws, as
applied to the resullant currents and voltages of each conductor,
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Since these resultant waves are combinations of the component waves,
it follows that incident waves of one kind may, in general, cause
reflected and refracted waves of all other kinds.

Three-Phase Line.—Consider a three-phase line completely
transposed, so that

L11=L22=L33=L

Ly = Layy= Ly =L’
Kin=Kn=Kzs =Kk

Kig =Kp3 =Ky =K

Ihw= Ipn= Ig=LK+2LK
fio= Ipy= Isn =LK' +L K+ L' K’

Then (249) gives
(B—I32)2B+2I)=Unu—-—Ti2—v=)P Un+2Lizr—v7)=0

from which i = Y e TR~ K

2 =(L+2LY(K+ 2K')
From (244) and (245)
(L — L' —Zov W3 (L+2L —Zv'} =0
(K -K' = Ve 1) (K+2K' —Yer~')=10
Therefore by (248)

L - L
Z1 =\/K & for the first kind

N N
*“NK 12K

for the second kind

Inserting these values back in (242) and solving for the currents:
i1+ 22 + 43 = O for the first kind
i1 =42 =13 =1 for the second kind

Let waves to which Za applies be designated by ¢ and those to which
Z, applies be designated by (4., 7, 2.).

Then the complete equations are
4oy =214+ 21242+ Zaata =211+ 22t
o =Za1 1, + Zoaia + Zosis = 21t + L2t
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+e3 = 23171 + Zaciz + Zazts = ZLyte + L2t
$1 = ¢ 4+ 1,

iz =1+ 2

i3 = 1 =+ 1.
Hence - : -
T:_h'l'iz-l-?-:i

3

t. = 13 — 1

Double-Circuit Three-Phase Line.—If the transpositions are
such that

Ly = Lo = L3zz = Lyy = L5 = Lgg = L
Lig = Loz = L31 = Lys = Lsg = Lea = L
Lygs = Lis =L = Loy = Lys = Lag = L3y = L35 = Lgg = L”
and likewise for the K's, then
In=Iln=In=Iu=I0I)=I=(LK+2L K 4+3L"K")
Io=1Ip=1I31 =143 = Ise = Iy =

(LK'+ L K+ L K 4+ 3L"K'
Iyw=Ilys=lig=Ia=Ips=1Iss =134 = Iy5= I35 =

(LK" +2L' K" +2L"K' + L"K)
Then (244), (2435), and (249) give

O=p2-(L-LYK-K)

o2 — (L+2L —3L") (K 4+ 2K’ — 3 K")]
v=2 — (L4 2L +3L") (K4 2K + 3K")]

L= I
“"Nk—x
L, L t2L +3 L
* YK+ 2K +3K”
L 49 Lt~ 3 1"
L / 5

“NKE 2K — 3K
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Inserting these values back in (242) and solving for the currents
i1+ 22 + 13 =0
4 + 15 + 46 =0

L=t =13 =13 =15 =1 = 1 fﬂr the second kind

for the first kand

1) =ig =13 = —iy = —iy = —1s = I for the third kind

Let the waves to which Z| applies be designated by (4, 2, . . ., &);
those to which Z2 applies by (2); and those to which Z; applies by (/).
Then the complete equations are

+e =21l + Lot Zs I =zn0+ ...+ 516
tex=Z1rwwt+ Lot +Zsd =212+ ...+ 2251
+es =21t + Lot + 251 =23181 + ...+ 236 i
tey=ZLiig+ Lot —ZsT =z4141 F ... F 516 15
+es =21t +Zat—Zsl =250 014+ ...+ 356 06
es=2L14y + Lot — s =z5140+ ... F 286 s

h=tt+i+1
=2+ t1+1
=t+1+1
4 =ta+1— 1
ts =i +1—1
te =2 +4¢— 1
Hence £=fr+i2+i3+1'4+fn+iﬁ
6
I=T:1+E-2+‘I'3—i4—ia—'~’:ﬁ
6
te =2 — ¢ — [
ty =102 —2— 1
s e T |
=14 —1t+ 1
i, = ;5 — 1+ 1
ir =1y —t+ 1
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As an example of how waves of one kind may generate waves of
all three kinds at a transition point, consider Fig. 59, in which the
incident waves are of the second kind. Reflected waves are indicated
by primes and refracted waves by double primes. At the break

€1+E1’=D

21" , =0
but for all other conductors

e, + e’ = e

tr + 4" = 1"

| oo/ e S
L] ; R Y ‘
- e i
i B/ < R
S L —
- -3
| L
Tl
- i
=y e p—— :__ _____ = Ny
87/
o - P ;‘---"—'_l g
'W ! G

-‘L---—-id

te Stfay t=Ljoy = Sifay
Fi1g. 53%.—Break in One Conductor of a Double-Circuit Three-Phase Line

so that in terms of the three kinds of waves the transition-point
equations become

Zot =211 + 2o 7 + Zz I'

Zei=2:( +4")+ 2 +)+Zz (1" + 1)

Zoi=210 +4)+Z2(0 + ¢y + Z5(I" + 1)

Zot=21(d +i/N + 220G +4¢N —Zs (I +17)

Zat=210" +1Y+ 20 +) - Zz: (I + 1)

Zoi=2Zy 0 +4" + 2206 +4i ~Z3 (' + 1)
0= £ + 4 A I

7 = (/' — 21)) + (" =) + {(I'" — I
i= (@7 —-4i) + @' -4+ J"-=-1I)
= t—d) 5 @=a) = (Il
t= (@' —-4)+ @"-=-4) - (I"=-1T)
1= (" -¢4)+ @' -94) - I"-1T)
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The currents of the first kind may be eliminated by forming four
simultaneous equations as follows: (1) Add Z, times the seventh
equation to the sum of the first three. (2) Subtract 1-Z; times the
first equation from the sum of the third group of three. (3) Add the

second group of three. (4) Add the last group of three equations.
Then

322 i -
3Z287 + Q22+ Z) 1" + 3ZsI' + (225 + 2Z) I

(Za— 221 =
(Z2 4+ 221)7 — 32"+ {23+ 22,) 1 — 32, 1"

Lyt =
Zet' + Lot — Ly I — 23 I

1 =

_ 'I:r + f:” + I-' _ I”

Herefrom the currents ', ¢/, I’, and I”" mayv be readily found. Then
immediately from the previous equations

i = (2ot — 221" — Z3 1) Z;

'.'.':..,” = I‘H P I”
i+ ={Zsi—Za (@ ) —Zs (I 1)) Zy =4 + 1.
-'l':l':rlr e ’.i':b” = —1 -+ (‘5” = 11) -+ {I” o I’} — ’1:.:" _ '::':‘.;”
Hence,
e
P g e
=1/ =
2
r
. (o
8 = 4 = — ?
Likewise
'I:d! — 'f:!," — -EJ.'F — ﬂ

'I:d” 1:,;!, rr D

I
It

I
L]
L

Thus in the above case an incident wave of the second kind will
generate at the transition point reflected and refracted waves of the
first, second, and third kinds on the circuit including the fault, and
waves of the second and third kinds on the other circuit.
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As a numerical illustration, let ¢+ = 1000, 2, = 400, £» = 1000,
and Z3 = 500. Then the solution of the equations gives

1, = 1375 - e, = — 550,000
i =1 =— 0688 ey’ = e =4 275,000
joi e 287 e’ = — 287,000
I' =% 323 E' =7F 162,500
== 617 e.'' = — 246,800
' =1 = 309 ey = e/ =4+ 123,400
i = 90 e’ = 790,000
FAGE— o = F 86,500

These waves have been plotted in Fig, 39.

SUMMARY OF CHAPTER VII

The waves on a multi-conductor system may be resolved into a number of “kinds "
of waves, and to cach kind of wave there corresponds a single surge impedance,
These characteristic surge impedances are defined by the roots of Equation (249),
and upon inserting these values back into Equation (242) there result just enough
simultaneous equations for the determination of the component waves. When the
transmussion line is transposed, the resolution into component waves is considerably
simplified.

In the case of a single, completely transposed, three-phase line the resolution into
kinds gives:

First kind: i3 + & + 1. =0
Second kind: i, =1 =1 =1

In the case af a double-circuit, three-phase line, cach circuit being completely
transposed with respect to itself and to the other circuit, the resolution gives:

Fipst kind: a4+ +46. =0,y =i =1 =0
S-ECE!-III.’J kind: i’-1 = fs = 'J'f:s = 'fi = f.& = ?:5 = 1

Third kind: ) =d1=d3 =1 =—1.=— i3 =~ 1,

Thus the resolution of traveling waves into component kinds is analogous to the
resolution of polyphase unbalanced alternating currents into symmetrical com-
ponents. The resolution greatly simplifies the calculation of the behavior ol waves
at a transition point. At such a point, waves of one kind may generate reflected
waves of other kinds, depending upon the nature of the transition,



CHAPTER IX
TRAVELING WAVES DUE TO LIGHTNING

The formation of thunder clouds and the mechanism of lightning
strokes are subjects about which little definite information is available.
However, a number of interesting speculations in regard to these
phenomena appear to rest on a rational basis. Of these, the theory of
G. C. Simpson ¥ has perhaps been the most widely accepted. In
fact, most other theories which have been proposed appear to be
merely modifications of Simpson’s original ideas. He suggested that
the rising air currents brushing the falling water drops separate the
charges, the positive charges remaining on the water particles while
the negative charges are carried by the air to the higher strata of the
cloud. The cloud mass 1s then a good insulator (air) containing a
more or less heterogeneous distribution of charge, and these charges
are kept separated by mutual repulsion between aggregations.
Eventually, however, owing to excessive concentration of charge, or
because the cloud approaches the earth, the breakdown gradient of air
is exceeded at some local point of rupture, resulting in the formation
of an ienized path or streamer. The head of this streamer progresses,
establishing the requisite space charge, until new equilibrium condi-
tions are reached; that is, until the gradient has decreased below the
breakdown gradient of air. Now as the streamer head advances, it
means that a certain part of the initial electrostatic field has been
short-circuited and therefore that a higher gradient is available in the
neighborhood of the point of rupture, so that the region of ionization
is extended further into the interior of the cloud, probably by * pre-
ferred paths.” Ultimately, then, the whole cloud volume may be
permeated with ionized channels, and when the streamer reaches
ground all the necessary facilities for a rapid dynamic discharge are
thus available. Some writers suppose that there is little or no pene-
tration into the cloud volume until the initial streamer reaches ground,
because, they argue, the penetration can not proceed until conditions
obtain for increasing the gradient. There is no reason, however, why
the short-circuiting of a part of the original electrostatic field by a

* Phil, Trans, Royel Society, A-200, 1908,
134
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streamer can not furnish the requisite gradient. It seems necessary
to account in some way for the establishment of the principal channels
of discharge as a preliminary or incipient stage preceding the dynamic
discharge, for otherwise the relatively slow processes of lonization are
not comparable with the rapidity of observed discharges—a matter of
from ten to a hundred or more microseconds.

Once the main stroke and discharge channels are established the
discharge probably is the same as the discharge of any condenser
through a resistance. The main stroke may have a length of as much
as a mile or more, and is in the nature of a tapered surge impedance.
At its upper end the inductance per unit length is larger than at its
lower end, while the capacitance per unit length changes in the reverse
fashion, if the diameter of the channel is constant, and thus the surge
impedance decreases from the cloud to the earth. But branching of
the main stroke may more than offset this tapering. It has accord-
ingly become the practice to regard the lightning stroke as a surge
impedance of approximately 200 ohms. This assumption will be
adhered to in this book, with the understanding that it is most indefi-
nite, but that calculations based upon it have at least a comparative
value,

Whether or not the foregoing review of the mechanism of a hight-
ning stroke be right has no bearing on the analysis which is to follow,
for the mathematics has been based on observed facts and measurable
values.

Let the total charge on the cloud be Qo and let F(f) be the law of
cloud discharge. If the cloud behaves simply as a capacitor discharg-
ing through either a resistance or a surge impedance, then F({t) is
exponential. It will be shown, later, that the cathode-ray oscillogram
of a lightning surge on a transmission line defines F(f) and that an
exponential law is a fair approximation to many typical cases. Then
the current in the discharge is

(250)

Depending upon the shape and height and size of the cloud the
electrostatic field gradient g(x) near the surface of the earth may be
specified, and is proportional to the residual charge on the cloud. If
the initial field is G, then at any instant ¢ the gradient is

g=G [1=F(@)] = AQ [1— F(1)] (251)

where A is a function of the height, shape, and size of the cloud and
of course can be evaluated only for specific cases.
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The potential of the cloud also depends upon its height, shape,

size, and charge, that is
V=B

From the above three equations it is evident that the charge,
potential, discharge current, and gradients are related through the
law of cloud discharge and the geometric factors of the field.

Traveling Waves Induced by Lightning.—\When a charged cloud
approaches a transmission line, a charge of opposite sign leaks over
the insulators or migrates from the terminals, and appears on the line
conductor as a bound charge fixed in position by the electrostatic field
of the cloud, Fig. 60. The density of bound charge at any point x
on the line is proportional to the heights % of the line wires above
ground and to the average gradient & between that point and ground,
but is modified by the presence of the other conductors and ground

Fic., 60.—Distribution of Bound Charge

wires. At any point x, Maxwell's electrostatic coefficients apply,
s0 that

Vi=0=Gli+puli+...+ p1:0x]
Vo=0=Gha+paQ1+ ...+ p2.04| (252)
I;n=D=Gﬁn+PnIQl+---+pann‘

These equations thus give the charges on each conductor before
cloud discharge. Since the field of the cloud is not uniform and since
the line may sag considerably at midspan, it 1s evident that the bound
charges will not be uniformly distributed, but may have a wide variety
of shapes.

Suppose that m of the n# wires are ground wires perfectly grounded
throughout their length, and let these ideal ground wires be numbered
from (1) to {m) inclusive. The (# — m) line wires are to be numbered
from (m + 1) to (n) inclusive. Now if the field gradient G is sudden!y
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removed, the bound charges on the line wires do not change, but those
on the ground wires are instantly replaced by new charges @, for the
ground wires remain at zero potential. The equations now become

O=p '+ ...+ pin @n' + Prmsty Quman + .0 P10 On)

{] —_— pml {)1" —I_ - s + pmm C}m? + pm(m-}-l} Q{m+l}| + LI pmn Qﬂ-
Ith+1]- = p{m-i-lfll @1; + A + P[m+l}m Qm,
+0m+n men Qomeny + o0 Pmenn @

t (253)

IFH — Pﬂl er + v + an Qm!
+}"’n{m+1} G{m+ 1} + + e + Piﬁtﬂ. Qn ?

Hereby the potentials on the line wires may be determined. Their
distribution along the line is the same function of x as that of the initial
field gradient G (because Maxwell’s equations apply at each point).
The released bound charges become traveling waves in accordance
with Equations (154) and (156). At the first instant, however, there
will be no resultant current flow, so that (134) gives

fiv — Fr = 0, therefore F, = §, (254)
Hence
fr+ Fe=2f = 1% (255)

Therefore, dropping subscripts, the forward and backward traveling
waves are identical and are given by

fx)y=3V (256)

But the release of the bound charges is not instantaneous, but
. according to the law of cloud discharge, F(f). The corresponding
traveling waves may then be found by means of Duhamel’s theorem
a F(r)

T

e=f{flr+i'[f—-T}}-F-f[l‘*i-'ff-—f)l} @r

= ]im Eﬂ {f[:u:—|—tr(u—k).ﬁ£]-I-f[.t—'ﬂ(n—k}.ﬁf]} AF, (257

M—r0 £t=0
where n-4¢ =1¢ k-Al =1, and AF, = F[(k+ 1) At] — Flk-Ap),
The application of the integral is limited to relatively simple analytic
expressions for f and F, but the summation, the limiting case of which
is the exact solution, is immediately applicable to any functions fand F,
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whosc graphs are known or assumed. Ultimately, since both these
functions must be found from experimental data, it is advisable to
deal directly with the summation as an approximation of arbitrary
exactness. From it both graphical "and tabular methods can be
developed. The first two terms under the summation sign represent
a pair of forward and backward traveling waves, which are exact
replicas of the shape of the traveling waves due to instantaneous
cloud discharge, as given by (256) above. The amplitude of these
waves is proportional to the increment & F in the F({} curve; and
they have moved out from under the original bound charge distribu-
tion a total distance (#z — k) A¢. By adding up all such component
waves, the resultant waves at any time { = 7+ A { may be determined.

Fig. 61 illustrates the graphical application of this formula to a
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FiG. 61.—Graphical Method for Determining Wave Shapes

rectangular bound charge and a law of cloud discharge F(f). The
base of F{{) is divided into equal time increments A4, and the base
of 2f(x) into corresponding equal space increments Ax = - Al
For ordinary purposes the two increments are equal if £ is in micro-
seconds and x in thousands of feet. At the end of # = 3 time incre-
ments, one half of Block 1 has formed and moved to the right a
distance 3- A x, and the other half has moved an equal distance to the
left. Block 2 has moved to the right and left a distance 2-A x, and
Block 3 a distance 1-A ¢ Block 4 has just started to form and move
out. Only the blocks which have moved to the right are shown in the
figure. It is advisable to subdivide the increments A ¢ for the larger
steps, as indicated for Block 1. The resultant of the two traveling
waves has been plotted upside down to avoid interference. Of course,
for a rectangular bound charge the front of the wave 1s identical in
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shape with F(f), and the complete wave is readily obtainable by
taking half the ordinates between two F(f) curves displaced a dis-
tance apart cqual to the length L of the bound charge as shown in

Fig. 62.

The above graphical
method is awkward for other
than rectangular bound
charges. To study the
effect of the bound charge
distribution on the shape of
the traveling waves it is
preferable to use a tabular
method for solving (257).
The method is shown in
Fig. 63. The increments
AF are given as (ap, aj.

az, . .. ), and the ordinates of f(x) arc (fu. f1. fa. . .

1s then flled in as indicated.

dy _
\8 3Gt A A3 =

T i — —— et —— — ——

FiG. 62.—Graphical Method

v

).
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F16. 63.—Tabular Method for Determining Wave Shapes

. L5

The table

The effects of the law of cloud discharge F{#) and the length of

rectangular bound charge are shown in Figs. 64 and 65,

A com-

parison of these wave shapes with those of natural lightning lends
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weight to the assumption that a good approximation for the law of

cloud discharge 1s F()= (1 — e %) (258)
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Fig. 64.—Efect of the Law of Discharge on the Shape of Traveling Waves

The shape of the direct stroke waves follows from (250). The sharp
corners in these waves are due, of course, to the rectangular bound

charge.
Z

Law of Cloud Disc

YAVAN
~

Induced Waves

Direct Stroke Waves

Fic. 65.—Induced and Direct Stroke Waves Corresponding to Different Laws of
Cloud Discharge

In Fig. 66 is shown the effect of the time of discharge on the wave
shapes from rectangular bound charges. Here it is evident that L
must exceed v T if the crest of the traveling wave is to reach the value
corresponding to instantaneous cloud discharge. The slower the rate
of discharge the lower the crest and the longer the tail of the traveling
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wave. This is a necessary consequence of the fact that all waves
originating from a given bound charge must contain exactly the same

Immw
(1-e") N 3 2 | 0
1 Microsscond Deschange
(1-¢~ ™
L [ 3 2 | 0

F1c. 66.—Traveling Waves from Rectangular Distribution of Bound Charge

energy (neglecting line losses), regardless of the rate at which that
charge is released. The original bound charge represents the storage
of a definite amount of energy, and 25 per cent of this energy must

e

A S {

Fi1G. 67, —Formation of Traveling Waves

appear in each completely developed potential wave, and 25 per cent
in cach companion current wave. Thus a decrease in crest values
must be compensated for by an increasc in length.
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Fig. 67 illustrates the development of traveling waves during their
formation stage, showing how the potential distribution starts from
zero, huilds up and spreads out until a maximum is reached, then
recedes as the two traveling waves separate out and move away in
opposite directions.

Fig. 68 shows the traveling waves given by a rectangular bound
charge relecased in zero, one, and three microseconds respectively.
One set of curves shows how, as the time of discharge increases, both
the maximum crest and the crest of the free traveling waves decrease
in value and approach coincidence. The other set of curves shows
the maximum potential on the line as a function of time.
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F1G. 68, —\Wave Hﬁzl[n:ﬁ Derived from Rectangular Bound Charge Released at
Dificrent Rates

Fig. 69 is the same as Fig. 68 but for a peaked, instead of a rect-
angular, bound charge.

Fig. 70 illustrates the dominating influence of the law of cloud
discharge on the shape of the traveling wave. Rectangular and
peaked bound charges having the same total charge and the same
amplitude are shown. As the time of cloud discharge increases, the
shapes of the traveling waves for both bound charges approach coin-
cidence, excepting for the toe and cap of the wave. This suggests
introducing an equivalent rectangular bound charge having a length

f )

L = o (259)
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where f(x) is the distribution of bound charge, and f(0) its crest value.
It has been found from numerous calculations of specific cases that
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Fis. 69, —Wave Shapes Derived from Peaked Bound Charge Relcased at
Different Rates

this equivalent rectangular bound charge 1s a good e¢nough approxima-
tion for calculating the wave shape, and of course its use greatly
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Fic. 70.—Similarity of Wawve Shapes from Different Distributions of Bound Charge

simplifies the determination of the wave shape, since the method of
Fig., 62 mayv be used,

If there are no ground wires, the maximum potential on any line
wire corresponding to instantancous cloud discharge is (4G).  Taking
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the finite rate of discharge and the distribution of bound charge into
consideration, the voltages are

e = a (Gh = maximum voltage at center of disturbance

(260)
¢ = o GhA = maximum crest of traveling wave
S where a« and «’ are functions
IH 4 r rs F
. involving F(¢) and f{x). These
080 reduction factors can not exceed

BASED ON EXPOMENTIAL : i

'”“I RATEGF: DISCHARGE the limiting wvalues (corre-
O.80 ' . =

& ois \\ig_ sponding to instantancous dis-
a0l -...% charge) @ = 1.0 and o = 0.5,
030 Lﬁﬂ..u = Ao respectivelv. These factors
ﬂH[ 2 % r = L emE % . i e
il sEziood L have been plotted 1n kg, 7l

| ] -

ol L P I O L T for rectangular bound charges
o MO TSI BISHARGE S REREENT. of 2000 and 4000 f1. length, and
0.80 for F{t) = {1 — E‘—m],

R 2y If F(T)=0.03,thene=3 T,
Q.30 § p
i * o TpEope: and the crest of the traveling

k| Lr l -

‘oo -h; et Wave, reached at { = L i, 3 157,

4 Illll 20 22 zTnEzL]zLin 62, 1s

SICROZSEQoNDS T DISCHARGE. 85 PER Cot
F1G6. 71.—a for Induced Voltages (Expo- p' = ! (1 —e™ BTG h (261)
nential Discharge) 2

At x = 0 (midpoint of the hound charge distribution) the tail of cach
wave 1s o {}5 [1 _ E—u'!'!--f..f'E!'“.I] G )EI. f-DI‘ ! - L =

This is a maximum at { = L r. The maximum wvoltage for both

waves then 1s c=[1 — DG (262)

Comparing (260), (261}, and (262) it is evident that
o = 0.3 (1 — ¢ BETH (263)
o= 1.0 (1 - E—[I.SL..-"FT}} '[_3"5'-1*}

If 7 = O, instantancous discharge, &’ = 0.5 and « = 1.0.
From the foregoing analysis a number of interesting facts are

obvious: *
1. The total length of the free traveling wave in thousands of feet
is the length of the bound charge plus the time of cloud dis-
charge in microseconds: L + ¢ 7.
* Discussion by L. V. Bewley, AL F.E. Trans., Vol 49, p. 929,
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2. The length of the front of the free traveling wave is the smaller
of Land ¢ T.

3. The crest of the wave is lower, the longer T and the shorter L.

4. The shape of the traveling wave is dominated by F{2), and the
influence of f(x) i1s quite subsidiary thereto. Therefore, an
equivalent rectangular bound charge may be substituted for
the actual distribution, thereby greatly simplifying the anal-
ySIS.

5. The greater T, the more nearly does the maximum resultant

voltage at the center of disturbance equal the crest of the
traveling wave.

It is apparent, then, that a cathode-ray oscillogram of an induced
surge is a fairly complete record of its entire history, including the law
of cloud discharge and the bound charge from which it originated.

For a few simple cases, Equation (257) may be solved analytically.
As an example, suppose that the cloud is a uniformly charged sphere
whose center is at a height IT above the ground plane and its image
(=) at a depth (—1I/) below the ground plane. Now it is shown in
texts on electrostatics that the external field of a spherical volume
charge is the same as that of a point charge having the same charge Q
and situated at the center of the sphere. Therefore the vertical
component of gradient near the surface of the ground of the equivalent
point charge and its image is

29 200
=S T E e

This 1s a maximum at x = (} and is

The equivalent rectangular bound charge has a length

20 7T dx
2QH)S_, (H?+ a*)”

= 2 {f

The cloud potential at a radius R is approximately

f-
Vo Q 'f_ I('_‘mm:

— R 2R
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The distribution of potential due to the instantaneous release of the
bound charge is

200 H

2f(x) = hG() =

Assume that the discharge 1s linear
Fh=4T fort = T
= 1 fort = T

Each traveling wave then is

¢ =ff[:-: + v - 1) g j‘(:} dr

lehﬂr dr
0 I I.-“r‘:r -+ {I a o EJ'EJ"? + 27 (:ﬂ -+ l’” r + o2 T‘.’]'H

_ kQ (x = 1) _ x ] .
o TH VI 4 (xxv)2 VI 4 5
[ ] T
_ hQ (x + ot} _ (x + vt F vT) ] for 2= 7T
v TH VIR + (x +v02 VIE4 (x vt FoT)?

Thus up te ¢ = T the potential consists of a pure traveling wave and a
superimposed stationary distribution. After ¢t = 7" the wave 1s fully
developed and the stationary distribution has disappeared. The
traveling wave has a maximum at ¢t = Tandx =v 7T 2 of

2hQ 1 2 I
vl 1+ 2H 21 vl N1+ (21 vT)?

E.F

where I = ¢ T 1s the discharge current.
The reduction factor is

. E' I 1 ) 1

al = — =

T Gh vTN1+ 2H T2 2vT V1 4 (L oT)2

The resultant potential due to the combination of both the forward
and backward waves is their sum

hQ { (x + vf) (x — o)

= 4 . =

HeT | VI 4+ (x +07)2 VI 4 (x — oT)?

7 4

CNIE et

[

}fﬂfﬂ“_: T
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LAY (x + o) + (x — o) B
vl | V2 + (x + vT)* vV H? + (x — v1)"
x+o{t—T) x-—uv{t—T) fori = T

- VIE + (x + ot — vT)? - VI + (x — ot +2T)?

This potential reaches a maximum at x = Oand ¢t = T of
2k I

v I N1 + (II oT)?
The reduction factor therefore is
_E I 1 L 1
YT Cr T wT VA + 1 o1 C 20T /1 ¢ (L 227)

If, as probably is the case, vT is large compared to L, the above
equations reduce (in practical units) to:

FE =

E’gﬁgﬁ{}h—f = a G k volts

17
I 0061
*=CT=10007T 0 G
6017
C=—n

where I is in amperes, b and I in fee!, T in microseconds, and & in
kilovolts per fool. These equations have been plotted * in Fig. 72

for G = 100.
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Fi1G. 72.—Variation of &« with Lightning Currents and Time of Cloud Discharge far
Different Cloud Heights

{Based upon point cloud and linear rate of cloud discharge)
*" Lightning," by F. W. Peek, Jr., A.LE.E. Trans,, 1931.
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LINEAR DISCHARGE

[.ine 50 Ft. High {No Ground Wires)

("loud L'.ghtmng Induced ;~"1.pp1.-u:-;mmte

; {urrent o ; _ Time of

Height : _ Voltages ;
Feet Amperes (Calculated) Kv. (Cale. Discharge

' Assumed) | - (hale) u Sec. (Cale)

500 &0, 004 0.70 3600 0.3
1000 600,000 0.36 1800 3.
2000 600,000 0.18 900 11,

S04} 200,000 0,24 1200 2
1000 300,000 0.18 00 0.
2000 300,000 0.09 430 22,
5000 200,000 0.021 1) 200,

Line 80 Ft. High (No Ground Wires)

500 i 600,000 0.7 5760 0.3
1000 600,000 0,36 2880 3.
2000 600 D00 18 1440 11,
1000 300,000 0.18 1440 0.
5004 20,000 0,024 190 200

EXPONENTIAL DISCHARCGE
Line 50 Ft. High

500) 200,000 0. 23 1250 .
1000 410,000 0,235 1230 i1,
2000 840,000 025 1230 21

Line 80 Ft. High

S00 200,000 0. 25 2000 G
1000} 410,(HH) 0.25 2000 11.
2000 840,000 0.235 2000 21

500 90,000 0.125 1000 2.
1000 195,000 0.125 10400 2T
2000 J04),000) D.123 1000 15,

To estimate the surge voltage induced by lightning it is not permis-

sible to assume arbitrary values for any of the parameters in the above
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equations which violate the known confines of any of the others. The

present indications are that the limits of the different parameters are as
follows:

G = 100 kv. per {t. {which value is generally agreed upon).
I 1s from 300 to 5000 ft. (based on meteorological survey).

{, except for unusually heavy stroke, very likely does not exceed
300,000 amperes (based on field measurements of currents in
towers struck by lightning),

1" > 2 1T 1000, since the velocity of discharge certainly can not
exceed the velocity of light. (Examination of numerous
cathode-ray oscillograms of natural lightning fails to show a
discharge faster than 10 ms., some last for over 100 ms., and
the average is about 25 to 30 ms.)

The attached table * indicates the range covered by different assump-
tions. It is thus evident that, although induced voltages may not
be dangerous for the more highly insulated lines, they become of
Increasing importance as line insulation is decreased.

SUMMARY OF CHAPTER IX

Traveling waves due te lightning may be caused either by electrostatic induction
or by a direct stroke, The voltage of an induced surge depends upon the time of
¢loud discharge, the initial electrostatic field gradient of the cloud, and the distribu-
tion of the bound charge. These factors in turn are tied in with the maximum cur-
rent in the lightning stroke, and the potential, height, and length of the cloud,
Ground wires practically halve the magnitude of induced surges. On the assumption
that the current in a lightning stroke does not exceed 300,000 amperes and that the
time of cloud discharge is at least 10 ms., it is doubtful if an induced surge is ever as
high as 1000 kv., and more probably 500 kv. is the upper limit., On this basis, lines
of 66 kv. or more are immune from trouble as far as induced surges are concerned.
On the other hand, a direct lightning stroke mayv reach voltages of the order of 10,000
kv. The typical lightning waves, whether due to electrostatic induction or direct
stroke, are of the same general shapes. Specifically, the direct stroke is given by

a Fidy

E=ZI=Z
L per

and the induced voltage by

' a3 Fiz)
e=ff{x:|:trr[£—r}]~ . s
0

T

where F(t) is the law of cloud discharge and f{x) the distribution of hound charge.
The integral can not be evaluated explicitly, except in a few simple cases, but numeri-

* ' Lightning,” by F. W, Peek, Jr., A L.E.E. Trans., 1931,
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cal results are easily obtained by means of graphical and tabular methods. From
these solutions it is found that the magnitude of the induced voltage is

e =alh
where a is a function depending on fix) and F(), and for all practical purposes
Fiy =l — ™%

The function a is plotted in Fig. 71.  The salient characteristics of induced surges are:

(1) Total Length of Waves = Length of Bound Charge + Time of Cloud Discharge.

(2) Front of Traveling Ware = Length of Bound Charge.

(3) Crest of the Wave decreases as Time of Discharge increases or as Curreni in
Stroke decreases.

(1) Shape of the Wave is principally dependent upon the Luw of Cloud Discharge.

(5) The Cathode-Ray Oscitlogram of an I[ndiced Surge is a practically Complete
Record of the History of thul Surge.



CHAPTER X

GROUND WIRES *

Ground wires were originally used on transmission lines as a
protection against induced lightning waves., In that capacity they
practically halve the magnitude of the impulse, but they function
the more efhciently, the closer they are to the power conductors.
Within the last few years, however, there has been growing reliable
evidence, of both a theoretical and experimental character, that most
of the outages due to lightning which occur on high-voltage lines are
caused by direct strokes rather than induced voltages; and this has
led to a somewhat different method for employing ground wires, so
as to be in a better position to intercept the direct stroke, Ground
wires also exercise a number of subsidiary effects, among which may
be mentioned their effect on:

Zero sequence reactance of the transmission line.
Telephone interference,

Corona.

Attenuation of traveling waves,

Reduction in surge impedance,

Relaying possibilities.

Chit o b T s

Induced Surges with Ideal Ground Wires.—An ideal ground wire
is one which is perfectly grounded at all points throughout its length,
and thus is always at zero potential. It therefore differs from an
actual ground wire grounded at definite intervals through finite tower
footing resistances, in that it is free from successive reflections. A
comparison of the results of this section with those of the next section
shows that the traveling waves a few towers removed from the initial
distribution of bound charge are practically the same in either case:
hut it 1s much easier to compute the free wave on the basis of ideal
ground wires,

Consider an overhead system having s ideal ground wires and
{ — m) line wires. Number the ground wires from 1 to = inclusive

** Critique of Ground Wire Theory,” by L. V. Bewley, A.J.E.E. Trans., Vol. 49,
151
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and the line wires from (m + 1) to # inclusive. Let the initial cloud
field gradient be G and the corresponding bound charge distributions
be f(x). Then under equilibrium conditions just prior to cloud
discharge the bound charges on the conductors are given by Equations
(252), from which the initial bound charges (01 ... Q.) may be
determined. If the cloud discharges instantaneously, Equations
{233) apply, and are sufficient to determine the n# unknowns
Q1" ... Qn Vpey .. V). According to (254), these released
bound charges move out as pairs of exactly similar traveling waves
moving in opposite directions, so that by (253) and (256) the free
traveling wave f; on con-
ductor % is given by

Vi =2f = o1 Ot
S P 0
+ Prim+ 1y Cimt 1y
4+ oo+ Pra Qn (263)

-

Now suppose that the
cloud discharges so that
at any instant ¢ the
gradient 1s given by
G[1 — F(t)], where F(f) 1s
the law of cloud discharge,
assumed to be uniform
over the bound charge
distribution 2f(x). The
bound charges will be
released proportionally to

{6} the decrease in the cloud

Fia. 73.—Release of Bound Charges on Line and gradient, and the residual
Ground \Wires charge on any line con-

{a) Before cloud discharge ductor at any instant is,

{b) During cloud discharge () [1 — F{£})). The released

portions of the bound
charges become pairs of traveling waves. The shapes of the
traveling waves on all line conductors depend only on f(x) and
F(¢) and are therefore similar, as given by (257). For convenience,
let the forward and reverse traveling waves be represented by
Q-¢ (x, ) and Q¢ (x, t) respectively, where the functions ¢(x, #) and
¢ (x, £} are to be determined from (237). The total potential at x
and f therefore is, calling B(x, £) = [1 — F(1)] 2 f(x)
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Ex =G B0, +[praaQi+ ..+ pinQul B(x,t) + [pra Q1]
.o Pem On” F Prmaty Qomen + - o+ P Q]  (206)
(¢ (x, ) + ¢ (x, 8)] *

The first term on the right is the potential due to the residual
field of the cloud; the second term is that due to the residual charges
on the line and ground conductors: the third term that due to the
traveling-wave compenents. But by (252) the sum of the first two
terms on the right is zero, and the # equations of type (266) are then
identical with those of (253) multiplied by [¢ (x, ) + ¢ {(x, )] = a.
By (252)

Peme s Pmeny + - - o+ Prn P
= —{G h + P Q} + i T Pim Ou) (267)
Hereby (266) reduces to
—Ei4+ (G —Q1)a+ pe2 (Q2" — Qo) a
+ .+ b (O —Qua=—GCGla (268)

in which E; is zero for # = 1 to £ = m inclusive.
The symbolic determinate then is

Q(QIF_QI) - @ (QmI_QM) E{m+n s By
P11 eoa Prom { saiaik) =—al
Pmi e B () —1 =—aG i
P s P 0 ...—1 =—qaGh,

Solving for E,, 44y, there results

Pt cieis Pl i
le I Pmm J'Efm

Plonsty -+ - Poim+n Hm+n

E{m+h = EG —_— DEG (ETD)
P11 G 5 P

P]m = Pmm
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As an example, consider the previous numerical case in which

(since p; is now to be solved for)

. {1200
P11 = pe2 = 2log\ —
p1

Pz = 4.62

P13 = Py = P2y = Pas = 417
P15 = P2z = 3.25

P33 = Py = P55 = 13.12

P31 = pus = 4.17

P3s = 2.83

Since from syvmmetry (), = (s and J3 = (5, the determinate {or

(1 becomes

it b1z (P1z+p1s) 30 .17 7.42

s s (Puatpas) 10 117 17.95

Bz Paz 2 3’334 40 15.12 R.34
(Pr1+p12) P13 (P13+ P1s) (p11+4.62) 4.17 7.42
(prat213) pas (Pas—+pas) 7.42 4.17 17.95
2 PlE Pa;j 2 }534 { &8.34 1512 8.34

7000 (s
= = G-f{p1)

236.7 p11 + 150
Then by (276), putting G = 100 kv. per {t.,

o1

0.189 1200
100 = 37.9 [1 . ”mg— 3 ﬂ,:u?] 1_?55

Vo
This equation is satisfied by p; = 6.6 and py = 10.4.

the protective ratio for outside conductors is

10.4  4.62 350

w462 10,4 50
4,17 3.25 40
(P.R.)s = s 70 = 0.384
10.4 4.62

462 104

Therefore
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Representative values for 220-kv. lines based aon a cloud gradient
of 100 kv. per ft. and instantaneous discharge are shown in Fig. 74;
and in the following table there is a comparison between calculations
by Hunter’'s method and *

results obtained by Peek 7000 V4

from tests on model trans- ' r

mission lines. The agree- 6000 o g

ment is quite good. E , !

Nevertheless, Hunter's gsnﬂu AErApeme %“f/

method ignores the fact ; (g}/

that the .charges on the 3 e "y M

ground wires are not con- 5 #ﬁ\“ﬁ/ > um}f

stant, and are replaced g — L

by new charges during 2 1 re0 I 1.

the cloud discharge, so % s &,Hufﬁ,,ﬁ s T

that the effective diameter = A h{f,u-‘"‘ win e o dL o rdocte”

of the corona envelope Y [P fhitn Coron

may also be changing (un- 00 VP =

less the initial envelope

persists throughout the "0 10 20 30 %0 50 60 70 8 % 10 10 2

transient). Cloud Gradient in Kilovolts per foot
Tests on transmission Fic. 74.—Hunter’s Correction for Corona

lines * with artificial light-
ning surges give protective

COMPARISON OF CALCULATIONS AND TESTS

ratios which check very Arrangement P;:kﬁfdﬁf' ﬁ?&ﬁ;‘éﬂ
well with the conventional E | G
calculations, Equation ¢ 9 ¢ (2 0.44 0.4
(272). Equal traveling — = = o
waves were impressed ¢ 9 ¢ 2 0 H D2
on all three conductors of e Y e
a three-phase line. One o ¢ 2) 0.2 0.24
of these conductors was

grounded at several towers il 0 Sl 0.42 0.4
5.5 miles from the impulse 0 0 3 0. 56 0.56
generator. When the 5o o o 3 .
traveling waves reached o | @ | == 0. 33
the grounding point the '-

potential of that conductor
became zero, thus simulating the action of a ground wire during a
cloud discharge (the initial charge on the ground wire escapes to

* ' Traveling Waves on Transmission Lines with Artificial Lightning Surges,”
by K. B. McEachron, J. G. Hemstreet, and W. ]. Rudge, A.I.E. E. Trans., Vol. 49
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ground and is replaced by a new charge sufficient to maintain the
ground wire at zero potential). In the case under consideration, the
calculated surge impedances and conductor heights were

2:11 == ‘-}3?' Z1'_= — lﬂ? fI] —_ 45’
Z*_-'-z = N3F Z;}:j = 145 ;1'2 = 11’
Z;;;-; = 5‘-1-2 Z.‘-].l -_— ]1? ;I;a] - 4';"

All conductors were 0.14-in. radius. The calculated protective ratios
for No. 2 and No. 3 conductors are

YATYS -
R = = = (.
(P.R.)a 1 T 78
Zis i
Roa =1 — = (],
(P.R.}a 7 T &0

From traveling-wave calculations, Equations (283) and (287), the

transmitied voltages are '
2R

o

AR B

eal! = ex — L e
? 87 AR .2 o
e’ = gq — 213 ¢
3 3 2R+Z]1I

Conductor 1 was grounded through different resistances R (at one,
two, and three towers respectively), and the transmitted voltages
measured. A comparison between the test and calculated values is
given in the following table: '

Measured on 2 W Calculated
o I Calculated Waves Ratio e /e
i

No.l | No.?2 | No.J | No.1 | No.o2| No.3 | No.2 | No 3

20 168 177 [ - W IO T . 9% ) 1.(K)
0.4 40 140 |..... .| 3% 151 148 0. 830 | 0832
20.7 34 143 s o] T2 146 144 0 825 | 0. 810
5.5 4.3 142 143 3.4 144 142 0 813 ) 0, 798
1} A O { 143 141 0 807 | 0792
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It will be observed that the calculated and test values check very
well, and that the ratio of the transmitted and incident waves checks
the calculated (P.R.). It is also evident that the tower footing
resistance does not have much effect on”the protective ratio.

The general case of m ground wires tied together at the tower and
grounded through a resistance R presents a rather awkward situation
to solve. It may be shown, however, that the reflections depend only
on the waves on the ground wires. The transition-point conditions
are:

ex + e’ = &' on all conductors
ef' = e =,, . =, = RI

=

i +a)+ .. .+ lint+i)=0"4+...+i" + 1

(277)
) ) : . .
I+ T ey = fm+n
I.ﬂ- + IIN-I = I.'ﬂil“‘ L
Therefore
€r — E‘;;J - Ek” = &3 -E.i;r — (Ek -+ E;,-F) = - 2 F;,-’
e =e' —e.=(ey+e’)—e f r<m (278)

Making these substitutions and rearranging, there finally result
(# — m 4+ 1) simultaneous equations relating (e(”, €ny+,’ - .. €5')

(Y:m+1}1 + -+ + Fim+1‘1m] "31}r + Ffm.q-n fm+ 1) f.[m.|.n’ + ¥ R + ]
) en’ = — [Y{m+1)2 (e1 —e2) + ... + Yimeum (61 — €m)]

Yapak weon F ¥mdahF Funeo®nen whan ol By 6
=— [Voelers —ea) + ... 4+ Y.n (61 — en)]
(Yu+...+Yiu+... 4+ Vet + (Vigmen + . ..
4+ VomenFempn 4w e [y Pasadpilan)er
=—[(¥Yi2+ ...+ Fuz) (&1 —e2) + ...

+(Y1m+---+Ymm}(gl_ﬂm)+§%R]

| (279)

These equations show that the solution for any of the reflected waves
depends only on the incident waves (¢ . .. €,) on the ground wires,
and arc independent of the incident waves on the other conductors.



160 ORIGIN, CHARACTERISTICS, AND BEHAVIOR

Of course, having found e’ from (279), the reflected and refracted
waves on the other ground wires follow

et =" =... = =€+ e
£ fr r
€2 = €2 — €2 = ¢ + &1 — e
> (280)
e’ =¢€n —emw =¢1' + 1 — en

If there is only one ground wire, or if the m ground wires may be
replaced by an equivalent ground wire in conformity with (166)
and (171), then Equations (279) (putting m = 1) simplify to

Fll "'-?llII _I_ oo + 1';1& ":lfi'rtIr = = (El +f-'l!) 2R

Ys : [ Vorp e =0
21 €1 + + Yi, e | (281)
Yﬂl 'Ellr + I + ].“HT'I fnr = 0
Solving for any e’ there is
_Uu,- : ’
(e + ¢
e’ = — |- '?R'} (282)
Yi1 . ¥y, B
11rﬂl - - - Yﬂ'l't

Where Ay is the minor whose cofactor 1s Fi.. But by (162), (282)
becomes

Zi
e =— :ﬁa (e1 + e1') (283)
For 2 = 1 this gives
o e B o e (284)
1 TR+ 2., ¢ €1
o + ‘K b (285)
= g = gy = .
€1 1 €1 2R+ Z1s | €1 2,
— Ll
f = = 280
€x 2R+Z“E’1 c el (280)
e,)) = e+ e = e + ey (287)

Periodic Resistance Grounding of Ground Wires.—Fig. 73 illus-
trates the several factors which determine the formation of induced
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traveling waves originating from the release of bound charges on the
ground wires and on the line conductors. The ground wires are here
shown grounded through the tower footing resistances. Just before
the cloud begins to discharge, the electrostatic field gradient G is
constant; and, proportional te its distribution, bound charges Q) f{x)
and ()2 f(x) reside on the ground wires and line conductors. These
bound charges may be computed from Equations (252). Now, as
the cloud discharges according to some law F(¢), the field gradient
diminishes accordingly, and elements of the bound charges are released
as traveling-wave components moving away In opposite directions.
When waves on the ground wires encounter the towers, reflections
occur on both the ground wires and line wires. These may be cal-
culated by Equations (284), (283), (286), and (287) if there is only
one ground wire. If there are several ground wires at the same level,
then they may be replaced by a single equivalent ground wire in
conformity with the requirements of Equations (166) and (171),
But if the ground wires are unsymmetrically placed so that they are
not at the same potential (prior to reflection), Equations (279) apply,
but thev will not be invoked in the present analysis.

The induced surge may be calculated in the following steps:

a. Calculate the bound charges from (2532), and censider each
span separately. The total bound charge on any wire is then the
sum of the bound charges for each span, and each of these mayv be
handled separately.

b. Replace the actual ground wires by an equivalent ground wire
consistent with the conditions imposed by {166) and (171).

¢. Compute the traveling waves on every wire for ecach span.
The shape of these traveling waves is given by (257) or its graphical
or tabular method counterpart.

d. Calculate the reflection and refraction operators for both line
and ground wires, as given by (284) to (287). Then

ey = ae = reflected wave on ground wire
e/’ = be = fransmilied wave on ground wire
e’ = ¢ e = reflected wave on line wire

ex’ = e ey + ex = transmitled wave on line wire

e. Construct a lattice as shown in Fig. 73 of a sufficient number
of sections to include the requisite time interval and number of spans,
and therefrom determine the potentials at all points and times by
superposition of the waves from the bound charges of all spans.

The simplest case is that of instantancous cloud discharge and
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Of course, having found e’ from (279), the reflected and refracted
waves on the other ground wires follow
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and (171), then Equations (279) (putting m = 1) simplify to

Fll "'-?llII _I_ oo + 1';1& ":lfi'rtIr = = (El +f-'l!) 2R

Ys : [ Vorp e =0
21 €1 + + Yi, e | (281)
Yﬂl 'Ellr + I + ].“HT'I fnr = 0
Solving for any e’ there is
_Uu,- : ’
(e + ¢
e’ = — |- '?R'} (282)
Yi1 . ¥y, B
11rﬂl - - - Yﬂ'l't

Where Ay is the minor whose cofactor 1s Fi.. But by (162), (282)
becomes

Zi
e =— :ﬁa (e1 + e1') (283)
For 2 = 1 this gives
o e B o e (284)
1 TR+ 2., ¢ €1
o + ‘K b (285)
= g = gy = .
€1 1 €1 2R+ Z1s | €1 2,
— Ll
f = = 280
€x 2R+Z“E’1 c el (280)
e,)) = e+ e = e + ey (287)

Periodic Resistance Grounding of Ground Wires.—Fig. 73 illus-
trates the several factors which determine the formation of induced
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traveling waves originating from the release of bound charges on the
ground wires and on the line conductors. The ground wires are here
shown grounded through the tower footing resistances. Just before
the cloud begins to discharge, the electrostatic field gradient G is
constant; and, proportional te its distribution, bound charges Q) f{x)
and ()2 f(x) reside on the ground wires and line conductors. These
bound charges may be computed from Equations (252). Now, as
the cloud discharges according to some law F(¢), the field gradient
diminishes accordingly, and elements of the bound charges are released
as traveling-wave components moving away In opposite directions.
When waves on the ground wires encounter the towers, reflections
occur on both the ground wires and line wires. These may be cal-
culated by Equations (284), (283), (286), and (287) if there is only
one ground wire. If there are several ground wires at the same level,
then they may be replaced by a single equivalent ground wire in
conformity with the requirements of Equations (166) and (171),
But if the ground wires are unsymmetrically placed so that they are
not at the same potential (prior to reflection), Equations (279) apply,
but thev will not be invoked in the present analysis.

The induced surge may be calculated in the following steps:

a. Calculate the bound charges from (2532), and censider each
span separately. The total bound charge on any wire is then the
sum of the bound charges for each span, and each of these mayv be
handled separately.

b. Replace the actual ground wires by an equivalent ground wire
consistent with the conditions imposed by {166) and (171).

¢. Compute the traveling waves on every wire for ecach span.
The shape of these traveling waves is given by (257) or its graphical
or tabular method counterpart.

d. Calculate the reflection and refraction operators for both line
and ground wires, as given by (284) to (287). Then

ey = ae = reflected wave on ground wire
e/’ = be = fransmilied wave on ground wire
e’ = ¢ e = reflected wave on line wire

ex’ = e ey + ex = transmitled wave on line wire

e. Construct a lattice as shown in Fig. 73 of a sufficient number
of sections to include the requisite time interval and number of spans,
and therefrom determine the potentials at all points and times by
superposition of the waves from the bound charges of all spans.

The simplest case is that of instantancous cloud discharge and
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rectangular bound charges. This case also gives the maximum
departure of the potential at midspan with respect to that at the
towers. Curves calculated on these assumptions for a bound charge
2000 ft. long and 1000-{t. spans are shown in Fig. 76. The traveling
wave on the line wire 1s 0.550 (18 per cent high) at ¢ = 0, 0,488
(4 per cent high) at ¢ = 1, and 0.472 (1 per cent high) at = 2 ms,,
respectively. Had the ground wires been tdeal the voltage would have
been 0.467—a wvalue quickly approached by successive reflections.

Crovnd Wire

Line Wiras

Fii. V3. —Waves from Released Bound Charges

Top lattice: Reflections and refractions on ground wire. Bottom lattice: Reflec-
tions and refractiens on line wire

The potential difference between the ground and line wires is much
greater for a short period (1.30 for 1/2 ms.). However, under the
actual conditions of a finite rate of cloud discharge, this difference
would only be slightly in excess of 0.467. Therc 1s no need, therefore,
to complicate the calculation of the protective ratio hevond that
required for ideal ground wires.

Direct Strokes.—The investigation of direct lightning strokes on
transmission lines falls inte two categories. First, there are the
statistical studies relating to the probability of a line being struck,
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the magnitude of the voltages and currents involved, and the duration
of the surge; and second, there is the analysis of the resulting dis-
turbances. ,

A considerable amount of information concerning the paths and
frequency of storms throughout the United States is available from
the meteorological survey charts issued by the Bureau of Standards.

2000
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F1G. 76.—Approach to 1deal Ground Wire Conditions on the Spans

These data are further supplemented by the operating records of
numerous power companies. Thus rough estimates may be made
of the number of storms per unit area per year in a given locality.

In Fig. 774 1s shown a transmission line tower on a level plane
free of brush or other projections. Although the idiosyncrasies of a
lightning bolt are too erratic for anyone to predict where it will go, yet
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the only justihable assumption is to suppose that, on the average.
it will strike to the nearest object. On this basis, the stroke will.
by preference, hit the tower, when the distance r is less than the
height 7I. In Fig. 77B is plotted a set of curves showing the distance
D, corresponding to » = II, between the projection of the approaching
center of disturbance and the tower, as function of the cloud height fF
and the tower height /.. If there is absolute certainty that lightning
will strike within a zone of width W centered on the transmission
line, then the probability that the line will receive the stroke1s 2 D W,

@ Approaching
» Cloud
’h.
H
=XB
| h
ey
Tower on Level Plane Tower on a Hill
(a) (b)
1200 |
r2={H-H)E+ D¢
rEN ra
D2L b (2H-H)
20=susceptibie Zone

0 L
0 1000 2000 3000 4000 S000ft
H

{B)

Fi6. 77.—Susceptible Zone of a Transmission Line

From the curves of Fig. 778 it is seen that 2 D is of the order of 1000 ft.
If the tower is on top of a hill or ridge (as 1s often the case in order to
provide longer spans) then its chance of being hit is greatly magnified.
The susceptible distance 2 D can be ascertained in such a case only
by drawing the clearance arc as shown in Fig. 77C. On the other
hand, the proximity of trees or other nearby projections decreases the
chance of a direct hit to the line. The tower 15 more likely to be hit

than the sagging span, because it is higher.
[t has been proposed to provide line towers with extension masts
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ot sufficient height to insure their being struck instead of any part
of the line. The necessary height of such masts is of the order of
300 fr. for 1000-ft. spans. Still other schemes have been advanced,
such as paralleling the transmission line by separate masts supporting
a direct-hit wire,

The voltage of a lightning stroke has never been directly measured,
but calculations based on current

N
measurements suggest that the ool wﬁg_‘ !
maximum is from ten to fifteen NI 4 mw

g . 5.* |
million volts at the point of contact ::: Ho e { I _ﬂ: T
with the transmission line. 80 - ::n RO

The ground wire should be lo-  semgPhi e
cated high enough above the linc it R .
conductors so that it adequately e T =

. 5 H=l
shields them from the direct 1 T F Hm

i |

stroke. Curves applying to 1000-ft. °c o % % % % 035 ¥ 00 10 20 DD WO

cloud hEl:ghtE are given in Fig. 78, FiG. 78.—Location of Ground Wire
from which the necessary ground- - e TakE Tt s

wire height can be determined.
For higher clouds there is a greater margin of safety. The equation
of these curves is

A AR & TR

where x, ¥, #, and H are defined in Fig. 78. Almost invarnably, if the

Zo
Lightning ’}
Stroké ?/ Initist Wave
ﬁ Frrst Reflection
ey & . First Transmitted Wave
.3 bé 5 ' be, Second Reflechion
..-"..r..r..-. B S ..-".:-..-a = ""ffﬁ#’ %J//&A ff//}i ,,;ﬂ b 3 iy T Ty

Fic. 79.—Reflected and Transmitted Waves Due to Periodic Resistance Grounding

ground wires are located far enough above the line wires to prevent
sparkover between them, the clearance will be more than sufficient

for shielding purposes.
When lightning strikes the tower (No. 1), Fig. 79, a pair of travel-
ing waves ¢; start out on the ground wires accompanied by companion

waves on the line wires.
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Let Zo = surge impedance of the lightning stroke.
Z11 = self surge impedance of the equivalent ground wire.
Zi; = mutual surge impedance between the equivalent ground
wire and any line wire k.~
ep = incident wave of the lightning stroke.
e; = initial wave on the ground wire.

K = tower footing resistance,
[ = tower current.

Since there can be no current 1n the line wires at the point of stroke,
it follows that

en v = RI = e
ey — €n' ] |
o) g m s a()
( Zs ) i N Zu
e = Ly
Therefore
ZRZ“ ol
— : 280
T IR+ ZoZu + 2Za R (259)
AT
= 29()
£} Z]] £ { J

When these waves reach the adjacent towers they are reflected and
refracted in accordance with Equations (284) to (287). Waves
arriving at Tower 1 from the reflection points are reflected therefrom as

20 R — 211 (Zu—I—R)E
2Z20R+Zn (Zo+ R)

i ~2Zu R+ 2Z0)
"V 2Z0R+Zu (Zo+ R

f

€1

= @ ¢g) (291)

¥

g, — €

= e T p e (292)

These two equations follow from (284) to (287) upon superimposing
the two waves reaching Tower 1 simultaneously from both the right
and left, regarding R and £y in parallel.

Inspection of (289), (290), (291), and (292) shows that these
equations also result if the lightning bolt is assumed to have a surge
impedance of 2 Zy and if the line and ground wircs extend in one
direction only from Tower 1 as shown in Fig. 80. Then the reflection
lattices of Figs. 80 and &1 may be constructed. The potential wave
passing from the lightning bolt to the ground wire is e;.  When this
wave reaches Tower 2 a part @ ¢;, Equation (284), is reflected back,
and a part b e;, Equation (285), is passed on. Likewise, on the line
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wire, ¢ ¢3, liquation (286), is reflected, while {(ex + ¢ ¢;), Equation
(287), 1s transmitted. The same thing happens at all towers, except
No. 1, where the reflections obey (291) and (292). By means of
these lattices the potential at any tower at any time may be readily
calculated.

In Fig. 82 are shown the potentials on the ground and line wires
and across the insulators, as function of the tower footing resistance,
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Fic. 80.—Reflections and Refractions on Ground Wire. Lightning Stroke at Tower

The voltages on the ground wire at the junctions as {functions of time are:

ey =g () +lateaed 2T+l ta){aa* +ad®)|-a{t —4T) + ...
ex2=bey{t —T)+adbta*btaablet —3T)+ ...

es=0e (! — 2TV 4+ led®+2a* P +axadye(t —34T) 4+ ...

e =0, —-3T7) 4+ ...

and for several towers. It is thus evident that low tower footing
resistance has five beneficial results:

1. Reduced potentials on the ground wires.

2. Reduced potentials on the line wires.

3. Reduced potentials across the insulators.

4. Limitation of the disturbance to a few spans.
5. Shorter duration of dangerous voltages.

For tower footing resistances below 25 ohms the reduction in voltages
is practically directly proportional to the reduction in resistance;
that is, 10 ohms allow twice the voltages that 5 ohms would permit.
[t is also to be noticed that the disturbance resulting from a direct
lightning stroke which involves the ground wire is not a simple travel-
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ing wave free to continue its travel along the hine, but 1s a great
multiplicity of successive reflections which are necessarily limited to
a few spans, and are rapidly dissipated. Therefore, unless the light-
ning bolt contacts a line conductor, station apparatus is comparatively
safe from direct strokes more than, say, ten towers away. It is
recommended that every precaution be taken to reduce the tower
footing resistance to about 3 ohms on the first few towers from the

& Z, & Ground Wre 32

Fic. 81.—Reflections and Refractions on Line Wire. Lightning Stroke at Tower

The voltages on the line wire at the junctions as functions of time are:

Ei=e:i) +2c+Bajen(t —2T)+2be+2abc+2aac+ apa?
+ﬂﬂb2]'f1“"4r}+,.,.

Eo=est — TV 4+ee,(t —T)+[e+Ba+bc+abc
+aacl e (t —3T) 4+ ...,
Fo=eli—2T)V+[c+ bt =2+ Bct+ablctaabe

+a*bctabec+ec+Bataac)ealt—4T)+ ...,
Ei=eali = 3TV + e+ b+t =3T)+....

station. It is also advisable to install extra ground wires on this
section to shield the line conductors more effectively.

Fig. 83 shows the effect of the lightning surge wave shape on the
potentials on the first three towers. The longer the front of the
wave the lower the voltages, for the reflections are able to start
reduction before the initial wave is fully developed.

[nstruments have been installed on towers for measuring the
currents due to a direct stroke. The sum of the currents measured
on all adjacent towers from a single lightning stroke will exceed the
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actual current in the stroke, because, as is evident from Fig. 80,
the maximum currents in different towers occur at different instants.
The maximum voltage on any tower can be found from Fig. 80, and
the maximum current is simply : :

The ratio of the sum of the maximum tower currents to the maximum
current in the stroke is given in Fig. 84 as function of the tower
footing resistance. Thus for K = 60 the sum of the measured values
may exceed the actual value by 40 per cent.
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Fi1c. 82.—Potentials at the Towers in Percent of the Lightning Voltage

If lightning strikes the ground wire at midspan (R = «), and
flashover does not take place, there 1s by (289) and (290)

2711 e
= 293
1 Zit+ 2 2o gy
VAP
- 204
€ Z“ €1 ( )
Pk
O R

These voltages will then persist until reduced by the reflections from
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the towers. If the " length 7 of the span in microscconds is T, then
that time must elapse before relief arrives. In the meantime, flash-
over between ground wire and line conductor should not occur. This
will not happen if the separation 1s such that the sparkover voltage
is not reached before the waves of reduction return from the towers.
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Fi1c. 83.—Potentials at the Towers as Functions of Time

In Fig. 85 the voltages on the ground wire, line conductor, and between
them have been plotted as function of the separation (the mutual
surge impedance £, decreases with the separation); and the spark-
over characteristics are given for different time lags. It is seen that
for 1000-ft. spans the separation at midspan should be at least 28 ft.
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By increasing the tension on the ground wires it is usually possible
to obtain the required separation at midspan with smaller separation
at the towers.

The following table gives the voltages due to a direct stroke either
at the tower or at midspan.

« JBASED ON 10,000,000 VOLTS REACHING POINT STRUCK
- ] - vbLTAGE -
12 GROUND WIRE
] ‘s
10} o '
VOLTAGE
* o
T - 8 -
14 w T
s "J"“" foatent Lt X, r
| Isg' _:J |
2 3, ~GROUND WIRE
2, 4 ¥ éqé
wij= 0% 3'_ 'T PHASE
04 2 7 .
£ o , A
a i) &
g D5 101 20 2% % ¥ 40 45 50 FT.
 EOWER T A LD a0 Mo 24 DISTANCE BETWEEN GROUND VHAE AND PHASE WIRE-g
Frg. 84.—Calculated Relation of Sum Fig. 83, —Ahinimum Clearance Neces-
of Tower Currents to Total Current sary to Prevent Sparkover from Ground
in Lightming Bolt for Tower with Wire to Line for a Direct Hit to
Different Footing Resistances Ground Wire in Center of Span
Stroke at Tower Voltages Stroke at Midspan
2 R5n E . ; IR 2=y,
Coe [ ew(tower) . . . ( ( L
(21 =+ 220) & + 211 2o 2R+ 5, S+ 2 2o
LR e w. (midspan} ( sl i
. gow 11 ] BX : an &
(zu + 2z0) R + z11 50 4 z11 =+ 2 3
2Rz, E 5 _J ( 2R )( 2 5y, z
A lHoe! LOWCr) . . . ER
(zi + 250) R 421150 2R 4+ zn/ s+ 2
2 i~ Sir ' 1 Faisi : ( 2 S g7
I MiispEan) @ . .
iz + 220} R + 211 20 ae : S+ 2z
2R (51 — 5 E - (1 | ( 4 I | (511 — Elr) E
== In=sul b, ower . s - pf
LE“-I'EEQ}R-]-EHED _]R—I—:u) a1 22
ZRfE“ —5”—:'5 d L ™ Sr
_ Vinsut {fmidspant . . . ! ( E
{5 + 2 20) B + 21120 e z I+ 2z

z11 =equivalent self surge impedance of all ground wires,
z1, = equivalent mutual surge impedance of all ground wires to any
line wire r.
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zo = surge impedance of lightning bolt.
R = tower footing resistance,
E = voltage of incident wave from lightning stroke.

In terms of the current in the tower, the voltages (for a strike
at the tower) are .
) I"g.w. _— Vt:}w‘er = R I

the = R/ (ﬂ:

Z11

RI(E“ = Elr)
211

Z1r 511 =2 0.20

Vinaw. = 0.80 R I

I

VIH-EI'LI].
Ordinarily

so that

Introduction of Extra Ground Wires.—It has often been sug-
gested that the first few towers out from the station should be pro-
vided with extra ground wires.. The arguments favoring such an
installation are:

1. Greater shielding effect from direct strokes.

2. Lower induced surges on that section.

3. Reduction of incoming waves due to a reduced surge impedance.
The last advantage is not of much importance, since the reduction
is only a few per cent. The transition-point equations for the = line
wires at the point where the extra ground wires are introduced are

Yii 1—er)4 ... + V1. (ea—eY=yne"+ ... +yine’

Y:nl (El—ﬂlr)+ 1oa s + Yﬂ-ﬂ- {En_an‘l)=ynl 31”+ LR +Tnn En”

(296)
e1+e1’ =e” :
£u+£ﬂr=€n”

Rearranging
{Yll + }'11} 'E"l” + ...+ (Fln 7+ :!r'ln) En”
= 2{¥ner+ s o Yiae,
(297)

(Y:n.l + }’nl) '51” + AT - (Ynn + }'nn) ﬂn“
= 2 [Yﬂlgl R Fmtﬁn}_
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Herefrom any transmitted wave ¢, may be calculated. The surge
admittances, of course, involve the ground wires. As an example,
consider a single line conductor and one ground wire entering a
section over which there are two ground wires. Let

Z]l = 45() 11 = 450 219 = 100
Zas = 500 z20 = 500 Za3 = 100}
Zl?_, = 100 233 — 500 Z31 = 100

Then by (161)
Yii = 0.002325 and vy = 0.00240

By (297) the transmitted wave on the line conductor is

2 Viier  0.004650
Y+ v 0.004725 ¢

Elf! e

= 0933 £

Thus the reduction i1s only 2 per cent. Of course, by using more
extra ground wires and placing them closer to the line conductors, a
greater reduction can be secured, ‘but it is difficult to get more than
5 per cent reduction.

Grounding Rods and Earth Wires.—The resistance of driven
grounds depends upon the resistivity p of the earth, the diameter
2 r and length L of the ground rod, and the number N of rods and
the spacing s between them. H. B. Dwight * gives for the resistance

of a single rod
p 4 7. )
R, = log — — 1
1 ZWL(DE r

and for a pair of rods separated by s centimeters

p 4 L ]
Rz 4ﬂ'L{[Ug ¥

[] 2L+‘\/52+4L3+ s V’sﬂﬂ--}L“’]]
e 3 T I L 2L

and for N ground rods, approximately

4L
o~ P (Ing——1)+ -

" 2xLN ? 2xlN
Z[l 2L+\//52—|—4L3+i '\/s“-'-}-tlL!]
o8 5 3L 2L

* « The Calculation of Resistances to Ground and of Capacitance,” Journal of
Mathemuatics and Physics, Vol. X, No. 1, 1931.
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where the summation i1s to include the s distances from the central
rod to all other rods.

The resistivity of the earth varies over a wide range and is not
constant with respect to voltage. At low values the ground resistance
to impulses is practically the same as that measured by direct current.
But for higher values the resistance to high-voltage impulses is always
less, the more so the higher the d-c. resistance and the higher the
voltage. Consequently, measured values of ground resistance are
merely an indication of the order of magnitude. Calculated values
arc of still less importance, because such calculations assume an
carth of homogeneous constant resistivity, whereas the resistivity
varies not only with the applied impulse voltage, but also with the
moisture content of the soil, and with the depth. Ordinarily, the
rods are 8 or 10 ft, long, and if more than one are used they are spaced
about 10 ft. apart. The following table is indicative of the gain
that may be realized in fairly wet soil by paralleling several rods:*

Number of reds. ... . 1 i 3 4

(] ]
o
=1
o

Ohms. ... ...... .. 40 22 14 1)
I

|
) |
i
I
b
o ) |

For more details, including curves, the reader should consult the
articles referred to.

A wire laid on, or buried beneath, the surface of the ground, and
connected to the tower footing, is called a counterpoise, or earth
wire. These counterpoises may prove quite efficient in reducing the
resistance. In effect, they behave as short and very leaky transmis-
sion lines. Since the reflections on such a leaky line subside in one
or two oscillations, the counterpoise very quickly acts as a series
resistance with distributed leakage to ground, as shown in Fig. 86.
The effective terminal resistance 1s

Ro =\/§ coth Vr (!

which is in parallel with the tower footing resistance R;, so that the
net resistance 1s

R Ry R I

=RI+R2=

1+ R \,-“% tanh V'r G I

** Lightmng Arrester Grounds,”” by H. M. Towne, General Eleclric Review,
March, Apnil, May, 1932,
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In Fig. 86 this equation has been fitted to two different test curves.
It is seen that the agreement is quite good. The major gain is realized
in the first two or three hundred feet. This suggests that a given
length of wire is best employed as several 200 300 lengths rather
than as one long wire.

Summing up, the design of the lightning protection for a trans-
mission line resolves into the following considerations:

a. Consult the metcorological charts and the records of power
companies operating in the same territory, to get an idea of the num-
ber, severity, and season of lightning storms in the locality of the line.

{ R, « Tower footing resrstance Y
0K Ry~(E coth V6 L = eff resis.of 3
90 RE i PRRTEIPOE "*é" s D
& Fugllte : = G 36 36 36
— e IRALLY f;faﬁﬁﬁﬁf
AN N L e 30 30 30
c
& 70
“_} -,
‘g ED. e . General Fleciric 1950 Tesis{ K, =400 ohms)
2 ~ |
2 50 e e e T S T -
w
£ E__ XD
e 40 Q R, ivliD tanh 0281
= b L R 16
g 30 & E'H#ﬁﬁraghﬂﬂf
& 20 | S
0 Westinghouse N J Tests (R, =128 0hms,
0
0 v 2 3% 4 5 6 7 8 9 0 n 92 3 4 1500

Length (¢) of Counterpoise
Fi1c. 86.—Effect of a Counterpoise

b. Estimate the maximum induced voltages, based on Figs. 71
and 72. |

¢. If the induced voltage is too high for the line insulation, cal-
culate the protective ratio of the ground wires by Equation (272).
The maximum induced voltage is then

e =aGh (PR

and the number and arrangement of the ground wires should be such
as to reduce this value below the flashover voltage of the in-
sulators,
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d. Estimate the probability of the line being struck by lightning,
from curves such as indicated in Fig. 77 and the data resulting from {a).
e. Determine the maximum permissible tower footing resistance.

(insulator flashover in time 2 T)

R =125 :
(assumed current in tower)

where T = length of span in microseconds. The insulator flashover
is to be taken on a rising front. To prevent most flashovers the
tower current may be taken as 100,000 amperes, but for practically
complete immunity from flashover it should be taken as 300,000
amperes,

f. From Fig. 85 determine the necessary clearance of the ground
wire above the nearest line conductor at midspan.

g. Check the clearance found in (f) against that necessary for
shielding effect, as given in Fig, 78.

k. Install extra ground wires on the first few towers away from
the station or terminal equipment, and reduce the tower footing
resistances on these towers to the lowest possible values.

SUMMARY OF CHAPTER X

Ground wires will reduce by approximately 50 per cent the voltage appearing on
a transmission line by electrostatic induction. The exact reduction factor is called
the profective ratio and depends only on the number and arrangement of the ground
wires and the height above ground of the line wire for which computed. It is inde-
pendent of the presence of the other line wires. In terms of the surge impedances
of the conductors, the protective ratio is given by Equations (272) and {270), in
which the (pi:... Pmm) cocflicients are replaced by the corresponding surge impe-
dances (%11...2mm). The effect of corona can be approximated for in accordance
with Equations (273) to (276). Low tower footing resistance is not of such wvital
importance for induced surges as it is for direct strokes, but even for induced surges
it should be kept below 75 ohms.

Ground wires used for protection against direct strokes should conform to the
following requirements:

1. High enough abave the line wires to intercept the stroke.

2. High enough above the line wires at midspan to prevent a sicdeflash during
the interval required for the reflections from the tower to return to nudspan
and relieve the stress.

3. Low enough tower footing resistances to prevent flashover of the insulators.
(Vingu. =08 R 1.}

Ordinarily, condition 2 necessitates a separation of 25 to 33 fit., whereas condi-
tion 1 is satished by 10 ft. Condition 3 may require tower footing resistances of
10 ohms or less, in which event it may be necessary to use ground rods or counter-
poises as discussed in the text. The advantages of lower tower footing resistance are:
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(e) Lower voltages on the ground and line wires, and across the insulator strings,
() limitation of the region of disturbance to fewer spans, and (¢) shorter duration of
dangerous voltages. It is therefore especially essential to reduce the tower footing
resistances on the first few towers away from the station to the lowest possible values,
A ground wire which functions properly limits all high voltages due to direct strakes
to very short waves, regardless of the time of cloud discharge.

The introduction of extra ground wires for the purpose of reducing the surge

impedance is of negligible value.



CHAPTER XI

ARCING GROUNDS AND SWITCHING SURGES

There are two generally accepted theories of arcing grounds, called
the normal-frequency arc extinction and the oscillatory-frequency arc
extinction theories respectively, referring to the manner in which the
arcs are assumed to go out. By either theory the building up of
abnormal voltages is a cumulative recurrent phenomenon. Figs.
87 to 96 inclusive used to illustrate this discussion have been taken
from a paper by J. E. Clem.*

Normal-Frequency Arc Extinction—Single-Phase.—Fig. 87 shows
a single-phase circuit in which the phase voltages E; = E and

F16. 87.—Normal Frequency Arc Extinction—Single Phase

Eo = E are oscillating at normal frequency about the neutral vol-
tage £, = 0. There is thus a voltage difference between lines of
Eis =2E. If now, line 2 arcs to ground as it reaches its maximum
negative value —E, then line 1 must go to E; = 2 E, but since the
circuit contains both inductance and capacitance (to ground and
between lines) the potential E; will oscillate about the final value 2 E
with an amplitude of

A, = (final voltage) — (initial voltage)

= (+2E) - (+E)=E (299)

¥ “Arcing Grounds and Effect of Neutral Grounding Impedance,” A.I1.E.E.
Trans,, Vol. 49,
178
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The maximum voltage reached by the oscillations is
V1 = (final voltage) + (amplitude of oscillation)
- 2E)y + =~ (E)=3E (300)

The high-frequency oscillation rapidly dies out, and when the normal-
frequency arc current {which is practically 90° lagging) passes
through zero the arc goes out. At this instant E, = —2 E and
E> = 0, so that

OQr=Knei+Kigea2=—K 1 2E40
Uz =Kiney + Kozea =— K122 E40

O +Q:=—2E (K + K1)

When the arc extinguishes, these charges diffuse over the two lines
and establish (through an oscillation) the average potential P (which
i5 also the neutral voltage E,)

_ {(Q1 4+ Q2) _ —2 (K + Ki2) E
Kn+2Ki2+Kse K| +2K124+ Koo

If the two lines are at the same elevation, then Kss = K;; and
P = — E, and the normal-frequency oscillation takes place about P
as an axis until Ez again arcs to ground. If this second arc occurs
when Ez = — 2 E, then as before

Al =(+2E)—-(0) =2E
Vi=02E) 4+ (2E)Y=4E

The high-frequency oscillation dies out, and again, as the current is
passing through zero, that is, when E, = — 2 E, the arc goes out and
the sequence repeats, the conditions being identical with those which
obtained when the arc went out the first time. Thus 4 E is the highest
voltage obtainable on the basis of normal-frequency arc extinction on
a single-phase line.

Normal-Frequency Arc Extinction—Three-Phase.—The analysis
for a three-phase system is similar to that for the single-phase system
described above. Referring to Fig. 88, suppose that line 2 arcs to
ground when E; =— E and E, = E3 = E 2. Then since Ej2 =
Ea3 = 3 E/2 at this instant

A= 3E2) - (E/2)
Vi=03E/?2)+ (E)

E
SE 2

I
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The arc goes out when It + f3 = 0, that 1s, when E, =— 3 E 2,

Ez = 0, E3 = — 3 E 2, and the charges on the lines are
i =Kner+ Kizez+Kizeg=— (Kl +Ki3) 3E 2
Q2= Kor1e1 + Kozea + Kozez = = (Ko + Kog) JE 2
Q3 = K311 + Ksaea+ Kazgezg = — (Ka1 + K33)3E 2

Or+0:2+03=—-(Knu+ K+ K+ 2K3+ Ks3)3E 2

-

+33E

+34E

- t-54¢
Fi1c. 88.—Normal Frequency Arc Ex- Fic. 89.—Oscillatory Frequency Arc Ex-
tinction—Three-Phase tinction—>Single-Phase

When the arc goes out these charges diffuse through the system and
establish (through an oscillation) an average potential (which is also
the potential of the necutral E,)

O+ Q2 + O3
(K11 + Ka2 + K3z + 2 K12 + 2 K13 + 2 Ko3)

_ —3 K+ Kga+ Ko+ Kz +2Ka3) E
2(Kii +Kop+ Kazz +2K12+ 2Kz +2 K1)

P=
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If the line is completely transposed so that K;) = K. = K33 and
Ki2 = K23 = Ky this gives P = — E and the phase voltages oscil-
late at normal frequency and amplitude about P as an axis until the

arc restrikes, when Eo =— 2 FE, Ky = E3=— FE 2. Then
A=(3E)—-—(—05E)=2E
V=(15E + (2 E =353 FE

Il

the arc goes out again at E, = E3 =— 1.3 E. Thereafter the
sequence may repeat, but with no further increase in voltage.
Oscillatory-Frequency Arc Extinction—Single-Phase.—Referring

to Fig. 89, suppose that ine 2 arcs toground at £ = Eand £, = — E.
Then since E12 = — 2 E the amplitude of the resulting high-frequency
oscillation is A, = (—2E) — (—E) =— E

Vi = (—28) %4 (=) =—3FE

The arc is assumed to go out as the high-frequency current 1s passing
through zero, that is when E; = V. The charges diffuse through
the system and establish the average potential

(Kiy + K2} (=3 E) 3

P = o — -
Kit+ 2K + Koo 2
and the normal-frequency oscillation 1s about P as an axis. At
Es=—253E and E; =— 03 E the faulty line Es again arcs to
groufid,‘and A=QE) — (—-0.5E) =23E

V=QFE) + (25E) =43E

The arc goesout at £; = V and the charges diffuse through the system
to establish an average potential
A3 E

gl > 225 E

The sequence of events then repeats, so that at the kth arc

| AP
Pua-n = “; 2
E, = Py_, — E belore arcover
Ay = (—2 E} - (P{J:—l} =il == = Pu:—u

Vi=(—2E) 4+ (=E = Pa_p) == 3E = Py

- f.-t_"lj
s S e D

2
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Substituting repeatedly into the right-hand member until & = 2
and summing the resulting series, there results

Vi -
~Vi = 3E + 2
1| Vi,
=3E+4+-|3E “‘“]
w3l
3E 3E |V
=SJ*+'—‘+T‘|" +2{t~z;+_;._ur L)

1
SE{I—F}+§—|—.”+jt__1]—rﬁﬁask--+°¢

which i1s the maximum voltage reached.

F1c. 90.—QOscillatory Frequency Arc Extinction—Three-Phase

Oscillatory-Frequency Arc Extinction — Three-Phase — Isolated
Neutral.—Referring to Fig. 90 and ignoring all damping or neutral
connection, there is

Py - n— Vu: 1)
E, = E3 = Py_y — 0.5 E before arcover

Ay = ("1-5 E) "‘ (Pflc-]]l =), 3 E} = — E — Pu:—n
Vi = (—-153E) + (_ E = P{t—l}) = — 25k — P{F.‘—-]l
?
-_— 2‘5 E = ; V“;_”
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The maximum voltage is realized when V., = — V.  Therefore
1 — 2.3 Vypax = — 2.5 E,0r Ve = 7.5 E.

ARCING GROUND TRANSIENTS—THREE-PHASE—NEUTRAL IMPEDANCE

The previous discussion 1s based on many simplifying assumptions,
such as ignoring the characteristics of the transients and all losses and
decrements. The present section inquires more into the nature of the
transients. Referring to Fig. 91, let Z,, be the neutral impedance and

F1G. 91.—Neutral Impedance

Z the series impedance per phase, including the line and connected
equipment. Then the phase voltages are

e1 = e, + E; — Zi)

2 = e, + Ko — Zia} (301)
E3=En+E3_Z?:3J

where
E€n

neutral voltage.

Ey, Es, Ezg = E cos (Mt +8)), E cos (At 4+ 8), E cos (Mt + 83)

generated voltages (E; + E2 + E; = 0).

21, 42, i3 = phase currents.
The neutral voltage is

€n = — Zutn = — Z, {11 + 42 + 43) (302)
The currents flowing into the capacitances are
P = P (Kiie1 + Kizee + Kizes)

pQe=p(Kaer + Koz e2 + Koz e3)
p s = p(Ks1e1 + Kazeo + Kages)

o

(303)
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Substituting (303) and (302) into (301), and rearranging, there
result the differential equations of the system, for ne line grounded and
no connected load. These equations further ignore the distributed
nature of the line constants. g

Ei=14+pZKn+ 92, (K11 + Ko + Kai)le
+[pZKis + pZ, (K12 + K22 + Kaz)les
+ [pZKizs+ pZ. (Kiz + Koz + Kazlles

Ex=[pZKa+pZ. (K + K21 + Ks1}]ey
+1+pZKa2+pZ, (K12 + Koz + Kaz)lez; (304)
+ (pZ Koz + pZ, (Kia + Koz + Kza)les

Es=[pZKsn +p2Z. (K1 + K21 + Kar)le
+ [P Z Ky + pZ, (K12 + Koz + Kaz)les
+ 1+ pZKas+ pZ,.(Kiz3+ Koz + Kas)les

For a completely transposed line, K;3 = Ko2 = K33 = K and
Kio = K13 = Kag = K'. Let -

y(p)=14+pZK+pZ.(K+ 2K’
$(p)=pZK +pZ,(K+2K"
Then (304) becomes
Er=ye+der+oes
Eo=¢er+dextes (305)
Ezy=¢e +dex+ yYes |

from which there are the differential equations

(¢ —¢) ¥+ 2¢) e
=4+ )1 — @ (Ex+ E3) = (¥ + 2¢) E,

(f — o) (¥ + 2¢) e
= ¥+ o¢)Ee— ¢ (Ey + Ez) = (y +2¢) FE2

(f — @) (¥ + 20¢) e
= (¢ +¢)Es — o (E;+ Es) = (y +2¢) E; .

By (303) and (302)
17n=i'1+’1'2+i3={K*{—ZK;)‘{J{E]-F-EQ-{-EEJ (307)
En = '_'Zu 'I'En = - (K'I_zKF) anffl+€2+33) (303)

- (306)
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let Z=(r+pL)and Z. = (r. + pL,). Then
v=1+[rK+r. K+2K)p+[KL+ (K+2K')L,)p*
¢ = P K +r. (K+2K)]p+ [K'L+ (K + 2K') L.]p?

- (P2 +28p+ QP2+ 2ap + wo?) (309)

T
Q= wo~

(¥ —d) (Y +2¢)=

where
2a =1(r+3r,) (L+3L,), 28 ro L
w? =1 (L+3L)K+2K), 9* =1L (K —-K

w = '\-/u.:lnz = {IE

1= "/ﬂﬂz — B¢

Hereby the solution for e, €2, or e3 in (306) is

e =€ (Acoswt+ Bsinw!)
+ ¢ ¥ (Ccos Qt + Dsin QO

Q> E[28xsin (M 4+ 6) + (8% — A2+ @) cos (A + 8)]
[(82 + A2 4 2)2 — 422 0¥

(310)

where E cos (A ! + 8) is the generated phase voltage. The integra-
tion constants A, B, C, I} are, in general, different for e;, e2, and es,
and must be redetermined for each change in circuit conditions, that is,
each time that the arc clears or reignites. The phase voltages thus
consist of a double frequency transient superimposed upon a steady-
state term. One component of the transient is primarily controlled
by the neutral impedance and the capacitance to ground, whereas the
other component is entirely independent of the neutral impedance.
As far as the steady-state term of (310) is affected it is sufficient to
take 8 220 and 2 large compared with A, whereupon the steady-state
term reduces to K cos (A f + 8), and

1=~ e * (A cos w4+ B)sinwi)
+ e P (Cicos Q!+ Dysin QD + Ecos (Mt + 8)

g2 ¢ ™ (Adacoswi + Basin w )

- (31
+ ¢ (Cacos @t + Dysin Q8) + E cos (A L + 82) B11)

e3== ¢ ™ (A3 cos wt + B3 sin w i)
+ ¢ % (Cacos Qt + Dasin 94 + E cos (Mt + 83)

in which &;, 6. and #3 arc at 120° intervals.
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By (305)
(¢ — ¢) (g1 — €2) = (E1 — E2))
 — ¢) (e2 —e3) = (£2 — E3) ¢ (312)
f — ¢) (ea —e1) = (Ez — Ey) |

Consequently the differences of the line voltages are quite independent
of the neutral impedance, since (¢ — ¢) does not involve the neutral
impedance constants. Therefore, in (311), since the differences must
not contain a« and w,

Ay = A = Az = A
31=BQ=BE=B

and, comparing (311) with (301), the common term is the neutral
voltage (if no line is grounded)

e, = € P (dcoswi+ Bsinw!) (313)

and the other transient terms are the transient impedance drops in the
phases. There then remain in {(311) eight integration constants which
may be determined from the initial conditions of the four volrages
(e1, ea, €3, €,) and the four currents (z;, 2, 13, 1.).

Isolated Neutral.—If the neutral is isolated, putting L, = = In
the above equations, there is @« = 0 and w = 0, so that the phase
voltages take the form

e=Ad+ ¥ (Ccos Q1+ Dsin Q) + Ecos (N + 8)  (314)

As soon as the transient term is dissipated the average potentials are.
those determined bv the total charge on the system at the initial
instant, since no charge can leak off with an isolated neutral. Thus
if at the beginning of the transient ey = ez = V" and e2 = 0 there 13
by (303)

O+ QR+ =2K+2K)V (315)

At the end of the transient all three lines are at the same average poten-
tial E, (by virtue of a common neutral), and (303) then gives

O+ Q24+ Qs =3 (K+2K')E, {316)
and therefore, comparing (314), (315), and (316)

A=E,==-V (317)

s | s
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Butatt = 0, (314) (taking 8> = 0) gives

187

er=V=A4A4+C +Ecosty =2V 3+ —E?2
e2=0 =A+Co+Ecosbs =2V 3+C+E o (318)
E;5=F=A.+63+EC0533=2VF3+C;3—E.2J
From which ‘
Ci=V 3+ E?2
—Co=2V 34+ E (319)
Ca = V:34+.E 2 |

Substituting the three equations of type (314) in (303) and putting
it = 122 = 73 = 0 at { = 0 yields the equations for the determination
of the D constants. If 8. @ =< 0, the D constants vanish entirely, and
the phase voltages then are

2 E 1 : -

€1 =3V+(E+E V) e P cosQt+ Ecos (M + 120°)
2 2 iy

gz = 3 ¥V — E+§ V)e™ cos ﬁ.¢+‘E cos (A ?) (320)
2

E:—:-g +( S s V) cnsﬂt+Ems{h!—lZD)

It will be observed, if 8 is not excessive, that the maximum voltage
occurs on the fawlty line, rather than on the good lines. If the arc does
not strike again for a half cycle or more of normal frequency, the high-
frequency oscillation () of (320) will have vanished by that time.

One Line Grounded.—The previous equations apply under the
condition that no line 1s grounded. If one line, say No. 2, is grounded,
then ez = 0 in (301) and (303). The currents in the good lines are
£ = p Q1 and ¢z = p Q3 respectively, but the current 22 of the faulty
line 1s defined by the second equation of (301). Substituting (303) in
(301) and (302), the simultaneous equations connecting the four
unknowns are:

El=£1:+El—ZP(KEI+KI53)
0 =e,+ Fo— Z i

(321)
ex = e, +FE3 = Zp(K'ey + K e)
¢n=—2.p(K+K')(ey+e)— Z.i» |
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Solving for the neutral voltage there is
B —~Z. . Ecos (Nt 62)
Z+Z)+Z+3Z2)Zp (K + K')

Regardless of Z,, this differential equation in symbolic notation is at
least a cubic, and therefore the roots must be found by trial. There
are three limiting cases, however, for which solutions are readily ob-
tainable.

Case I. Resistances Negligible.—InthiscaseZ = pLand Z. = p L.,
and (322) reduces to

(322)

En

_ — L, Ecos (N + 82)
L+ L)+ (L+3L)LK+K)p

and the solution is

(3224)

En

] L.Ecos (At + 82)

n = : t+ Bs =l 323
e dAcoswt+ Bsinwl L(L+3Ln}(K+K’J(m3—h3}( )
where w2 = (L + L,) L{L +3L,) (K + K’). But ) issmall com-
pared 1o w?, and (323) becomes

L,
L + Ln.

Case II. Line Capacitance Negligible.—In this case (K + K') = 0
and (322) reduces to

en=Acosw! + Bsinw! — Ecos (Mt + 82) (3234)

Z.ecos (M + 82)

€n = 7+ Z. (3223)
and if Z, = (r. + p L.), the solution is
e, = Ae ™
Far E L e [ (ro + A Ly) ]
— E / Af— tan™! 4
N B LAy e e P

where a = (r + r,) (L 4+ L.).

Case III. Z Small Compared with Z.,—Canceling Z, from the
numerator and denominator, (322) reduces to

— F cos (}'h { + ﬂg]

= T¥3K+K)IpC+bD ks
the solution to which 1s
e. = ¢ ¥ (Adcoswi+ Bsinwi)
— (a2 + WD E[2ox sin (A4 82) 4 (@®+w®> =A%) cos (N+82)] (325)

[(0® 4 w? +7)2 — dw™A?]
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where o = r 2 L

1
5 -
“ [3 LK +K) ° ]
Neglecting @ and A in comparison with w, this becomes
en= e " {Adcoswt+ Bsinw!) — Ecos (At + 0:2)  (3254)

The foregoing Equations {301) to (3254) inclusive show the
nature of the transients associated with arcing grounds. From (322)
the amount of neutral shift corresponding to a given neutral impedance
may be estimated; and from (311) and (313) the amount by which
the neutral voltage decays while the arc 1s out, and the decrement of
the high-frequency oscillations, may be determined. These three
reduction factors are responsible for a considerable reduction in the
maximum voltages due to arcing grounds. J. E. Clem gives the fol-
lowing table, in which the neutral impedance is of such value that the
neutral shift on short circuit is not more than two-thirds the normal
phase voltage: '

MAXIMUM VOLTAGES OF ARCING GROUXNDS

Single-Phase Three-Phase
Initial arc, isolated neutral . .., ... .. ... .. .. . 3 E 25 E
Normal-frequency arc extinction....... ... . . 1 E 3.5E
Oscillatory-frequency arc extinction;
Isclated neutral, no damping...... ... .. .. 6 E i3 E
Isplated neutral, damping....... .. ... .. S T MIE-STE
Resistance in neutral ........... .. ... .. ... e 2.5 E
Réeactancean neuttalice e vonns soenepanl supsesmsenuees 3.7 E4.0F
Petersen coil in neutral.. .o .o 1.31 E

Extensive tests on three-phase laboratory circuits failed to show a
voltage In excess of 3.2 E on isolated neutral, and the phenomenon
seemed to be controlled by normal-frequency arc extinction. There
is no rational reason why an arc which initially strikes at normal
voltage should require a successively higher voltage for each subse-
quent arc; and yet the arcing ground theories described above demand
such a sequence in order that the voltages may be built up cumulatively
to the maximum values given in the table. It is much more likely
that just the reverse is true, that is, that the subsequent arcs will
require less voltage to ignite them. It is probable, therefore, that
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arcing ground voltages do not reach 4 E, even on isolated neutral
systems.

PETERSEN COIL

If x1, 2, and xo are the positive, negative, and zero sequence react-
ances respectively of a system, as viewed from the point of fault, then
according to the theory of symmetrical components the fault current
for a one-line-to-ground fault may be found by connecting (x» + x0)
to the positive sequence diagram at the point of fault, Fig. 92. Obvi-

L

— e 2n’)

Segquence

B 3 o e 3

Fi1G. 92.—Fault Conditions with a Petersen Coil

ously, then, no current can flow in the fault, and consequently a
normal-frequency arc can not be supported, if

Xy = X0+ X3 = (326)

The effective capacitance of a completely transposed transmission
line to pasitive or negative sequence voltages is defined by

0= (KE +K Es+K Ey) = (K- K)E, (327)
and the zero sequence capacitance is defined by
Qo= (KEo+ K Eo+ K Eo) = (K+2K') Ep (328)

The zero sequence reactance of the circuit shown in Fig. 92, putting
x. = — L/AN(K + 2K, 1s
_ (x + 3x,) (— x)

T (x + 3x, — x.)

(329)



ARCING GROUNDS AND SWITCHING SURGES 191

which is infinite for
X. — X

3

(330)

Xn =
A neutral reactance of this value is called a Petersen coil. Such a
coll will cause the arc to extinguish by preventing the flow of normal
frequency follow current.

SWITCHING SURGES

The scope of this book does not contemplate a detailed discussion
of switching surges. It will suffice to review briefly the subject {prac-
tically verbatim) aleng the lines covered by Park and Skeats,* and to
point out the principal characteristics of the phenomena. In a gen-
eral way, switching surges are similar to arcing ground transients, in
that the same circuit constants are involved and the initiating cause
in both cases is an arc, either to ground or across the circuit-breaker
contacts. The study of switching surges and recovery voltages is of
primary importance to circuit-breaker engineers, for the interrupting
ability of a circuit-breaker depends upon its capacity to increasc the
dielectric strength across its contacts at a faster rate than the rate
at which the voltage is built up. |

There are three major aspects to the problem of switching surges:

1. Normal-frequency effects of recovery voltages.

2. High-frequency effects of recovery voltages.

3. Interruption of charging currents and the building up of abnor-
mal voltages by successive reflections.

Normal-Frequency Effects.—The normal-frequency voltage of
the first phase to clear of a short circuit depends upon the type of fault,
decrement factor of the excitation, displacement of the machine rotor,
the direct and quadrature machine reactances, and other circuit con-
stants. Park and Skeats give for the maximum voltage of the frst
phase to clear

em = R R Ry E (331)

where

k, depends upon the ground conditions.

ks = decrement or *‘ change in excitation ” factor = ¢/¢",
quadrature reactance factor.
E = normal phase voltage.

-
-
I

# ' Circuit Breaker Recovery Voltages,” by R. H. Park and W. F. Skeats,
A.ILE.E. Trans., Vol. 30, 1931,
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Values for these constants are given in the following table:

i

Tvpe of Fault k., k,
One-line-to-ground. . . 1.0 1.0
- 5 r e v
T A1 ~1.73 [1.0

Sa7 (25" + x0)? + %0 (25" + xo) (557 + 2 x0)

Line-to-line....... .. 1.73 1.0

_ 3 xo P

Three-phase s.c... . .. Pt T ez

Three-phase un- .,

grounded s.c., or 15 Ja

grounded s.c. on un- sd”’
grounded svstem. .

¥

x,” = quadrature subtransient reactance of machine.
x4’ = direct subtransient reactance of machine.

s’ = x;”" + (external reactance of system).

sd' = x4° + (external reactance of system).

xp = zero sequence reactance of system.

1 = short-circuit current at instant of clearing.

1" = imitial inrush of current.

Since ¢ = 11t 15 sufficient to take By = 1.0,

For a full discussion of the effects of the type of fault, rotating machine
characteristics, amortisseur winding, displacement, initial load cur-
rent, and saturation, reference should be made to the original paper.
The discussion is avoided here, since a complete understanding of it
leads to an involved study of synchronous machine theory. Very
briefly:

Effect of

Amortisseur winding .. | Reduces both the quadrature reactance factor %, and the
decrement {actor kg, and thereby considerably reduces the
recovery voltage and the duty on the circuit-breaker.

Displacement. ... ....| The existence of a d-c. component in the s-c. current may
cause the recovery voltage wave to start near zero instead
of the crest, thus reducing the instantaneous value of the
recovery voltage.

Initial load current. . . | The current z is the sum of the load and fault currents, and
therefore &g is Increased,
Saturation... .... ... | Reduces the quadrature reactance factor %, and therefore

reduces the recovery voltage.

e
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High-Frequency Effects.—The presence of capacitance in the
windings of transformer and rotating machines, bus structure, bush-
ings, current limiting reactors, and other terminal apparatus, in con-
junction with the inductances of windings, provides the necessary
facilities for high-frequency oscillations, upon the sudden rise of
normal-frequency recovery voltage. Thus because of these oscil-
lations the voltage may overshoot to double values. From the point
of view of the circuit-breaker operation, these high-frequency oscilla-
tions are of prime importance, because they determine the rate of rise
of voltage across the contacts, and so fix the ability of the circuit-
breaker to rupture the circuit. If there were no capacitance in the
circuit the rise of recovery voltage would be abrupt and would imme-
diately cause arcing across the break. Therefore, capacitance is
not only an essential element in the circuit, but the smaller 1t is the
more important does it become, for the rate of rise is the faster. The
axis of high-frequency oscillations is the normal-frequency voltage,
and the oscillation starts at the arc voltage existing just before inter-
ruption. Ordinarily the starting voltage may be taken as zero, but
if it is otherwise, the amplitude of oscillation will be increased.

A resistance {of 1000 chms or less) connected across the terminals
of a circuit-breaker materially reduces the amplitude of oscillation and
the rate of rise.

One or more transmission lines connected between the breaker
and the source of power greatly reduces the rate of rise of the recovery
voltage. The following examples, taken from the paper by Park and
Skeats, illustrate the method of solution.

A. Circuit 1, Curve 1, Figs. 93 and 94.—Recovery voltage of
first phase to clear of a three-phase grounded short circuiton a
solidly grounded generator with 3 ohms external reactance,

' = 0.97 s, = 3.77 k, = 1.05
.Id” = (.60 Sd” = 3.60 kd = 1.00
xo = (03 so = 3.05 k, = 0,93

The normal-frequency recovery voltage (E = /2 8400) is
= 0.93 X 1.00 X 1.05 X /2 X 8400 = 11,600 volts.

The effective inductance is L. = 3.77/377 = 0.010.

The b#is capacitance is ¢ = (0.008 microfarad.
The natural frequencyvisf =1 (2 x+/L ) = 17,800.
e=0and de'dt = 0at! =0

11,600 at i = 0,

The hmiting conditions are:

Il

&
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[gnoring the decrements, the recovery voltage is
e = 11,600 {1 — cos 2 17,800 £)
and the maximum rate of recovery voltage is

de dt = 2w f Esin (m 2) = 1300 volts per ms.

B. Fig. 95.—Recovery voltage of first phase to clear of a three-
phase-to-ground short circuit on an ungrounded generator with 3
ohms external reactances. Circuit constants same as before, but for
this type of fault 2, = 1.50. Therefore

em = 1.50 X 1.00 X 1.05 X /2 X 8400 = 18,700 volts.

125

2
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FiG. 93.—Calculated Recovery Voltage Curves Following a Single-Phase Line-to-
Ground Short-Circuit at Points Marked X on Circuit Diagrams
System voltage: 66,000. Capacity of transformer in each case: 20,000 kv-a.
per phase. Transformer reactance; 10 per cent. Transmission line surge impe-
dance: 400 ohms. Length of transmission line: 9.5 mi.

If the bus capacitance is €, = 0.008 microfarad to ground {on cir-
cuit-breaker side of reactor) and the generator winding has a capaci-
tance to ground of Ca = 0.8 microfarad (assumed to be concentrated
at the generator neutral), then the total impedance of the circuit is

pL 1
pls,
pL 1 ‘

2 +pC:;~

_P4L361€3+(3C]+C_,}Lp2+2
pC(p=LCa 4+ 2)

VA + p L+
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and 1ts natural frequencies of oscillation therefore are

1\/(SC1+C2)-|—'\/9C'1'——2C162+C2

= _ 1? 5
S 1L C G 950
| /{3 & 450s) VO D C 5 O .
fa =\ = 2510
2 2 L] C[ C;;:

The  high-frequency  oscillation
1s substantially that of L and ¢,
alone, (s acting as a short circuit;
the low-frequency is that of L 2

., ; X fs
and C» alone, () acting as an matue——
open circuit. Thus > |

" Bus
=
Cathode Ray Oscillogram Cathode Ray Oscillogram

MICROSECONDS
400 60

KILOVOLTS

ggm E'ﬂh Calculated Curve

w20 =20

[

i

ggm Ii‘ll:l-

“ ar

Eﬂ:

0 % ® 0 0 & 10

o 200 400 600 800 1
TIME-MICROSECONDS TIME-MICROSECONDS o

I 1:. 4 Fia, 95
1 1 1 1

= 17.88() = 2510
2w \/L ) 2w HL C
g+

Two-thirds of the final voltage will appear across the open phase, and
one-third across the other two phases in parallel. Therefore, the
recovery voltage 1s

= 12,470 (1 ~cos 2w f1£) + 6230 (1 — cos 2 f2 £)

C. Circuit 2, Curve 2, Fig. 83 —Recovery voltage of a single-phase-
to-ground short circuit 50,000 ft. out on a transmission line; circuit-
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breaker directly connected 1o the high side of the transformer; grounded
transformer neutral; low-voltage side of transformer connected to an
infinite bus.

38,100 volts line-to-neutral.
7.25 ohms = 0.0192 henry.
7.5 ohms,

38,100 14.¥5 = 2580 ampercs.
0.0012 microtarad.

System voltage

Transformer reactance

Line reactance

Short-circuit current

Effective capacitance of transtormer

The rate of change of current at current zero is

i)
{E: = wl] = 377 X /2 X 2580 X 10-% = 1.375 amperes per ms.

The rate of change of voltage on the line side of the breaker is

de;

= = Z I =400 % 1.375 = 350 volts per ms.

This rate will continue until reflections from the far end of the lhine

return and reverse the polarity.
On the transformer side of the breaker the voltage is

dt !
gr = La(l — COS \/I:_L) = 0.0192 X 1.375 {1 — cos 2r 33,000 ¢)

= 26,400 (1 — cos 2 = 33,000 2)
The total voltage across the breaker is (¢ in microseconds)

e =¢e1 + e = 350¢{ 4+ 26,400 {1 — cos 0.208 1)

D. Circuit 8, Curve 8, Fig. 93.—Single-phase-to-ground short cir-
cuit at transmission-line side of circuit-breaker; a second line 50,000
ft. long is connected between the circuit-breaker and the transformer
and is open-circuited at the far end; transformer neutral solidly
grounded; low side of transformer connected to an infinite bus.
Constants same 4s in previous casec.

Short-circuit current = 38,100 7.25 = 526().

The rate of current at current zero is

‘f; = wl =377 X V2 X 3260 X 10-¢ = 2.8
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and therefore, until the reflections return

1 de
_|___

dt e
L Z dt-

s

the solution to which s

— Ld—-i (1 — ¢ Z/%
d!

= 53,700 (1 — ¢ %%%Y

At ¢ = 100, however, the first reflection arrives, and at 100-ms. inter-
vals thereafter new reflections are superimposed at the transformer
terminals. The recoverv voltage up to { = 300 is plotted 1in Ing. 93,
curve J.

Interruption of Line Charging Currents.—The process of building
up excessive voltages by the interruption of the charging currents of
a connected transmission line is as follows. The circuit-breaker con-
tact arc is extinguished when the current is passing through zero
and the transmission line completely charged to one polarity (+E).
One-half cycle later the transtormer terminal voltage has reversed its
polarity, but the voltage of the transmission line remains unchanged,
so that double leg voltage is across the switch. If this voltage breaks
down the gap, a wave (—2 E) travels down the line and reflects. As
the reflected wave reaches the breaker the entire line 1s charged to a
value (E — 2E — 2E = — 3 E), the current in the arc drops to
zero, since the reflected current is equal and opposite to that of the
incident wave, and the arc is again interrupted. The transformer
side of the breaker then changes polarity during the following half
cycle, and if this additional voltage across the contacts is sufficient to
reignite the arc, a wave (4 E) travels down the line, wiping out the
previous potential (—3 E), reflects, and when it again reaches the
breaker the line is charged to a value (=3 E+ 4 E + 4 E =35 E).
If the sequence of events repeats indefinitely there is no limit to the
voltage which may be built up. Actually, however, the effects of
damping limit the voltage to a finite value. Since a half cycle of
normal frequency (60 ~) lasts for 8333 ms. there is plenty of time for
damping out the traveling waves. Moreover, the process may be
halted at any stage depending upon the rate at which the breaker is
opening. Suppose that, at a certain instant when the arc is just ready
to restrike, the line is charged to a voltage Fy and the transformer
voltage is ¢ E where a may have any value between (41) and (—1).
At this instant the dielectric strength of the breaker is (E¢ — aE),
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and as soon as the arc strikes, a wave (aE — Ep) will travel out on the
line, canceling Eg, reflect, and return to the breaker where the arc will
extinguish on account of a current zero (the current reflection is equal
and opposite to the incident current wave). As the normal fre-
quency reverses polarity, the total voltage across the switch finally is

e (2 aE — 2 Eg + Ep) — E| (332)

where « is the reduction factor due to losses in that time. This exceeds
the previous breakdown voltage by

Ae=(l—-2aa+a)E—{1—a)F, (333)

The criterion for final interruption of the arc is that this voltage incre-
ment shall be less than the increase 8 E of dielectric strength of the
switch. Theretore

BE>Ae=(1l—-—2aca+a)E— (1 —a)E (334)
or
1 — 2 —
Eu}( et ﬁ)E (335)
T

Evidently, then, for a given « and 8 there is a value of Ey such that the
arc will not be able to restrike. For example, if ¢ =1, a = 0.8,
8 = 0.6, the arc will not restrike if

Fo>35E

Thus the leakage of charge from the line, and the increase of
dielectric strength across the circuit-breaker contacts, limit the
maximum voltage that can be built up to a definite value. Switching
surges as high as 5.5 times normal leg voltage have been recorded on
transmission lines in operation. The building up of excessive voltages
by the above process can be prevented by using a high-resistance leak
to drain off the line charge or by using a breaker designed to increase
its dielectric strength at a sufficient rate.

As a matter of fact, the resulting traveling wave is not rectangular,
as assumed above. When the gap is broken down, the distribution of
line potential (— Ep) immediately splits up as a pair of traveling waves
(—Eo/2), and one of these waves meets the inductance of the trans-
former at which it builds up a voltage (—Eoe "), where 7 =t Z L.
The other wave reflects at the open end and continues to feed the
inductances for a time equal to four times the length of the line.
While this is going on, another wave is being impressed upon the
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transmission line by the discharge of the normal-frequency recovery
voltage through the inductance of the transformer, and this 1s
E(1 — €77). The resiltant voltage of the line therefore is

e=—Eje "+ E(l—e)=(Eo+E (1 —€¢7) —Eo (336)

and the current 1s

W+ E

7 (1= €7 (337)

1 =

Calling Eo + E = F’, the changes in voltage and current after each
reflection (counting time anew at each reflection) are:
e=E (1 — ¢7)

. F i o ' Unrtil Arst reflection arrives, (338)
1 =— (1 — ¢
A

g1 = E2re’
. E! __ [ Increase due to first reflection. (339)
1-1=,—2{1—E_T_TET:}

Z J
ez=FE'27¢7 (1 —1) Increase due to
fs=FE2(—14 ¢ "+ re " — 72¢7) | second reflection. {340)

The difierences between the potential of the line at any instant, and

its potential just be- 20 !

fore breakdown of gg f | g =

the gap, are plotted W Ve pe %

as curves V', 12, and gé o i / /

Vi, and the gap cur- §§ / L-/ R T
rents as curves Ai, &8 o A ] i
As,and Ay in Fig. 96, B+ | Iy, ﬁ \Ql i
Curves Vi and A;  Eg osfgest ~

apply to a line whose 32 i I\ \ ‘\

length is such that a T :

3 4

6 7 8
VALUES OF & T

wave can travel twice

its length 1n a time Fic. 96.—Current and Voltage Surges upon the
equal to the time con- Sudden Connection of a Transmission Line to the
High Side of a Transformer when no Other Line

stant of the circuit ,
15 Connected There

(L Z). Curves I,
A2 apply to a line twice as long, and curves V3, A3 to a line four
times as long.
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SUMMARY OF CHAPTER XI

There are two generally recognized theories of arcing grounds, called the normal-
frequency and osciflatory-frequency arc extinctjon theories respectively, pertaining to
the manner in which the arcs are assumed to go out. By cither of these theories the
building up of abnormal voltages is a cumulative process involving successively
increased residual charges on the good lines, and transient high-frequency oscillations
about the potentials established by these residual charges as axes of oscillations.
The bound charges depend upon the capacitance coefhcients of the circuit, whether
single- or three-phase, and the leakage through the neutral impedance. The nature
of the high-frequency oscillation is governed by the capacitance and inductance
coefficients of the line, the neutral impedance, and the grounding of the faulty line;
Equations (311), (323), (324), and (323}). The oscillatory-frequency arc extinction
theory yields the maximum voltages due to arcing grounds. The possible values
given by this theory are tabulated in the text. On a grounded neutral system,
abnormal arcing ground voltages are impossible. On an isolated neutral system,
voltages as high as 5.7 times normal are theoretically possible, but can be prevented
by the use of Petersen coils,

Switching surges may be conveniently considered in two parts—the low-frequency
and high-frequency effects, respectively. When a load or fault is interrupted by a
circuit-breaker operation there follows a comparatively slow electromagnetic transient
in the connected rotating machines, which transient depends upon the type of fault,
the machine characteristic constants, and the excitation system. The calculation
of the recovery voltage of the first phase to clear thus rests on an intimate under-
standing of synchronous machine theory, but fortunately reduces to a quite simple
formula, Equation (331}, whose application does not depend upon much more than
a routine procedure. Upon the sudden rise of the normal-frequency recovery voltage
there ensues a high-frequency oscillation by virtue of the inductance of windings and
lines, and the capacitance of windings, lines, bushings, etc. It 1s this high-frequency
oscillation which establishes the rate of rise of voltage across the circuit-breaker con-
tacts, and therefore determines the ability of the breaker to interrupt the circuit.
There are also involved, as components of the high-frequency oscillations, the re-
peated reflections of traveling waves on the connected transmission lines, initiated
by the circuit-breaker action in rupturing the circuit. These repeated reflec-
tions, In conjunction with successive reignitions of the arc between circut-
breaker contacts, are responsible for the cumulative bwilding up of excessive voltages
due to switching. However, there are on record cathode-ray oscillograms of switch-
ing surges of several times normal voltage which do not exhibit the characteristics
called for by the theory discussed in this chapter. It appears, therefore, that there
is still a fertile field for research concerning switching surges, particularly with refer.
ence to the possibility of realizing initial voltage jumps of the order of five times
normal voltage.
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Part 11

HIGH-FREQUENCY OSCILLATIONS AND
TERMINAL TRANSIENTS OF TRANSFORMERS



INTRODUCTION TO PART II

GENERAL CLASSIFICATION OF TRANSFORMER HIGH-FREQUENCY
TRANSIENTS

The remaining chapters of this book are devoted to the analysis
of the internal oscillations and terminal transients of transformers, or
other distributed windings, subjected to the impact of traveling waves.
For convenience, the study of these high-frequency transients is con-
sidered according to the following scheme:

I Complete Solution |

Internal Transients - Terminal Transients l
Primary Secondary Primary Secondary
Initial Distribution Electrostatic
Terminal Reaction
Finai Distribution Electromagnetic
Neutral Transient
Natural Oscillations | Oscillatory

| ‘Damping Factors ]
| Shielding 1

In this arrangement, items on or near the same level are closely
associated in the analysis. Thus the initial distribution, primary
terminal reaction (initially), and electrostatic com ponent of the secondary
terminal transient are all determined by the same equations, Like-
wise the final distribution, neutral transient, primary terminal reaction
(later stages), and the electromagnetic component of the sceondary
terminal transient are all determined by the same equations. The

osctllatory component of the secondary terminal transient as well as
207
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that of the neutral transient develop from the natural oscillations of
the circuit. Therefore, since the gprimary terminal reaction and
the neuéral transients are each a compromise between two effects,
they have been placed on lines between these other items. It is thus
seen that the foregoing chart provides a most expressive classification
of the several aspects of the problem.

A rigorous solution of the complete circuit, including neutral
impedances, secondary connections, and the distributed circuit con-
stants of the winding, is out of the question. The mathematical
difficulties very soon become insurmountable, and even could general
solutions be obtained, they would no doubt be too complicated to be
of much use from an engineering point of view. Recourse i1s therefore
had to approximate equivalent circuits, the range of whose validity
can be established quite definitely from theoretical considerations,
and verified experimentally. Briefly, the solutions for the internal
transients of a two-winding transformer with grounded or isolated
terminals show that:

1. The primary internal oscillations can be calculated quite
accurately by ignoring the secondary entirely and using an
* effective inductance ' in the equations.

2. While the secondary terminal transient consists of three terms,
only the electromagnetic component is of practical importance
(if the terminals are not open), and this component has a
very simple equivalent circuit, Chapter X\

3. The primary terminal transients (at line and neutral) may be
calculated by a very simple equivalent circuit, Chapter XV,

Chapters XII and XIII dealing with the internal transients are
rather involved, mathematically. But the general procedure is quite
simple, and is carried out in the following steps: *

a. The differential equations of the circuit are derived.

b. The terminal conditions are specified.

¢. The initial distributions at the instant of impact of an infinite
rectangular traveling wave are determined.

d. The fina! distributions (or axes of oscillations) are determined.

e. The complete solution to satisfy the above is obtained, making
use of the general identity:

Imitial distribution = final distribution +
transient lerms at first instant (1)

* This procedure was outlined in K. W. Wagner's 1915 paper, Reference 2 of the
Bibliography for Part I1.
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In order to express the two sides of this equation in commen
terms, Fourler expansions of the initial and final distributions
are made.

f. The solutions for other than infinite rectangular waves are ob-
tained through Duhamel's theorem.

g. If terminal impedances are involved, or waves are applied simul-
taneously at two or more terminals, the principle of super-
position is used. The appropriate equivalent circuit for
terminal impedances permits the voltage at each terminal
impedance to be calculated. Then considering each as an
applied voltage, with the other terminal impedances short-
circuited, the internal transient due thereto may be calculated,

and then

Complete solution = Y solutions for each terminal voltage
with other terminal impedances shori-circutted  (I1)

k. The necessary and sufficient conditions which must obtain if
oscillations are to be prevented are next investigated. A

necessary condition, but not always a sufficient one, from

(1) is
Initial distribution = final distribulion . (I11)

The transient oscillations in transformer windings are responsible
for excessive voltages to ground, from turn-to-turn and between coils.
These excessive voltages and gradients are mitigated by the suppression
of internal oscillations, the control of the applied wave, and the control
of the neutral voltage—which comprise the three major objectives of
all schemes for transformer protection. Protective plans may be
classified according to the chart on page 2I10.

The crest voltage and length of the applied wave are controlled by
the coordinating gap and lightningarrester, as discussed in Chapter V.
The wave front, or rate of rise, can be retarded by an inductance in
scries or a capacitance in shunt, but if the former is used it should be
bridged by a suitable resistor to prevent it from entering into oscilla-
tion with the equivalent capacitance of the transformer. On high-
voltage circuits it is not feasible from an economical standpoint to
endeavor to retard the wave front by more than a few microseconds.

The crest voltage at the neutral is controlled by Thyrite, and the
rate of rise can be retarded by means of capacitors. Detailed calcu-
lations are given in Chapter XV,

The idea of increasing the transformer losses by artificial means
during the transient has been proposed. If these losses are high



210 HIGH-FREQUENCY OSCILLATIONS—TERMINAL TRANSIENTS

Transformer Protection I

Control of Prevention - of Control of |
Applied Wave Oscillations MNeutral Voltages
Crest
Yoltage Shielding I Losses | Crest
I Front Cylinder Shields I Decrements |Rate of Rise
[~ Length -
of Wave Static Plates I Non-Oscill.
Capacitors
Conventional
Partial Shielding |

enough, the transient must actually become aperiodic, but otherwise
the decrement factors which the losses introduce tend to limit the
amplitudes of oscillation. The scheme has been applied to current
limiting reactors, Fig. 50.

The various methods of electrostatic shielding which have been
considered are discussed in detail in Chapter XIV.



CHAPTER XII
IDEAL TWO-WINDING TRANSFORMER *

The coil assembly of a conventional, concentric-type two-winding
transformer is shown in Fig. 97. The high- and low-voltage windings
consist of a number of multiple-turn sections wound on supporting
insulating cylinders and separated by spacers and oil ducts so as to
provide sufficient dielectric strength and to facilitate cooling by oil
circulation. The turns and coils of the end sections are provided
with extra insulation. Static plates are placed at the ends of the coil

|
Low Yoltage High Yoltage
Winding inding
Pressboard _
Catlars Vertical
Qi) Ducts
Lock Spacers Herkolite
Cylinders
Dowve-Tail
Jpacers
Herkaolite
I Flanged
ExtraInsulated Collars
£nd. usnk (- Siatic
and Coils | Plate

IF1G. 97.—Cross-Section of Comparatively High-Voltage Power Transformer

stacks to help equalize the electrostatic distribution at the instant of
impact of a traveling wave at the transformer terminals. The insula-
tion between the ends of the stacks and the supporting plates consists
of flanged collars and insulating barriers.

Each turn of the winding has a capacitance to all other turns, to
the core, and to the tank, so that the complete capacitance network
of a transformer is a very complicated circuit. Owing to the close

*1.. V. Bewley, * Transient Oscillations of Mutually Coupled Windings,”

A.T.E.E. Trans., Vol. 51, 1932,
211
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proximity of adjacent sections, however, it is permissible to simplify
the circuit to that of Fig. 98, if the investigation i1s concerned with a
turn-to-turn distribution, or even to that of Fig. 99 if only the principal
features of transformer internal transients are to be investigated. It
will be seen that these simplifications rest upon disregarding the dis-
tributed nature of the circuit constants of subsidiary elements of the
winding, and neglecting the

Lapacifance small capacitances such as

biL"I"‘L"]; M TR broond., ~I+I-<'-I from a section to sections

%gﬁ Hr ‘:’nﬁﬁ'gﬁ ﬂ% bevond its adjacent neighbor.

I.»Jf it i .._.4_[4 Thus in Fig. 99 the section is
Qﬁﬁ;ﬂ’;‘fe | 1 I adopted as the unit, and the
L_LM__*FT{"EF{ ____J., total capacitance of its turns

el  fowVollage  PT to the adjacent section has
Winding \

"f"["*I‘ i iy 'f"f“:[ been lumped as a series capac-

L.V to Ground itance K, its average capac-

F1c. 98.—Capacitance Network of Trans- !:tanr:e to the tan!{ as €1, and

former Windings its average capacitance to the

low-voltage winding as ;.
The effective inductance of the windings is made up of three parts:
the interlinkages due to flux which is common to all turns of the wind-
ing, the partial interlinkages due to flux which is not common to all
turns, and the interlinkages due to the other winding. The situation
1s further complicated by the fact that during the transient the current
in different parts of the same winding is different in magnitude and

Fi1c. 99.—Circuit Determining the Initial Distributions

in sign, and is changing continually. It is therefore evident that any
equations introduced to calculate the flux linkages must be simple
enough so that they can be handled in complicated differential equa-
tions; but on the other hand they must be sufficiently complete to
describe adequately the essential characteristics of the transient.
The assumption that the flux linkages may be accounted for by a
uniformly distributed self-inductance, as in transmission-line theory,
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proves entirely insufficient. The mutual inductance between parts
of the same winding plays an important and essential part in the
phenomenon. By most fortunate circumstances the assumption of a
linearly graded mutual inductance between parts of the winding not
only proves simple to handle mathematically, but also yields the
essential characteristics to the transients.* Referring to Fig. 100,
assume that the effective length of leakage path of any line of flux is
2 h, and that the coefficient of coupling between points in the primary
and secondary windings equal distance from the end is o¢. The
assumption concerning the length of leakage path is cquivalent to
taking the coil stack in a long narrow slot open at both ends and
extending a distance a either side of the coil stack, this extension

Fig. 100.—Flux Linkages in the Windings

being of sufficient length to account for the total mutual flux surround-
ing the entire windings.

et #; iy = ampere-turns per unit length of winding 1.
n2 1» = ampere-turns per unit length of winding 2.
(m [ 1) = mean length of turn.

Then the mmf.'s at point v are
O4x (1) {) + o nyi2)dy for the primary interlinkages.

0.4 7 (o) 41 + #212) dy  for the secondary interlinkages,
The reluctance encountered by the Aux due to these mmf.’s 15

{ [ i i ] h(2a + D

=(m!f} a+£——}'+a—|—}* - la+71—yv)(a+y) (mif)

* The method of taking the mutual and partial interhnkages into account, as
given here, is substantially the same as that given by Blume and Boyajian, Refer-
ence 3 of the Bibliography.

R
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and the fraction of this flux which links an element of winding at
point x to the left of y 1s
a + — X

a+1—y

The total flux linking x due to all the mmf. to the right of x therefore
is (for the primary and secondary respectively)

0.4 I
¢’ = (2:_5_”2};-[,(?111'1 + oneiz) (@ +1—x)(a+ y)dy
- (1a)
04w (milty [
¢z’ = (sz_m”h}[ (en1 6y +n2ta) (@+1—x)(a _+ y)ay |
Likewise, the flux linking x due to all the mmif. to the left of x is
0.4 1y o . '
¢ = (Za:i—mi} h)_[ (121 21 + ff_ﬂz t2) (a + x) (@ + 1 — y)-dy
I (15)
¢.2” = U{::j-mj)i:;)[ (ﬂ' H 3.1 4+ Mo 32) ({I + I) (III + [ — .}’) d}' |
Hence the total flux linkages with point x are
$r = ¢1" + &1
(2)

¢a = ¢a’ + ¢

For example, if #1 %) and n2 ¢z are uniformly distributed, thesc terms
may be taken out from under the integral signs, and then after inte-
grating and simplifying

D‘l jt F
$) = 41;: }[u1-51-|-nrﬂ212} @i+ x (I — x)]

0.4 (mif) 4)
by = — TZ: (¢ ny 11 + 12 i2) @l + x ( — x)]

the term involving e/ being the mutual flux linkages and the term
involving x (I — x) being the partial interlinkages.

In addition to the transformer capacitance and flux constants dis-
cussed above, the circuit also involves series resistance and leakage
conductance between coils and to ground. These loss factors are
ignored in the present analysis since they greatly complicate the
problem, and their influence is too small to change the character of
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the oscillations appreciably. In the subsequent chapter dealing with
a single winding they are included, and found to be responsible for the
introduction of exponential decrement factors, a slightly distorted
final distribution, slightly changed frequencies of oscillation, and small
reductions in the amplitudes of oscillations. The chief influence of
the losses lies in the limitation which they impose on the magnitude

of cumulative oscillations due to resonance, as is discussed in Chap-
ter XIV,

GENERAL DIFFERENTIAL EQUATION
Referring to Fig. 101, the fundamental circuit equations are:
3 ¢
dxal

i = Ky (4)

(3)

—_— Z |2

e I_‘.

e
%m’ljmnmlpbmlmml”"; YTy

Fi16. 101.—Complete Idealized Circuit of a Transformer to High-Frequency
Transients

&1 J T:H d ’I:Ll

S i — i
el Lot dx d x hes (©)
d L d 1},*: d 1‘;‘2
9 = Cs B i 7
be2 d d x T dx e (7)
. d
13 = {y ﬂ_.:'! (&1 — e2) (8)
The fluxes of (2) induce voltage gradients
d €) 7 @ ¢
dx 10 ¢ (%)

dez  my 0o
2 x 108 a9¢

(10)



216 HIGH-FREQUENCY OSCILLATIONS—TERMINAL TRANSIENTS

and differentiating three times to clear (2) of its integrals

i e D4 x (it il A= o B o)
MosT R gam gEin : e M I' E 4
d xt 108 It LT g i
& (Lifrg M i) P (11)
— ! i 3 L
; P 11 L
ﬂ"l £ f.i"}
- = X Fata) M 12
a x? ﬂfﬂﬁ.( tey & Lo tie) 42
: : Odrn2(min P ”
in which Is = 10° /
D4an2(miH P
Lia = f 13
i O 10% A (13)
0.4xmy 2 (mli)el
M=
108 J

Hercafter the length of the winding will be taken as / = 1, and the
circuit constants then pertain to the total length of the winding.

By (4), (3), (6}, (7), and (8)

o= 3= es at e
= —_— — — K 14
E]fﬂ.‘i:nﬂl (C1+Ci) . ;ﬂ lﬂxiﬂ'fe: ( )
82 a° e 2 e at es
g = 3] " — - K"J - -.-
Fiaa {C'+C'*}a C%at- Tdxt )
Substituting (14) and (13} into (11) and (12), respectively
4 64 a'l ¥

2O L Ki o - MKy

g xd dx-dl- dx-dt

a° e

+(L, i+ LGy — M Ci)ﬂ_;'l'

a- &3
H(MC+ MG~ LiC) =0 (16)

10 1 gy at
S N WL | o
J x b IR I dx2ar-
62

+(LaCo+ Lo Ci — M Cq} Ej
ﬂ"’: £1 s
+ (M Cy + MOy — Lo Ca) =10 (17)
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From these two simultaneous differential equations, upon elimination
there is, for either ¢ = ¢; or ¢ = ez, the general differential equation

a¥ e a8 e
— — (L K Lo K
(L, K1 + L: E)Bxﬁﬂtf

a x®

ot e
dxtop

+ K1 Ko (Ly Lo — M7

Al e
I

+ [Li v+ Lo Co + (L1 + L2 — 2 M) Cy]

At e

— (L L = M) (K1 G+ K1 Cs+ K2 G + K2 Cy) axtap

a-l
4 (Li Lo — M2) (Cy Co+ Ce Cs + Ci Ca) r; =0 (18)

This is the general differential equation, whose solution, subject to
the boundary ceonditions imposed by the terminal impedances and
the restriction imposed by auxiliary equations (16) and (17), vields
the explicit equations of the transformer transients.

THE INITIAL DISTRIBUTION

The differential equation for the initial distribution can be obtained
either by putting 4, ¢ = 2% in (18)}—in accordance with the method
of operational calculus—or by writing the differential equations
directly from the capacitance network of Fig. 99, since at the first
instant of impact of the traveling wave the current taken by the
capacitance is infinite at that instant (8 £ 9! = % for an abrupt
rectangular wave front), whereas the current in the inductive paths is
zero. Consequently the capacitance network determines the initial
distribution,

Putting ¢ '8¢ = = in (18), there is

_@_*_E [Kl (C2 4+ C3) + Ka (C) + CZi)J d° e
HI{ K1Kg GIE
CrCe+ GGy 4G Cr]

= () 19
+[ K] K.E ¢ ( }

Putting 2z, = 42 = 0 in {14) and (13), and canceling the operator
(82,9 {%), there is

a° e

(€1 + ) ey — K 3 ;I = (Cy €2 (20)
. 0% es

(Co + Cy) 2 — K> = (4 €] (21)

IR 2
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[t is evident that {19) also follows from (20} and {21) upon eliminating
either e; or es. The solution to (19), using (20), 1s

ey = Pe®* + Qe ™ 4+ R + S (22)
es = Poe™ + Q2e”™" + Roé® 4+ Soe™™ (23)
where
lKl (C2 + C3) + K2 (C1 + C) |
o L FVIK (G +C) — Ko (G + GIF +4KKC
2 K, K>
- (24)
{Kl (Co + C3) + Ko () + Cy) |
82 — ~ VK, (G 4 C3) — K2 (C1L+ C)P + 4 KiK>Cy
2K, Ko

The integration constants of (22) and (23) are related by both (20)
and (21) as

Po=P(C + G — Ky a®) (y
Q2 =Q(Cr+ Cs — K1a%) G
Re=R(Ci+Cs—E18)/Cs=nR |
S = 8§ (Cod Co—Ki 88 Cr=#nS |

|
-
—
g

I
D

(23)

Thus the solutions for the initial distribution of both windings are of
the same functional form, and the integration constants are related,
so that there are only four integration constants to be determined
from the terminal conditions. Referring to Fig. 99, there is

eq = E, atx =1

de
er = Zi(p)Yin = pZ1(p) Ky a—:‘ atx = 0and p = =
. ﬂ'ﬂg L
ez = La(p) tia = p Za(p) Ko ﬂ' at x = 0and p = =

d e
— e = Z3(p) tra = p Z3(P) KEE-?, atxy = 1land p ==

The employment of these four conditions will yield four simultaneous
equations in P, 0, R, S, which will suffice for their unique deter-
mination.
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Case I. Grounded Neutral and Secondary Grounded at Both
Terminals.—Here Z, = Z> = Z3 = 0, and (26) vields

P& 4+ Q™+ RéL SeP=E
pe o B R o2 S =0

~ (27)
mP & +mQe “+nRé +nS¢? =0
mP? 4+ mQ + Rk  + nS = )]
Solving these four simultancous equations,
P = nE (n — m)2sinha
() =— nEk (n — m)2sinh «
(28)

}
R=—mE (n — m)2snh§g
S = mE'(n —m)2sinh 8|

Hence by (22) and (23) the initial distributions (also expressed as
half-range sine series) are

— M

E [ sinh a x sinh 8 Jn:]
n— :
sinh « sinh 8

[ m [} n — M

= 2E nsw msm .
= z e e arpen: - 3 4 stn? COS S Sin Swx (29)

s ]

nmi [sinh ax sinh B .t:]
ga = —

=y # — m | sinh « sinh 3
N :
2 nmkE [ ST s ] , 6
- 2 , . T T 3 o | CO8 ST 81N SwX
(m — n)la® + 5°r* 8% 4 sin® 39

=1

CaseIl. Grounded Neutral and Open-Circuited Secondary.—
Here Z: = 0, Z2 = Z3 =%, and (26) vields

|
Y

P&+ Qe+ RE+  Se?

P o 0 + R + S
maP —maQ +n8R —nps
maP ¢ —maQe “+nfRE —nfSe? =0

{}

(31)
()
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Solving for the integration constants and substituting in (22) and (23)

| munag (cosh o — cosh 8) {cosh ax — cosh gx) ?
+ (me sinh &« — #83 sinh 8) {(me sinh 8x — #8 sinh ax)
s B (32)
{=0 2 mnaf (1 — cosh a cosh §)
| + (m2a* 4+ n=8°) sinh «-sinh 8)
mnaS (cosh « — cosh 8) (m cosh ax — » cosh f8x) |
o = E +nrn (ma sinh & — 28 sinh 8} (a sinh 8x — 8 sinh ax) (33)
=0 | 2 mnaf (1 — cosh a-cosh 3)
+ (m*a® + n73°) sinh «-sinh ,Br

Case IIl.—Isolated Neutral and Open-Circuited Secondary.—
Herc Z, = Z2 = Z3z = =, and (26) vields

P+ Qe+ Reéf+ Sef=
aP - a( + B8R - B35 =
malP —ma( +~nB8R —ng@3S =

maPe& —maQe*+n8RE—npSe’ =0,

(34)

o o i

Solving for the integration constants and substituting in (22} and
(23)

_ {m a sinh e-cosh 8 x — # 8sinh 8 cosh « :u:} (35)
El: ) m asinh «-cosh 3 — #n 3sinh 8 cosh o
v = st E {a sin}} a-cosh 3x — 8 Ein'h 8 cosh o :L*} (36)
LI m « sinh «-cosh 8 — # 8 sinh 8 cosh «

or, since {a-sinh a) is large compared with (8-sinh 8) in practical
cases, these expressions simplify to

| (m e cosh 8x n@cosha -1‘) (35a)

cosh 8 cosh a

L (ma— 1n3)

nm (a cosh 8 v 3 cosh a .1)

E —
(ma —nf)\ coshf cush «

e = F

(306a)

o =
[ =)

Case IV. Grounded Neutrals and Secondary Connected to Line.—
Here Z, = Z2 = 0, Z3 = z, and (26) yields

P+ Qe "+ RE+ Se ¥ = E-
P + ¢ + R + S =0 |
mP + mQ 4+ nR + 7.5 = ()
(14a) mPe+ (1—a) mQe “+(1+5) nRE4-(1=8) nSe =0 |
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| ]
| o
#

where (¢ = s Ko a p)and (b = 5 Ko B p).  Solving for the integration
constants and substituting 1n {23)

(sinh 846 cosh B8) sinha x — (sirh a+a cosh a) sinh 8 x
n (sinh 84+ b cosh 8) sinhe—m (sinha~+a cosha) sinh B

]E (38)

£2 = HIH[

At the terminal v = 1 this reduces to

. - 3 sinh e cosh 8 — @ sinh 8 cosh « ] b 5
)] — L]
B n 8 sinh e-cosh § — m a sinh gcosh e p + 4
_ E mn (8 sinh a cosh 8 — a sinh 8 cosh a) - (30)
{# 8 sinh « cosh 8 — »t @ sinh @ cosh a) ‘ ‘
where
y = — .{H — n1)} sinh a sinh .,fi' (10)
5 Ko (# 8 sinh & cosh 8 — w a sinh 8 cosh a)
or approximately
Emn (8 — a) .
o = =; 30
& (n 8 — m a) : 2]
n — m
SN ) (40a)

T sKe (i — wma)

These equations hold rigorously only at 2 = 0, but under actual con-
ditions this electrostatic transient is usually over within a fraction of
a microsecond, and thus long before the electromagnetic transient due
to the flow of current through the inductive paths has gained any
headway. For the transformer constants given in the numerical
example at the end of this Chapter, (3%9a) gives

e2 = 0,193 ¢ '™

so that the time constant is less than a tenth of a microsecond. The
crest value of this electrostatic transient mav he comparable with
that of the subsequent electromagnetic transient, depending, of course,
on the relative capacitances, turn-ratio, and terminal connections of
the transformer.

THE FINAL DISTRIBUTIONS

The realization of a final steady-state distribution at { ==¢ for an
infinite rectangular applied wave is contingent upen the presence of
losses, either in the transformer itself or in the terminal impedances,
and the characteristics of such a final state will depend upon the
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nature of the losses. But in the no-loss circuit with zero or infinite
terminal impedances, the axes of oscillation are determined by the
electrostatic and electromagnetic fields necessary to establish the
terminal voltages of the windings. Possible solutions to the general
differential equation (18) which arc independent of # and which satisfy
the terminal conditions are:

= EII + v By =¢e, + (F: — {‘,,:i X (4]]
= Eo' + x Eo (42)

where e, is the final neutral voltage {e, = O for 4, = 0, ¢, = F for
Ll =% )

It remains to identify these terms. From (4) to (8)

. de . e
irp = I (f:]' +f|i(cl+{1{}—l—fjar hlﬂxzéf]dx (-1-3]
. J e a3 g9 ]
Y o —_— =y — = K X
112 Is (t) +f[{f' -+ C;) : 3 Yy Ko <2 a7 dx {44)

where [ (r) and I, (#) are integration constants with respect to u,
and are therefore possible functions of # but not of x. Therefore I
and J» are common to all parts of their respective windings, and thus,
in conjunction with the final electrostatic field, establish the final
distributions or axes of oscillations. The indefinite integrals vield
the space and time harmonics of the oscillation. Substituting I, and
Isin (3) there follow by (9) and (10) the potential distributions caused
by these currents.

o
" @1 g
108 a0
i, 0 ] xd 5 2
- 2o ozr oo n o (Y -)] 69
.:a 2
H:.rf ¢_L dI
0
Ha O x! 2
=x-ﬁ}_ﬂalr m_?—}-ﬂ?rr(iﬂfﬁ)*{ﬂ111#+ﬂﬂfi)(*_%‘)] (46)

Now the mutual fluxes ®,; and ®.» which entirely surround the
primary and secondary windings, respectively, are linear functions of
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Iy and I and are large compared with the partial interlinkage terms,
so that to a good approximation (43) and {46) become

I

d ; , o
x E :cg-; (L I+ M Is) (47)

&
i o .‘EE '[:Ji” Iy + L5’ fg} (43)

Thus these two terms in (41) and (42) are due to a magnetic held.
Writing & = 1 in (47) and (48), there results

Ey =p[L1’Il-|—JI’Ig) =F -2, 1 (49)
Es = p (M I + L") =— (Zo+ 2Z3) 12 (50)

from which Ly, Ly, and ./’ are seen to be the overall self and mutual
inductances of the windings, in the conventional sense. These two
equations determine the currents I; and I» and therefrom the voltages
E; and E- and the terminal transients Z, Iy, Z2 I, and —Z3 I>.

Case I. Grounded Neutral and Short-Circuited Secondary.—
Here Zy = Zs = Zz =0, E2 = 0, and E; = E. Hence by (49) and
(50): |

E L't
Il = r F; £
(L[ L_‘-'_! T .1-.1{ "'}
* (51)
E Mt
Iy = ¢ / I
(L' Ly — M%) )

Thus the currents increase linearly with time at a rate sufficient to
consume the primary applied voltage E.

Case II. Grounded Neutral and Open-Circuited Secondary.—
Here Z; = 0, Is = 0, E, = E. Hence by (49) and (50)

E

I, = —¢
1 T,
i § (52)
% Ha
Ee=— Ex=— K
: Ll’ m
Case II1. Isolated Primary Neutral.—Here
trl b '”', .";3 T ”, HI = ”. and f‘:g = {) {51}

The more general case with impedances at the neutral and second-
ary terminals is reserved for Chapter X\ under the heading ™ Termi-
nal Transients.” The currents f; and /2 of (49} and (3} very soon
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greatly exceed the electrostatic and oscillatory components of the
transient currents (for practical terminal impedances}, and it 1s these
currents, therefore, which not only fix the axes of oscillation but also
dominate the terminal transients. ’

Electrostatic Component of the Final Distribution.——~The total
dielectric flux which enters the secondarv must be balanced by that
which leaves it. Let Co' and 4%’ be the capacitances to ground,
under steady-state conditions, of the terminal impedances Z» and Zj
respectively. Then the total flux entering the secondary from the
primary s, using (31) and (42},

1
¥ =f Csle. + (E —e,) x — E2' — x Ea] dx (54)
L

and this must be equal to the total dielectric flux which leaves the
secondary by wav of (o, (" and C3". Itas

1
¢ = 0y Ex' + C'.E_/‘ (B2 +x E2)dx + G (B2 + E2')  (33)
0 ,

Equating (54) and (33). there results

_ C:; fE -+ E’..) = {CE + li‘.'; o 2 C:i’) EE
2{Ce 4+ Cs + (27 4 C4')

which identihes the corresponding term in (42) as the potential of the
secondary due to its position in the ¢lectrostatic feld.

If the secondary neutral end is grounded (directly or through a
resistance or inductance}, (2" = =, and (56) gives E2" = 0.

If the secondary line end is grounded, 3’ = =, and (56) gives
Es' =— E;.

If the primary neutral 1s 1solated, ¢, = £ and Eo = 0, and (56}
gives Fo' = (3 E (Ce + Cs + G2 + Gy').

In an actual transformer with 1solated secondary terminals, the
leakage conductance will bring the final average potential to zero.

Ey’ (36)

SOLUTION OF THE DIFFERENTIAL EQUATION

The sclution must satisfy the differential equation, the terminal
conditions, and the initial and final distributions. As a tentative
solution for directly grounded or open-circuited terminal conditions,
assume

) =e, + (E —e)x 4+ 2.0 (37)

e = FEo' 4 Fox + 24, (58)
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in which the terms outside the summation will be recognized as the
final distributions, (41) and (42), and A and A4 are integration con-
stants. Substituting (37) or (38) in (18), and simplifying, there
results i

(Li Ly — M?) [K1Kea' — (K1C2 + Koy + K\ Cs + K2C3) @®
+(CiCe + CoCy + CsCh)] bt + [— (L1Ky + LeK3) a®
F (L Oy + LoCo + LGy + LoCs — 2 M Ca)at] b +a® =0 (59)
This eqguation is a quadratic in &%, of which the coefficients are all
positive if @ i1s a pure imaginary +7 A, because L; Ls 2 M? and
(Ly + L2) = 2 M. Moreover, upon expanding the terms under the
radical of the solution for 42, it becomes evident that the radical is a

positive real number, and accordingly #° has two real negative roots.
Corresponding to these two negative values, there is
+ fw
b = (60)
=70

Thus if ¢ 1s imaginary there are two corresponding imaginary values
for b, and (57) and (58) become oscillatory. This is a necessary
consequence of the fact that the circuit is a nondissipative network
of inductances and capacitances, and therefore exponential decrement
factors can not appear in its solution. The solutions may therefore
be written in the form

e1=¢n + (E —e)x +2[(4 cos wf + A’ cos Q) sin A &
+ (B sin wi + B’ sin @) sin A x
4+ (Ccoswt + C'cos Q) cos A x
+ (D sin wt + D'sin Q) cos \ x| (61)

ex = Fo' + x Es + X[(Aa cos wf + Aa' cos 1) sin A x
—i— (Ba sin wf + Ba'sin @4 sin A x
4+ (Cocos wt + Co' cos Q) cos A x
+ (D2 sin w4 D2 sin 2 ¢) cos N x] (62)

Thus there are fz0 time harmonics to each space harmonic, In prac-
tical cases only one of cach pair of time harmonics is important in the
primary winding, but both are important in the secondary. There
are nineteen constants to be determined in (61) and (62)—the sixteen
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integration constants, the wave length constant A, and the angular
velocities w and ©.  Of these, w and @ are given by (39) and (60) as
soon as A is known. Furthermore, the integration constants of the
secondary are related to those of the primary through the auxiliary
equations (16) and (17). Substituting (61) and (62) in (16) and
separately equating the coefficients of like trigonometric terms, there
results

M— (LK + LG+ LG — MGy

i 63
w® (MM Ko+ MCy + M Cy— Ly Ca) .
A¢ B _ G _ DY _
4 B ¢ b
w— 02 (AL K I C IiCy — MG
_ ( K+ Ly Gy + Ly Gy 3) (64)

CNMEK:+ M Co 4+ MG — Ly Cy)
If (61) and (62) are substituted in (17) instead of (16) there results

W O MK, + MC + MCs—Ly C3)
}.'1 - mj (}LE Lg K*z + LE C-_g + LE C.'j - JI Cd)
0 (A2 MEK 4+ MC + MGy — L G3)

¥ : 66
’ M- RN L Ko+ LaCe+ Lo Cs — M (Cy) o)

That (65) is equal to (63), and (66) equal to (64), is evident through
(39), and therefore it is immaterial which pair of expressions be used.

At ¢ = 0, (61) and (62) must be equal to the initial distributions
(22) and (23) respectively. Therefore, making these substitutions
and expressing the difference between the initial distribution and the
final distribution as a Fourier series, there is

N4 + A sinhx + (C + C') cos M ]
— (P +Qe ™+ R+ S e %Y ~ [en + (E — e,) xi

= Z(X, sin E + Y, cos M) {(67)

4 &

(63)

Vs

LN |

Slre A + 1/ Ay sin A x + (r. C + r.) C') cos N «]
=mPe&&+mQPe ™ +nR L n S ey — (B + x Es)

& STX y STX .
=N (E.; sin — + 17, cos —-) (63)

{ {
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where X, V., U, and 1, are the coefficients in the Fourier series of the
difference between the inifie! and final distributions; and c is the half
wave length upon which the Fourier analysis 1s made. The choice of
this wave length depends upon the terminal conditions, and it is
possible to find a suitable value only for certain conditions, which
means that a Fourier series is not always an appropriate type of expres-
sion applicable to any terminal conditions. Comparing the coeth-
cients of like trigonometric terms in (67) and (68), 1t i1s seen that

A4+ A =X,
C+ ' =Y,
re A +r A =U, | (69)
1. C+1'C =V,
A= swic|

and solving these simultaneous equations
A = {}','r X,, —-U'a:}. {?’; — ?’SJ |
A = {rs :'l-—s o Ua) (-r.r T fs!]

' (70)
C =¥V, - V) (r,) — 1)
C'=(re Yo = 1)) (r. — 1)
The solution must satisfy the following terminal conditions:
i =i =0at =0 (71)

.

(111 + tx1) Z1 = &) at x = 0

(fLE + ipe) Lo = e2 at x = (¢ (72)

— (fr2 + tna) Zy = ez at x = 1|

To impose the first of these conditions, substitute (61) and {62) into
(43), perform the indicated operations, and equate to zero at ¢ = {}.
Then, since I; ({) = 0 at { = 0, the coefficients of like trigonometric

terms may be equated to zero, yielding

E_{)_*__E[(CI+C-;—I—K113}—:F C:;] (73)

B D QLC + G+ K1 he) — " Oy

Making the same substitution in {44) there results
g_g__ﬂ[(cg+cg+xghf}r—cg] (74)
B_.D_ £} (CE+C3+K212]?"’-'C:;
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But the right-hand members of (73) and (74) are different, and there-
fore the only value for the integration constants which satisfies these

relationships is
B=B=D=D =90 (73)

In other words, (73) and (74) are the equations of straight lines which
intersect at the origin of coordinates B  and B {or D’ and D), and there-
fore (B’, B) = (0, 0) is the common point which satisfies both graphs.
The general solutions (61) and (62} now become {dropping subscripts)

s

£y =¢, + (E —e,)x -[-Z[(A cos wl + A’ cos ) sin A x
5 |
+ (C cos wi + €' cos 1) cos A ] (76)

x

-1 ]
ex = Fo' 4+ v Fo +Z[(r Acosw! +r" A cos Q) sin A x

im ]

+{r Ccosw! + 7 C" cos 2t) cos A x] T8

where
A=SsT ¢ from (69)
w, €, from (39) and (60)
A, A, C, C' from (70)
r, r from (65) and (66) { (78)
Eo' from (36)
Fo from (50)
¢ must satisfy (72) if (76) and (¥7)
are possible solutions p

The last term under the integral of (43} is 15, and the last term under
the integral of (44) is ix2. Therecfore, upon rearrangement

: ; . . de
(Zr1 + tx1) =f[[fx + C3a) ‘é—rl = ﬂ:aa—: dx + 1 {1 (79)
Y

| dx + I2(f) (80)

a o
(4z2 =+ 1x2) =f[(cz + Cﬁ)ﬂ—i- — {3

where I,(t) and I»(f) are integration constants with respect to x.
and are therefore possible functions of time. They are the same terms
which appeared in (43) and (44).
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At a grounded terminal the voltage must be zero; at an open
terminal the currents, as given by (79) or (80), must be zero. Upon
substituting (61) and (62) in (79) or (80), it is seen that voltage
harmonics distributed as sin A x (or cos A x) vield current harmonics
which are distributed as cos A x (or sin A x). Therefore cases arise
for which the same space harmonics will not satisfy both the primary
and secondary terminal conditions. However, the two cases of
Fig. 102 are satisfied by the

same Fj{}uner expansion for @ 3 cos EFX

both primary and secondary,

as 1Indicated. In these cir-
cuits the primary line ter- 5

minal is shown grounded, Grounded ~— Neutrals— Isolated
because its actual potential Fig. 102.—Fundamental of Voltage Distribu-
E 1s accounted for by the tions

final distribution term in the

general solution, and therefore the line terminal is quiescent with
respect to harmonic oscillations of voltage. The expansions for the
two circuits of Fig, 102 are

Neutral {srounded [zolated
E], [] b
La 0 o
23 D 0
¢ 1 2
Primary A T
Secondary L -

The subseripts s and 2s — 1 indicate that a// harmonics (both even
and odd) are present for grounded neutral, whercas only the odd
harmonics are present for isolated neutral,

Numerical Example.—Consider a transformer with the following
constants

Cr =1x 109 Ky =1x 101! L1 =10
Co =2 X 10-°% Ky =1 X 10U Lo = 2.5
Cr=1X 109 M =25

with grounded neutral, and the secondary short-circuited and
grounded. By kig. 102 it is scen that the appropriate expansion is the
half-range stne series, ¢ = 1 and A =
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By (24) and (25)
342441 + 4

as = 0.02 = 301.7, a = 19.0
giow DEASM S A s o m T
0.02
m = 2 — 3.617 = — 1.617
n=2—1.382 =4 ).618
By (29) the initial distributions are
Ef-? E[ﬂ.i?ﬁ s:::hI ;ﬂ; i Unies Sls?:hllll.i;]
= 2’ [ 0_55 ~+ i ST _ ] COs ST Sl STX
361.7 + s*x¢  138.2 + s*7-
sinh 19.0xy  sinh 11.7 x
- s E{ sinh 19.0  sinh 11.7 ]

g [ —0.894sr _ 0.894sm ‘
— 0] "- l.q -q, H l_
£ |361.7 + sta? | 1382 + w2} 00T CROT

By (50) and (56) the terms of the final distribution arc

>
. - — 2 E cos s7 .
0+ x = Z slN SwX
5
1

T

61 = €, + (B —eq) x

I i

= E' 4+ x Ey

fm 2
By (59) and (60)
{ —(0.125 s8x% 4 22.5 stxt) £ 9stnt )
|V (st 104 4 2.31 522 100 + 1.613)

- ’:(54#4 b5 el + )
a2 Cpor T 7 102 T 7
l w* for the + sign

* for the — sign

0

b =

and by (63) and (64)

sipd — Q7 (5577 4+ 173) 10710
0.25 Q2 (s2x2 — 100) 101"

sipt — o* (%7~ 4+ 175) 1071
0.25 o® (5?72 — 100) 101

r
r, =

Vs
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By (67) and (68}

X [ 05825y | LM8sr 2]
r = : — {1 COs %
1.7 + 7% 138.2 4577 sx "
. [ —0.894s7  0.894sr “]
&= — COs &
361.7 4 s2x2 138.2 + siy? T
V=0
X =
By (71) ) sl : =0
Foo — Fy
ey Bl
4 =" LT
Ve — F,

The solutions then are, by (76) and (77)

ey =xE +2 (A,co8 w, ! + A, cos 2, §) sin srx
1

er = 042 {A rscos w, i + A, ' cos Q, ) sin srx

231

The following table, calculated by H. L.. Rorden, gives the numeri-

cal results for the above case:

Short-Circuited and Grounded Secondary
5 1 2 3
Wy 132,004 S0, (KD 1,140,00%)
£, 74,500 270,004} 553,000
Y. 5.63 10.08 81.3
re 216 0.308 .88
X — 0.392 0,252 — 10,138
i 0.011 — N8 D18
Ay 0.0254 — 0,010 (3.{H)2
A — .617 0,259 — 11139
Aaa 0,144 — 0097 ().141
A — 0.133 0.079 - {1,123
A * — .601 {1257 — 0,138
Ixfs 74,700 278,000 363,000

* Based on single-winding theory given in Chapter XIII.
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SUMMARY OF CHAPTER XII

The idealized circuit of the two-winding transformer is characterized by an eighth-
arder partial differential equation. Under certain terminal conditions, solutions
are obtainable, the salient features of which are:

1. The initial distributiens and the electrostatic components of the terminal
transients. determined entirely by the capacitances of the windings and the
terminal impedances.

2 The final distributions, or axes of oscillations, and the electromagnetic com-
ponents of the terminal transients, determined by the inductances of the
winding, the fAnal steady-state electrostatic felds, and the terminal tm-
pedances.

3 The internal transient oscillations, which consist of an infinite series of space
and time harmonics oscillating about the final distributions as axes of oscil-
lations, and whose amplitudes depend upon a Fourier analysis of the dif-
ference between the initial and fina!l distributions. To each space harmonic
there correspond two time harmonics. Only one of these two sets of time
harmonics is of importance in the primary oscillation, and the transient
assaciated therewith is substantially the same as that yielded by the much
simpler single-winding theory discussed in the next chapter. But both sets
of time harmonics arc of practically equal importance in the secondary, an
since they are initially opposite in phase, the initial distribution of the
secondary is no indication of the severity of the oscillations which may occur
therein.

4. The practical utility of the complicated two-winding theory lies principaily
in the fact that it rigorously establishes the validity of the single-winding
approximation, and the simplified equivalent circuits for terminal transients
discussed in a subsequent chapter. In addition, of course, 1t provides the
only means available for calculating the internal oscillations of the secondary.



CHAPTER XIII

TRANSIENT OSCILLATIONS IN THE PRIMARY WINDINGS *

Numerical calculations covering practical cases, based on the
analysis given in the previous chapter, show that the essential charac-
teristics of the oscillations in the primary winding are substantially
the same as obtain when the secondary winding is ignored, provided
that the Fourier expansion is on the same base in both cases. It is
appropriate, therefore, to give the analysis for a single independent
winding, because the equations then become greatly simplified and
easy to visualize, and a number of characteristic curves can be pre-
pared. It must be borne in mind, however, that it may be necessary
to make arbitrary changes in the circuit constants, particularly of the
inductance coefficient, to obtain accurate numerical agreement. Also,
the minor frequency set disappears in the single-winding theory, and
there is no explicit indication of the effect of the secondary in fixing
the appropriate Fourier expansion.

The following analysis is along the same lines as that given for the
two-winding theory, and is idealized to the same extent, but the effect
of the losses and of the applied wave shape is taken into account, and
the influence of each of the several circuit constants is discussed. As
before, the derivations are restricted to either a grounded or isolated
neutral,

THE GENERAL DIFFERENTIAL EQUATION

Referring to Fig. 1034, the circuit constants per unit length of
winding are:

L = inductance coefficient, including the partial interlinkages.
M (x, ¥) = mutual inductance between elements at x and v,

C = shunt capacitance to ground.

K = series capacitance along the winding.

(- = shunt conductance to ground.

* * Transient Oscillations in Distributed Circuits with Special Reference to
Transformer Windings,"” by L. V. Bewley, A.J.E.E. Trans., Vol. 50, 1931.

233
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£

r
H

e [ 14

- — = = 2 = [ RFT I

Gax | Zlo)

CIACULT CONTROLLING FINAL DISTRIBUTION

Fic. 103.—Ideal Complete Circuit of a Winding

shunt inductance along the winding.
series resistance,
turns.

The variables involved at any point of the winding are:

g =

7

Il

|

I

X,

— "ﬁ' Ty, tU'E‘" r':?*l?'
1

l

(mlt) =
2 h=

potential to ground.

current in series capacitance A,

current in the inductance L.

current in the shunt conductance g.

current to ground through G and (.

total flux linkages at a point,

flux densitv,

time.

@ @t = partial derivative with respect to time.
points along the winding, measured from the neutral end.
length of the winding.

mean length of turn.

length of the leakage path.

The fundamental relationships are:

3% e

ok
e 'Y

(1)
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. de (2
i = T
: g&x )
I TS
iy = Py E_ﬂ:ﬂ 1] i2 i3 )
ade n ag
ax 2T 0%y ()
a i
=I"E:;g—|-"'—"f M, v)ia (y)-dy {40)
d ¢ g
d

7 iy +ﬂ—E[L’ iz (x)

f
+ f Win) BeG) = & Widsy @

where

f
L’ =fJ.I (x, ¥) d y = self inductance
0

and as 1n (2) of Chapter X1I

Odx(mlt)n [ [
¢=¢m+'¢'!=¢m+ F( J ffl.:‘d}'dz (5:}
Q I

i

wherc : Y
¢$m = flux mutual to the entire winding.

¢: = Hux due to partial interlinkages.
From (d4a) and (5)

gl e g° 12 0.4 » n (mft‘) a- I
i B

d xt A xd h10% dxdt
i L 3%

—_—

~ e Paxa (6)
where Odmrn~B(mll) -
foo= = effective inductance
i 108
By (1), (2), and (3) there is
L 9% —E(G a)ae L &4, L 943
Paxot B at/fat DPBoxadfr DPaxai
L e L 8°e L __ e L d%e
=y T 1,2 £33 (7)
Boatr B o B dxaf B ax2ot
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and
33 ‘1.3, 52 53 £ ﬂ'ﬁ e ﬂ"
P C — —
Yy &x2+r ax‘fa:'fﬁ'ax*az 87 gt #)
Substituting (7) and (8) in (6), there results
" e i dte
rKax*a¢+(l+g}F_F 3 x2 8 12
L\ e L de L de
_(rc-i_gﬁ)ﬂxﬁﬂt_r d x*° 3‘5 d < at
If the losses can be neglected, Equation (9) reduces to
dte LK ate L de
R ra— ] L e e 10
3 xt P ﬂxlafs+f'j a 1° (10)

Hereafter it will be convenient to take [ =
The total current is, from (3)

(21 + 12 + i3) =_(G+C£)fﬂdx (11)

The solutions to these equations must satisfy

a. The differential equation.

b. The terminal conditions at x = 0 and x = |,
¢. The imitial distribution at { = 0.

d. The final distribution at £ = 0.

I[f the solution corresponding to a constant sustained potential
suddenly applied at x = I can be found, then the solution for any
other applied terminal voltage is given by Duhamel’s theorem. The
usual procedure in solving a partial differential equation is to assume
the form of the solution and try it by direct substitution in the dif-
ferential equation and the boundary conditions. Each tentative trial
usually suggests the necessary changes and adjustments in order to
meet the complete specifications. Therefore, in order to choose the
proper solution from ameng the infinite number of functions which will
satisfy the differential equations, it is necessary to first investigate
the boundary conditions.

THE INITIAL DISTRIBUTION

When an infinite rectangular wave is applied at the terminal of
the winding, the currents in the capacitances at the first instant are
infinite, since the time rate of change of voltage is infinite; whereas
the current in the inductive winding is zero. and in the resistances the
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currents are all finite. Therefore the initial distribution of potential
depends only upon the capacitances, Fig. 1038, and can be determined
by solving the differential equation for the capacitances alone. Con-
sequently, considering only the capacitances of the circuit, the com-
bination of equations (1) and (3) gives:

e C 32 e

e = - —a*e =0 (12}
=

Q
Hl."-l
>
@

ﬂa

R

where a =

This equation also follows from the general differential equation
(9) upon dividing through by $* = 3%,6¢ and putting p = =,
according to the procedure in operational calculus.

The solution to (12) is:

e=A 4+ Be™ ™ {13)

and from (1) the corresponding current is
+ d e o I : —ar
1=Kpﬂ=ﬁpaiﬂf“—ﬂe“) (14)

where p — =0, and the initial rush of current is therefore infinite.

Suppose that the winding is grounded at » = 0 through a general-
ized impedance Z ($), and that the voltage applied at x = 1 1s E.
Then

atx =1, ¢e=F = A + Be™~

. (15)
atx =0, e=Z(p)e=2(p)p ~VCK({(A—-—B)y=4 +B
Herefrom the integration constants are

_ 1 2 pvCEK +H1E

22 (p) p v C K cosh a + sinh « (16)

gl _LZ@pVCK-E
272 (p) p~/CK cosh « + sinh o |
and the initial distribution therefore is
_EZ(pjvaKmshax-i—sinhax (17)
Z(P) p~/CKcosha + sinh & |y ‘

For a grounded neutral, Z () = 0, and
E=smhcer (18)

sinh o
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Equation (18) may be expressed as a half-range sine series

I

For an isolated neutral, Z (p)

E

— 2 S5TCOSS T
A2 o gl

1

o¢ , and

cosh a x

™y
I

cosh o

SIS TX

X i
2 E sinsrrxf esINSTXd X
1 ] |

(19)

(20)

For a capacitance Cy in the neutral, Z (p) = 1:$ Cy, and

v/ CKcoshax + Cosinhax

E:

v/ C K cosh a 4+ (y sinh «

E (21)

For an inductance Lo in the neufraL Z{p) = p L and

L/ CK cosh ax + sinhax
g =

L p?

4/ C K cosh a 4+ sinh

cosh a x

cosh «

..

(22)

A few representative values for [Z (o¢) % +/C K] are given in the

following table:

Neutral Impedance 7 (6] Ai%iw VO KR
Direcely grounded . ... ... 0 ()
Isplatedvasnassisasnnama o5 =
Resistance Ry... . . ... Ry o
Inductance Lo........... . ..., £ Lo 2
Capacitance: Coussansamais s 1 G W AT I el
Loand Coinseries..... ... .., pLo+1 pCo %
Loand Coin parallel ... . . p Lot 4 p2 Ly Co) VOK €y
Roand Coin parallel .. .. ... .. .. Ry (1 + p Ry Co) v i o T f

| Ko Luﬁ?‘ [Ru + F-'Lu} o0

Ko and Ly in parallel......_....l

It is evident that only an uninterrupted capacitance from neutral to
ground, or a directly grounded neutral, can change the initial distribu-
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tion from that corresponding to an isolated neutral. Curves for the
initial distribution are given in Fig. 104 for different values of « and
A, and in Fig. 105 the distributions for a grounded neutral are plotted
to a larger scale. In an ordinary transformer 5 < o« < 30. Inspec-
tion of these distribution curves shows that for values of a in this
range there is very little difference, regardless of the neutral connec-
tion. These curves also show that the distribution becomes more
nearly linear as « decreases, that

' 0 At081 is, as v/ (/K decreases. It is thus
- o 2N seen that the distortion of the ini-
g:': N g:: N4~ tial distribution is caused by the
nia > 5 s capacitance C from winding to
'?- 5 ground, and can be improved either
ﬂ_- i ] * u 3
K o IR Ty b}f.mcreafslflvg K or c!ecre-%zng C.
¥ Y i This possibility is of primary impor-
08 ok 06 e
HIM 3o HD.I b i _E;* I“ " |E!E
0.2 F= - M-’h - ag N
s r T s drossit Q.8 \%"\
Lol = a=1.0f 3---;: oy A,
1AL
¢.6 . YT
Hﬂ'.ﬁ " o y : E e 1“-11 B
= 9 £ _: 'l_
t:v.-tr-ﬂ=r = 2 nY hq.,ﬁ_ & :.;.ans
H.E "h 1-: T | e * U'.E -f-.{:‘k 6'“ n‘
ol . oL L ! I
10806 04 0% 0 10 08 0.5 0.4 0.2 0 i
X X N
~
FiG. 104.—Initial and Final Distribution he >
Factor Q. -
¢ 1 cosh A x + sinh h x gi_ﬁ:i\
- : - , 1 09 08 OF 06 05 04 03 Q2 QF O
E A cosh X 4 sinh X
A = a for initial distribution Fig. 105.—Imtial Distributions for Grounded
» = 8 for Anal distnbution Neuytral

tance in connection with the schemes of electrostatic shielding of trans-
formers and is discussed in detail in a subsequent chapter.

THE FINAL DISTRIBUTION

After a transient incident to the application of an infinite rectangu-
lar wave at the line terminals has died out (theoretically at { = )
the residual distribution is d-c. The capacitance elements then act
as open circuits and the inductance elements as short circuits. The
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The normal losses of a transformer are insufficient to exercise much
influence on the character of the oscillation, beyond a decrement of the
order of 20 per cent per half cycle of fundamental frequency. How-
ever, these normal losses very definitely limit the cumulative voltages
which may be built up by resonance between the natural oscillation
and applied wave frequencies. By increasing the losses sufficiently
it is possible to prohibit all osciflations. The initial distribution then
diffuses into the final distribution without oscillation, and dangerous
abnormal voltages may be avoided. This idea has been applied to
current limiting reactors. See Fig. 30.

Equation (43) may be written in several alternative forms as
follows

o™
|

r E + EZA,sin 5T X COS w,l (44a)
I

r E + EZ% [sin (s 7 x + w,f) + sin (s7x — wd}] (44D)
1

= EZ [A, cos (s7 — wid) — E] COS § T-5iN STX (44c)
1

) s

In the case of Fig. 1094 this last expansion becomes

2 ZE[ ( ! ) ] .
= ““lecossx|ll — ——) — coss x| sinsrx {44d)
2 vor:

There are thus three points of view regarding the internal oscillations
of distributed circuits of this nature.

Equations Point of Vicw
Ha iFixed distribution) 4+ (harmonic standing waves)
14 (Fixed distribution) + (pairs of harmonic traveling waves)
44¢ Simple reflecting traveling wave, in case of Fig. 1094.

The amplitude factors

2alcoss T
= 45
A s (a? + 5% 7%) S

have been plotted in Fig. 106. For values of @« > 10 there is not much
change in the envelope of oscillations,
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The ratio of harmonic frequencies 1s

-E_ﬂ_ §2 72 '\/L{C-—I—KWE}
fii w1 VIL(C + K 52 #2) T
C+ K= \j o’ + 7°
= 2 -
"NeY Koz T Va2 522 (46)
+04 |
+0.3 -
e
+0.2 / T
ro1 LA - 1 L Ll
i z%-ﬂ— SN
o 26 30 %0 55 80
5 $-on
"§ £ -o2 c
HE -a3
2 -o4lf\ :
~-G5 \-»...
-0.6 e 1 5111
~0.7 |

FiGg. 106.—Amplitudes of Natural Frequency Oscillations in Transformers for
Infinite Rectangular Waves

This ratio has been plotted in Fig. 107.
f‘ ]

— =35
f1

fe

— = s {or the high harmonics

f1
The decrement! factors, from (33), are
rKstat 4+ (r CHegl)s*> a2+ LG
2L (CH+ K 5° %)
rK(C K+ s27%)s°xa> + oL (G g+ 52 79)
2LK (C K + 52 x°)

for the low harmonics

(47)

Ya

(18)

Now the conductances G and g depend upon the same geometric factors

as the capacitances C and K respectively, so that to a good approxi-
mation

112

= q (49)

B o

£
K
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and hereby (48) reduces to

r g L) 7
= —1 s% g2 =] = — (s* 2 o 50
L 2L( Ty k) 2L ) (50)
60 ane=g
S -
50 %‘/v"’
— o
urw N
E[ |
<% v i
i Ve P T
in 3] . AR
11 | i
= B
313 20 ﬁ" —
.r"f e
r’r_..r_‘.ir .u:"'"'-
J"r..-"rff .ﬂ
77/ dunn Fi“
ZSSSSS Pt
GD 10 20 T:'LO 40 L4 80

F1G. 107.—Ratio of the Harmonic Natural Frequencies
Therefore, the ratio of decrement faciors, Fig. 108, is

T o, 30 Mok 8 (51)
"_rl_ ™ 4+ g

where ¢ = g L v K depends upon four constants: g, L, r, K, none of
which is casy to find. 1t is therefore more feasible to regard ¢ as an
empirical factor which can be obtained from tests by comparing the
decrement factors of any two harmonics. It is seen that the decre-
ment factors increase considerably with the order of the harmonic s,
about as the square for the higher harmonics. Consequently the
higher harmonics are wiped out before the fundamental. XNever-
theless, the higher harmonics are important at the neutral end where
they pile up: and they also may cause excessive gradients along the
stack.

The effective capacitance at the line end is defined as

Cf;=;i—E.‘atx=1and£=U (52)
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Then for a grounded neutral, there is, by (14) and (18)

=vCchthaEVCK {53)

cosh a

sinh

The surge impedance of a harmonic oscillation is defined as

. By = 1: (54)
= 117
y-
50 /1’ }{]l
. s
7 // : A
E 30 y Y
:_:';'; il g{:'/‘c
20 ”'*yE 4 /"’ pd

g ae ea e

Fic. 108.—Ratio of Decrement Factors of the Natural Oscillations

where e, is the harmonic voltage and 7, is the corresponding harmonic
current which mayv be calculated by (11). Thus in the case of a
grounded neutral

€, = A,sin s xxcos w!

__A,Cw,

E COS § T X8I w,f

5T

L

. (55)

sy —
&2y

The velocity of propagation of a harmonic wave, from (445), is
(grounded neutral)

gy = (56)
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In the appendix to this chapter there are given the derivations for
a circuit containing C, K, and L, when the inductance is a pure seli-

o A S 3

© E I .|_| Imm
ST I T

® ——

B et R o P o P e A
FiG. 109.—Circuits Having Internal Oscil-

inductance and i1s not compli-
cated by partial interlinkages.
A comparison of this circuit,
Fig. 109, with that previously
discussed, Fig. 109D, shows the
effects of the partial interlink-
ages, or mutueal inductance
between parts of the same
winding. Furthermore, by de-
leting the series capacitance K
from the equations its influence
can be segregated. The ideal-
ized circuits of Fig. 109 repre-
sent the range in circuit param-
eters under consideration, a
wavy line indicating pure self-
inductance, and a coiled line
indicating the presence of mutual
inductance between elements of

lations the winding, In the following
Circult W, e EAL ) (L, ¢, K} (M, C, K)
1 2eos s 2ros s 2alcos s 2atcossw
ol 5 ST s (st x? 4+ af) s st 4 a?)
s L 5T 53 gt
te) srormrel
” 'V/L O "‘b’f.'"-f L VL (A s*x? 4+ ) vV MK 5 xl + {7}
1 s 1 3
1, —
VLC VM VIEKSe+0) | VMKstc+ )
L 1 ﬁf [E [s2 a2 /E /1 1
= f_ o EuehT FEE 1 ¥ 5 e
’ N\ ¢ s N C NN e * \C\'n“+sﬂrﬂ
e sinh a x sinh e x
I =10 0 0 sinh « sinh o
£
I = = x X g X




TRANSIENT OSCILLATIONS IN THE PRIMARY WINDINGS 240

table the amplitudes of oscillation (A,), angular velocities {w,}, linear
velocities of harmonic waves (w, ‘s7), surge impedance (z,) of harmonic
waves, initial and final distributions are tabulated. In this table a
coefhcient L indicates pure self-inductarnice, and a coefficient M indi-
cates the presence of partial interlinkages.

Transient Distributions.— Distributions corresponding to the four
circuits of the above table are plotted in Fig. 110. These curves show
the transient.voltage distributions along the winding at different
instants of time,.

If the circuit has only uniformly distributed self-inductance and
capacitance to ground (the ideal transmission line} the transient is a

! [ T
] i "Lk’v
} | | h
s Recs;cetaateas
% mmiin o7 NP A
L RRD Syt | e B i R e
04— ‘ 3: = A
ﬁ L r.:'r T E:IE —M,C ==
i 0 -
| X
"1
..n""r [y, _:\"'
1. 1.6 .
0. 0.9 \.H L
0.5 0.8H ¥
¥ TaamassaE
X
05 AN ERANSS
6.3 03 "w
02 02 s
0 0.1 | M.CHFOd——1——
o am [T

Fic. 110.—Internal Distributions

simple traveling wave which runs back and forth between the line
terminal and the neutral at a uniform rate.

The presence of either series capacitance or mutual inductance
between parts of the winding introduces distortion, but the mutual
inductance is the greater offender in this respect. In general:

a. Series capacitance tends to decrease the amplitudes of oscilla-
tion; decrease the frequencies of oscillation, especially of the
higher harmonics; decrease the velocity of harmonic waves;
increase the surge impedances of harmonics; and better the
initial distribution.

6. Mutual inductance tends to increase the frequencies of oscilla-
tion; increase the velocities of propagation; and decrease
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the surge impedances. It has no effect on either the initial
distribution or the amplitudes of oscillation.

Inspection of Fig. 110 shows that woltages may occur inside the
winding which exceed the applied wave by 30 or 40 per cent. More-
over, gradients far in excess of those corresponding to uniform dis-
tribution are experienced at different instants all along the winding.
It should be noticed, however, that the initial distribution at the line
end gives the maximum gradient that will ever occur anywhere in the
winding, for the gradient is

ae : -
ﬂ_; = E + Zsr;ﬂl,msswx-cns @, f (57)

and at ¢ = 0 and ¥ = 1 all harmonics are in phase (since the sign of
A, is fixed by cos s #). The second highest gradient occurs at a later
time at the neutral.

Potential Difference between Points of the Winding.—The poten-
tial difference between any two points x; and x» of the winding 1s

=
e1—e2=(x; —xs) E+ E E A, (sin swx; — sin $wx2) COs w,t
1

swix1—xa)  sw(x;+x0)
oS 5

—] (xl—IE)E —|~E22A35in COS W;t (58)
" ;

Consequently the harmonic voltage between any two points vanishes
if
s (x1 + x2) = (Zxn — 1) = an odd integer
. (59)
s(x) —x2)=2m = an even integer

For example, if x; = 2/3 and x2 = 1/3, then all the odd harmonics,
and all the even harmonics which are multiples of 6, vanish. Thus the
only harmonic voltages between these points are the second, fourth,
eighth, tenth, fourteenth, etc. Between points equal distances from
the ends, x2 = (1 — x1), there can exist no odd harmonics, for then

L1 (::T1 -+ Ig) = ¥ {60}

Energy in the Oscillations.—At the initial instant the energy of
oscillations resides in the capacitances. The harmonic voltages are

e =24, e cos wdsins T (61)
1
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and at £ = 0 the energy is

E2 1 p
W==" [C39+K(,a—f)]d:: (62)
2 Jx

1]

E?
== DA (CH 2K
1

CE? X s2 2
-T2+ b
An alternative expression is given by substituting in (62)
inh
e = (erap — €aw) = E (5”,1 =5 x) (64)
sinh «
and then
CE®
W=-—(I +i —écnthc:)
6 a? a
CE®* KE? (+/CK coth a) E?
= -|- —_
6 2 2
JER
T\ 6 2 ) (65)

= (final electrostatic energy) — (initial electrostatic energy}

where Cenr is the effective terminal capacitance of the transformer at
the first instant, as given by (33). In ordinary transformers this
energy is of the order of 200 to 500 joules for E = 1,000,000,

In addition to the energy of oscillation there must be supplied to
the winding the necessary energy to maintain the terminal voltage E,
The rate at which this energy must be supplied depends upon the
inductance and resistance of the winding and the connected impedances
of both the primary and secondary. If the losses and surge impedances

are zero, then the electromagnetic component of current flowing into
the winding of inductance L’ is

Et
I = 7
and the corresponding energy stored in the electromagnetic field is
I’ 2 2 42
yo LB
2 2 L

thus increasing as the square of the time. But if the series resistance of
the winding is 7, then the supply of energy necessary to maintain the
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terminal voltage is ultimately at a rate of E2/r. More generally,
considering the connected impedances and self and mutual inductances
of the windings, the rate of energy supply must be computed from
Equations (49) and (30) of Chapter XII. These equations are
considered in detail under ' Secondary Terminal Transients " in
Chapter XV,

SOLUTION FOR ISOLATED NEUTRAL

The analysis for an isolated neutral proceeds along exactly the
same lines as that for the grounded neutral. Equations (20) and

22
20 fFravelope
1.8
R
1.4
.2
1.0
08
061!
04
0.2

0

Envelope

Frnvelope

- Final Frnal

fnitial

Grounded Neutral Delta Connected laolated Neutral
FiG. 111.—Twypical [nitial and Final Distributions and Envelopes of Oscillation

(30) are emploved for the tmitial and Anal distributions respectively,
and the Fourier expansion of these distributions 1s made as a quarter-
range c¢osine series of odd harmonics,

Ty
cos (25 — 1) 3 (66)
The solution for no losses and an infinite rectangular applied wave 1s
= i oy
e =E+ ED B, cos — cos O (67)
1
where
—16a*sinsx 2
Bi=— (68)
sw (s 7~ + 4 %)
52w 4

Il

(69)

L1k

VL(C + K 5272 4)
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The characteristic parameters for the circuits of Fig. 109 are tabulated

below :
Circuit (L, C) (AL, C) (L, C, K} LM, O, R
B isinsx/2 | 4sinsx;2 16 alsinsx/2 16 asin s 2
¢ sx sw sweistxl+dat | sr(s?w? 4+ 4a?)
5 s /2 stq2 d L strd’g
> VL VMC | VEKstat4+C | VMEst=® 1+ C)
- 1 s 2 1 I
! VELC VMC (VI (Kst«221 10 |VAU(Kstat 44 )
||| ) | e
) G seNC C \da? 'C \a? ' st
P cosh & x cosheax
() 0 ! I
it =0 cosh o cosh
¢ a
E E E E
I =2
The energy in the oscillation 1s
o

W =

(C=C) ?
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NEGLIGIBLE MUTUAL INDUCTANCE AND NO LOSSES

The fundamental circuit equations are

gt e
= K {
1y ey {)
. ae a4 .
n=‘ﬂ'a=aih+1:) (2}
d e _ aig {3}
ax  at

From these three equations the differential equation is
gte - g% e dle
LC— =10 (4)

—

gxtant dg x? a1t

or substituting # = ¢/4f and rewriting in symbelic notation

e LCp
vt KLprr1°" Y )

The solution to (3) with respect to x is

e = A& 4+ Be™ " (6)
where
1
¢ = \/ rC? (7)
KLp+1

From (2} and (6) the total current in the series path is

i
= ({L+d) = fca_jd-": = C?(a‘l € — Bem %) (8)
a

The terminal conditions are

e=Fatx =1

, } (9)
Z{pyi =egatx =10

From (6}, (8), and (9) the integration constants are
4 = CpZip)+e E
CpZ (p)cosh o + asinh o2
: (10)

CpZ(p) — @ E

B = —
CpZ (p)coshe + esinh o2
254
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and substituting (10) in {6} there is
_CpZip)coshox + nrsinh-:r.tE _Yip)

B CpZ (p)cosh ¢ + osiph o _H{p} ()
This operational equation may be solved by the Heaviside expansion theorem
Vig) Y0 Y (ps) &
O YO Y. ”
Hipg) HO) P ' (py)
where the summation is to include all the roots of H (p) = 1.
Applying (12) to (11) there is
Yp) =CpZ (pycoshax + esinhex {13)
Hi{p) = CpZ(p)cosh ¢ + 7 sinh « (14)
Y ) ZWO® +pLx/ 5
g2 ZW+pL/ p=0 W
The roots of {14) are given by the transcendental equation
tanh ¢ = — CPLLp) (16)
.
and from (7)
yor
?=E=NLc-#K) S

In the general case, the roots of (16) must be found by methods of approximation.

d H {p) _ : & a?
p 2% -(Emhg-’-cusha)(l_;)d

d
+p.cnsha-t?5[p3(p)] (18)

This is as far as the generalization can be carried.
If the neutral impedance is a capacitance Cg, then
Z(p) = : 19
P Cﬂ { }
and the last term of (18) vanishes. Now substituting « = j ¢, Equation (16)
becomes

Co 1 ¢ £ 2 5 _i_l

—{=cot{f=— — - — — — — - =y
3 J 5 045 § $725

C e 315 (20)

Or
C
£+ 1088 + 10584 + (1575 — 4725 El’) §t— 4725 =0

* from which the most important roots of (16) may be determined by approximations.
Suppose that this has been done for a specific ratio Co/C.  Then by (17)

it
p==
VL€ + K

=k fu (21)
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Substituting (13}, {13}, {18}, and (21) in the expansion formula (12), there results

e=£—3£2 Gcoe & r __ufs'.n"':rrz_ cos w ! (22)
Co (sinH L);(1+-~,_-,)
COS | o

where the roats arc given by Equation (20).
For a grounded neutral, Z () = 0, and {16) gives

o . "
cam

sinh o = ch(l -+ > 1) =) (23]
ST

from which

o =Lji=xjsr (24)
and the solution 1s
<
s &
e =x b8 4+ K 2
5w
Sm{
2 at : swxi )
~ sin § T X COS (23]
atcfistint VEIL(C+sixtK)

For an 1solated neutral, Z (p} = 0, and (16} gives

-
1 g
cosh o _H_[l S ”E] =0 (20)

from which

_ 2s=1ir )
c=xji{ == ; (27)
and the solution 1s
&g,
—v3sin 5 r/2
e=E+E D T
s
1
16 o x i |
qla HL‘DESWI cos — 5w (28]
sin? + daf ! VLi4C+ Ksrl

When K =0 and o = VIE__- K — =, this equation reduces to the equation of an
open end transmission line, or

=

—%5in 5§ w2 IAX swi
=L+ 41 E 2 ——— D3 COS 29
¢ & : 5T 2 241 € (29)
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SUMMARY OF CHAPTER XIII

The idealized circuit of the single-winding theory of transformer oscillations,
including the losses, Is characterized by a fifth*order partial differential equation
which may be solved for either a grounded or isolated neutral. The initial and final
distributions may be found for general impedances in the neutral, and both distribu-
tions have the same functional form. The general solutions for grounded or isolated
neutral are in the form of an infinite series of damped space and time harmonics
oscillating about the fAnal distribution as axis of oscillation. The form of the solu-
tion shows that the oscillations may be suppressed entirely by making the final
and initial distributions coincident—the criterion for clectrostatic shielding dis-
cussed in a subsequent chapter. The effects of the losses as well as of all the other
circuit constants are cvaluated in the text and illustrated by curves. Formulas
and curves are also given for the amplitucles and frequencies of oscillation, the har-
monic decrement factors, the effective capacitance of the transformer, the surge
impedances and velocities of propagation of the harmonic waves, and the initial
and final distributions, as well as typical envelopes of oscillation for grounded and
1isolated neutral, and delta-connected transformers. Equation (38) gives the poten-
tial difference between points on the winding. Equation (57) specifies the gradient
or axial stress along the winding; (63) and (65} are equations for the energy of
oscillations, ;



CHAPTER XIV

WAVES OF ARBITRARY SHAPE APPLIED AT ONE OR BOTH
TERMINALS

Effect of Applied Wave Shape.—Equation (141) applies when an
infnite rectangular wave is impressed at the primary line terminal.
If the applied wave is E (¢) the corresponding solution may be obtained
by Duhamel’s thecrem, two expressions for which yield

o)

sinh ax _ ~ ..
g = E{t) — Zf:[, e """y, cos w, (8 — 7)
0

sinh o :

4w, sinw, ({ — 7)] E{r)sinsrxdr

sinh 8x " ;
DRSS Y A, {E() — Ty
sinh 3 4) +Hl { 2 [ i

[yscos w, ({ — 7) + wysinw, (! — 7)] E(7) dr}sin swmx (70)

Either one of these two expressions may be emploved. The former
reduces directly to the ininal distribution (18) at ¢ = 0, and the latter
reduces directly to the final distribution (29) at ¢ =% . In subsequent
applications only the latter equation will be used. If the losses are
zero 1t becomes

e = x E(f) +ZAS{}-;{:) —fw,g sin w, (1 — T)ﬁ{f)dr}ﬁin sty (71)

Lk
In any event, it 1s permissible to take

sinh 8 x
_sinh 8

Finite Rectangular Wave, Fig. 1128.—For a finite rectangular
wave of length L the solution is the same as (44a) up to ¢ = L, but for
greater values of time the solution is obtained by superimposing a
negative rectangular wave at { = L.

Il

(72)

| Jfﬂfnrf] el g
Fofr) =
| O for ¢ > L

154
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and

E[!{L) = X E +E ZA; EiI‘l 5T X Co5 w,gl‘-‘v (T&}
1 ’

eesry= 0+ E

) EVALCTANYAR
._ h——F—-*:n,.HH \/ \/_ _____

e

Fig. 112.—Wave Shapes Used in Calculations

Thus at { = L the axis of escillations shitts from the x E line to the
zero axis, but the amplitudes of oscillation are multiplied by the factor

w.L
2 sin 3 (75)

This factor has been plotied 1n Fig. 114, Any harmonic is then a
maximum for

w. L
2

i

= (2n—1) {(76)
2

where # 1s any integer. Therefore the critical wave length which

doubles the amplitude of oscillation is
/il
Eom (2 poesiis = (B = 1) o = i e 1§ 2

@y 2af, 2

(77)

where 7, = 1 f; i1s the natural period of oscillation.

Therefore, if the wave length 1s an odd multiple of the natural
period of anv harmonie, that harmonic will be doubled. However,
the maximum crest of the envelope of oscillations will not neces-
sarily be increased, because of the shift of the axis of oscillations to
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the zero line. For example, considering only the axis of oscillation
and the harmonic which conforms to (77)

e = E(x 4+ Assin s T xeos wd) foré < L (78)

1.0 - . |
P /— / /"’7—_
3 : : :
i - F - o £ =
% p: Linear Sinugoidal Exponential
o ) hY i
c s |
c 4 =1 © i
5 ) D L ,
- M
E 2
F/Ts BENEG 172 | 24
0 2]l a6 8 [oN 12]14 ---.;1;3...#‘5.0 =T |
-2 CTErE

F1G. 113.—Reduction Factors for Wave Fronts

20 =
ij)—-w\ IREET
#I/ \ .'.::;E"""":'-
1.6 ~ N :
| 4 ‘f
B Qié‘ Trigngular |
2 7 N e
= 10 < ¢xponentia! Have. &
" ;-T'-‘F_ o
: B \
®
. \
{1 A\
L \v
0 y

L/ Ts
F1G. 114.—Reduction Factors for Wave Tails

This 1s a maximum for cos wi ==+ 1 and for

de’
dx

=0=(1+svrA,coss7x)
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Therefore

(79)

Therefore
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In a grounded-neutral winding, 4, 1s greatest for the fundamental,
but can not exceed 2/, so that the maximum to which the fundamental

can raise the voltage is
. E

€ max — T

m

—1 .
[r:ns‘1 (T -i—*\/E] = 1218 Efor¢t < L (80)

as compared with

E”mm: = 2 AJE =

K

| e

E=1272Efort > L (81)

=y

These relative values are, of course, altered by the contributions of the
other harmonics, and A4, is always less than 2 .

Linear Front, Fig. 112 C-D-E.—Substituting the linear front,
Fig. 112C,
Et)=al (82)
in (71) there results

-

L4 ; :
e=aix + 2 — A, 8In § T x sin w,d

|w“

and the distribution is directly proportional to the steepness of the
wave front.

Herefrom the solution for a wave with a linear front and an infinite
tail, Fig. 112D, is readily found by superimposing two such waves of
opposite sign and displaced by ¢ = F. Then

E — A, . : ;
Crep = n:}t -+ E;:Fsm 57X SN wyd
. . , L (83)
g SN w, £ 2 F\
é-r = X E + EZI‘A# [ o F 2 ]msma(t — E")EIHSTIH
For ¢t > F the amplitude of any harmenic is reduced by the reduction
factor
sin w, & 2
34
[ w, & 2 ] &4

This factor has been plotted in Fig. 1134, and its efiect is illustrated
by the cathode-ray oscillograms of Fig. 116. It is zero for

g B 3 2
Bl e oF BEal Sy T, (85)
2 w,

Thus if the wave front is a multiple of the natural period of oscillation
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When a wave of this type is chopped on the tail, Fig. 112E, the

subsequent distribution is found by superimposing an infinite rect-
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angular wave of opposite sign, and displaced back from the origin by
an amount { = L. The solution then is

e = E DA, [_.. cowtn; =0
1

N (sin w, F 2) (.e F)] _ (36)
05 W, — 3 x
= £ 3 15w 7 SN STX

If a wave having a front so slow that it causes no perceptible oscilla-
tions 1s chopped on the tail, the subsequent distribution will consist of
the oscillations corresponding to an infinite rectangular wave (—E),
but these oscillations will take place about the zero axis instead of the
(— x E) axis.

Typical Lightning Wave, Fig. 112F.—In the case of a wave with
exponential front and tail

E@®) =E (™ — ™™ (87)

and (71) then yields |
e=FE{(e" — e")x+ E ZA,sin S$TA [

a* e ™ B2 ¢ ™

a- I wsz B b- T wsj

-+ o COs (mr. + tan™! E*)
Ve + w? N w,

— ik ( ¢t + tan™! E)] 88
‘\//EI'E + w,? FOS\ Wy (85)

A wave with an infinite tail and exponential front is given by
putting & = 0, and (88) reduces to

e.co=FE (1 —e™x+E 2;{1,; Sin s T x = ;J_: :ﬁ
1 b COS (m,.r — tan~! Ei) (89)
Vb + w? b7
The reduction factor
b 1 1

(90)

Vit w? V1 (@ 8 {;'+ (sz)ﬂ
A 3 T,

has been plotted in Fig. 113C. The steeper the wave front the higher
the amplitudes of oscillation. The higher harmonics are wiped out
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first by a depression of wave front. If & = % the wave front is per-
pendicular and the solution (89) then reverts to that for an infinjte
rectangular wave.

" A wave with a perpendicular front and an exponéntial tail is given
by putting & = 2, and (88) then reduces to

¢=xEe¢"™ 4 E ZA#EEHS?I’I[E
1

) —f
G -

a° + w,”

~+ e Co ( { + tan ! & )] (01)
b a 1 e
'\//{13 + |{:.J,,;"‘T & o Lty

The reduction factor, Fig. 114, is
W B 1 ~ 1
Vai+w? V14 (aw)? V14 (0117, L)

(92)

Thus in the case of a falling tail it is the lower harmonics which are
wiped out first, rather than the higher harmonics as in the case of an
increased wave front. However, as seen from Fig. 114, the wave
length must be very short to affect the fundamental seriously.

If the tail is infinite, @ = 0, the solution (91) reverts to that for an
infinite rectangular wave.

For practical estimates of the effect of a wave of given front and
tail, the two effects may be calculated separately and multiplied
together. For example, consider a grounded neutral transformer
characterized by o = 10, fi = 10,000, v; = 0.003, and ¢ = 20 sub-
jected to the impact of a traveling wave with a 5-ms. exponential
ront and a 20-ms. 1ail. Then the following table illustrates the use

Fot
Ll
e

FFig. | Harmonic (s) 1 5 G

(18 Decrement (4.) 0,003 0.006 0.0110 0,015 0.0271 0.038

shh | —

07 Natural period (2 7. w,) 100 ) 280 | 14,6 9.6 7.1 3.if

6 Amplitude (1,) —0.38 |+0.23 (=012 |+0.07 |[—0.03 |4+0.02
13¢° | Front factor 0.99 1 094 ] 082 068 0.56]| 0.49
lJ;l-__- Tail factor .88 ( 0.99 1.00 ;_ﬂﬂ_ 1. 00 1.04

Damping e~ 7+¥1/2 _ﬂ.B: 0.74 ] 0.38 | 041 0.26 | 0.15

Reduced amplitudes —0.4 | 016[=0061 002 000! D00
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of the several sets of curves which have been derived. The reduced
amplitudes are calculated as the product of 4, and the reduction
factors for front, tail, and losses, the last effect to extend over a half
period of the fundamental. .

In addition to these reduced amplitudes of oscillation, the axis
has been steadily declining, so that the transient distribution does not
exceed the linear distribution x E, except in the immediate vicinity
of the neutral.

However, for waves which are long compared with the natural
period of the fundamental, abnormal voltages of the order of 1.4 E

30 ~ 30

T 0 T=1{0 .
20 a=0 20 ﬂ'ﬂ.mxlﬁ'
10

107 4 :
=20 20t
S0t '-“'l
. Q010 X10® = 0010 X 10%
30 : 3t o= 0.002 X10®
2 Z
Lt 1
0 4
-1
2 R
-3 C

Fic. 117.—Effect of Decrement Factors on Cumulative Oscillations
v =transformer decrement, g =applied wave decrement

may be built up in the neighborhood of a quarter of the way from the
line end.

Damped Oscillatory Waves, Fig. 112G.—When a sustained oscil-
latory wave (alternating current) is in resonance with one of the
natural frequencies of a transformer, the amphtudes of that harmonic
build up indefinitely at a linear rate, as shown 1n Fig. 1174. i,
however, there is a finite decrement in the applied wave, then the
~amplitude of the resonant frequency reaches a distinct upper limit,
at which it persists forever if there are no internal losses in the trans-
former to damp it out. This is illustrated in Fig. 1175, where the
presence of even a moderate decrement in the applied wave has resulted
in limiting the voltage rise to 14 times the first crest of Fig. 1174.
When the applied wave is sustained, but the natural oscillations of the
transformer are damped by the losses of the transformer, then again
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the cumulative oscillations are definitely limited as shown in Fig.
117C. I, now, there are decrements in both the applied wave and in
the natural-frequency oscillation, then the cumulative oscillations
reach a maximum beyond which they decrease ultimately to zero, as
shown in Fig. 117D, This characteristic has been verified by cathode-
ray oscillograms of resonant oscillations in transformers, of which
Fig. 118 is an example,

In order to estimate quickly the effect of the decrement factors in
the applied wave and natural oscillation in limiting the maximum of
cumulative oscillations, the curves of Fig. 119 have been prepared.
These curves give the maximum crest of the envelope of oscillations
corresponding to the damped oscillatory wave E ¢ ™ sin (bf + 8)
when the natural frequency oscillation of the transformer is
A € " cos bt

Substituting in (70)

E{f)y = E ¢ “sin (bt + 8
there results

e=xE e "“sin (bt + 6 -E-Z:l.. sLn S‘H'I{E ¢ “sin (bt + 0)
- |

E l: w?.-i _I_ TH! —df  + 2k
= - t+ 8 — ) — ™
TaNG = R Gy e G )~

sin (w, t + & — A,)]

E g |

¥ _2"'/m mpw rrarsr AU LG R 2R
sin (w, f — 6 — ,h)]} (93)

where _

= tan—' (- £ _l(w*b)=e o] aw — by ]
A = tan (T) + tan a — v tan s ) (94)
= =i = _'(w+b)= ; —lﬁ adw + by ] )
Y = tan (?) T tan™ |\ — e e = 6 (95)

The condition of principal interest is when the applied wave has a
frequency equal, or very nearly equal, to that of one of the natural
frequencies of oscillation of the transformer, for under that condition
there is a possibility of building up excessive internal voltages by
cumulative or forced oscillations.  Suppose that for a particular har-
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monic w = & Then for that harmoenic the terms in braces in Equation
(93) become (dropping the subscript s)

E b2 + 4
Y (e — ¢ sin (Bt + 8 — )

N —al o
1.&& 10 (f}£+ﬂ)+2 @ — )

E f b 7

e “sin (bt+86+y¢)+ e " sin {b!—ﬂ—y{r]l’ (96)

M) Py
and
b i
X i="%an (-) (97)
”
b {a + v)
y = tan“( ,}) 08
Y (@ =) Bl 8
11
HEEEEE
5| dl
= - P
B#? &IF /r/’/,.--'
i O
& | 7
i_ {.:" ‘IIIF_ -
5""’, o /
y -
4}]5 : ﬁf o=
3 = - - =
R EPaAREEZ o o ai g
v g | _[-200°T | L+
1 % = o
) millin

0 2 4 & B 16 12 14 1o 18 20 22 24 1%

bfr
Fic. 119.—Maximum of the Envelope of Cumulative Oscillations

Applied Wave: Ee™® sin (b + 8)
Natural Oscillation: Ade™ Y cos b

The second term of Equation (96) is responsible for the excessive
rise 1n voltage due to cumulative oscillations. The term consists of a
sinusoidal oscillation within the envelope of

E — i _ e f

a — ¥
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Differentiating Equation (99) and equating to zero as the condition
for a maximum, there is
ay

dt

|
-
I
|
£
™
I
o,
+
-2
[y,
|
=

(100)
Therefore

f = = ¢ (101)

E\/b":— g
max — , N o ol | 102
? 2 Vy* (@ v) — 1 (102)

This expression is useful for estimating the maximum voltages that
can be expected, although exact values must be calculated from the
complete Equation (96). It can be expressed as a function of the
ratio (v /a) as follows:

Therefore

log (v @) _ log (v a)
il =
g G {(y a) — 1

at’

(103)

, log (v @) _ log (y @)
L 1 — (a v)

vt (104)

Curves for (vmax £) have been plotted against the ratio {(b'y) In
Fig. 119 with the ratio (@ ) as parameter. Ordinarily, (& v} is so
large compared with unity that

Eb(e™ — ™)

man__ 105
? 2y (a@avy)—1 )

Thus the envelope of cumulative oscillations has an amphtude directly
proportional to the resonant frequency, but since the decrement also
increases with the frequency, it does not follow that the amplitude
will necessarily increase with the frequency.

There are a number of special cases of sufficient interest to warrant
detailed consideration.

Case I.—If the applied wave is sustained (@ = 0) and the trans-
former is free of losses {y = 0), then by Equations (97) and (98)

A =tan"! (2} = 90 deg. (106a)
¥ = tan—! {~0) = 180 deg. (1065)

also

- af

M 28 ; / . (107)
ad =7 T—py =i}
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Substituting Equations (106a), (1068), and (107) into (96), there is

E
{E sin (b2 + 8) + ?bt cos (bt + 6) — 7 [sin (8¢ + ) + sin (b¢ — ﬂ}]}

3 1 bt
E{j sin (bt + 6) — Esin (bt — 8) + Ems (bt + 3)’ (108)

4
E.. .
=5 {sin &f + b¢ cos b2) for 8 = O (108a)
E ; o
== (2 cos bt — bt sin bt) for § = 90 (1085)

Thus the amplitude of the oscillation increases linearly without limit
until the breakdown of the insulation. The phase angle # has con-
siderable effect on the imitial part of the oscillations, but does not
influence the ultimate limit or the rate at which it is approached.
Equation (108¢) has been plotted in Fig. 1174. Actually, of course,
this case 1s only of theoretical interest, because all transformers have
losses and definite decrement factors.

Case I1I.—If a transformer having zero losses (y = 0} is subjected
to a damped incident wave, then Equation {26) reduces to

b e ™ —
E{e sin (bt + 8) — : cos (bt + 6)
&

1
£ E\LE myyy: e sin (62 + 8 + ¥) + sin (B2 — § — 'H']} (109)

Here the envelope of oscillation approaches a maximum at { =% of

Eb

ZE (110)

Ymax =

When 8 = Oand (b a) 1s so large (as is usually the case) that y =~ 180°,
then Equation (109) simplifies to

3 -!ﬂ_:l -I!]I'_
E{ : : sinbf—g(e - l)ccrsb.f} (111)

This equation has been plotted in Fig. 117B for b = 0.02 x X 1086
and a = 0.002 X 10% The oscillations build up (theoretically at
= ) to a sustained maximum of

Elb |
E—L—Lcusbﬁ—ismb!} (112)
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In other words, the presence of a decrement in the applied wave has
definitely limited the rise due to cumulative oscillations. But once
this maximum is reached it is sustained, that is, continues even after
the applied wave has decayed to zero.’

Case II].—\When a transformer having losses (v finite) is subjected
{o a sustained oscillatory wave (g = 0) the resulting form of Equation
(96) is

2 2
E{sin (bt + 6) +\'} e

— (1 — ¢ "}ysin (Bt + 8 — A)
+ -

1 "_bi i . T S l
1 g 8 g g 3
+ : \4 R [sin (& + & + ) + € 7 sin (D TJ/J” (113)

But v is small compared to b, so that A 2= 90° and ¢ == 180°. Thus
Equation (113) simplifies to

3 — e b 3
E sinb — — (1 — € ™) cos bt (114)
4 2~

As in the previous case, the oscillations build up to a definite sustained
limit, reaching an ultimate maximum of

£

A b :
5580 bt — - cos b (113)

Y
Equation (113) has been plotted in Fig. 117C for v = 0.010 X 10°
and b = 0.02 x X 10%

Case IV.—If ¢ = ~, then by Equation (99} the envelope factor
becomes an indeterminate which is evaluated as

— i e L

PG ; E
y=EVR v ————/ ==3VE+7re (110

2 S =y

Hereby Equation (96) becomes

E
Esin (bt + 8) S b2 + 42 tsin (bt + # — X)

|

E
- j—s"v 5+ = sin bf vos (6 + ¢f}} e (117)

Making the usual substitutions for v small compared to & and 6 = 0,
this equation is reduced to

-1

EE

(sin &t + bt cos bf) (118)

| S
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The envelope reaches a maximum at { = 1 v of
Eb
Youx = —— 119
Ymax = 3 (119)

This 1s less than that occurring in Case III by the ratio 1 ¢ = 0.368;
and moreover the maximum 1s not sustained, but hnally decays to
zero, as 1s true for all cases in which both the natural osallations and
the applied waves have finite decrements.

Case V.—When 'there are finite decrements in both the applied
wave and in the natural oscillation of the transformer—the general
and practical case—then Equation (96) applies. However, since
v b 1s a small quantity, the equation simplifies to

¢ "sin (bt — 8)

EJ —at — =t _
- - (E : ){T{'JS (B! + ﬁ}} (120)
2 4 — ¥

3
E |_1 e "sin (bt + 8) —

Mom | =t

and if 8 2= 0 it may be further condensed to

i j —nf o it i
E:( : : )Ein bt —-E-)(E : )-:ns E}!] (121)
4 2 a —

This equation has been plotied in Fig. 117D for a = 0.002 X 105,
v = 0.010 X 10% and & = 2= X 10*. Fig. 118 shows oscillograms
of the oscillations in an actual transformer, for which the applied wave
is in resonance with the fundamental natural period. It will be
noticed that the equations correctly depict the phenomenon as an
oscillation confined by an envelope specified by the difference of two
cxponentials. Moreover, the numerical agreement between this
oscillogram and calculations 1s excellent in all details.

The dominating effcct of the decrements in limiting the maximum
internal voltages obtainable by damped oscillatory incident waves is
clearly demonstrated by the four curves of Fig, 117, When there arc
decrements neither in the applied wave nor in the natural oscillation of
the transformer, the voltage rapidly builds up to destructive values.
For instance, after 10 cycles the voltage has built up linearly to 31
times the amplitude of the apphed wave. However, the presence of
a relatively small decrement in the apphed wave, Fig. 1178, limits
the rise to half that value. With a sustained oscllation applied to
the transformer terminal, the normal decrement of the transformer
oscillation mav be sufficient to hold the rise 1o three times, whereas
with both decrements present the rise may not exceed two times,
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The envelopes of the voltage distributions in a transformer, cor-
responding to an infinite rectangular wave and a damped oscillatory

1.5
1.6

1.4

12 i F -h"'"‘-u. Eﬂ'

08t Rt -
el e
0.4 | Y et N,

0.2 | e ~ \

0006t
Applied wave=€&  sinQ.0028t g’

————— Applied wavwe= 1

-1.5 9

=18

Fig., 120.—Transformer Oscillations Due to Damped Sinusoidal and Infinite Rect-
angular Waves

wave respectively, are shown in Fig. 120. Thesc particular distribu-
tions were based on the following data and assumptions:

Applied damped oscillatory wave E ¢ ™ sin (b + §) = ¢ 0%
sin (0.027¢) (in resonance with the fundamental natural
frequency).

Initial distribution for & = 10, Fig. 105.

Amplitudes of oscillation for a« = 10, Fig. 106.

Fundamental natural frequency of oscillation fi = 10,000,

Harmonic frequencies f, from Fig, 107,
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n

Decrement of the fundamental frequency v, = 0.002 X 10°
Decrement of the harmonic frequencies v, from Fig. 108 for ¢ = 20.
The comparison is facilitated by the following tabulation:

Applied wave. ... ... ..., ... I FEe ™ sin (M + 8
i 5 @ sinh o v , sinh e x
Initial distribution .. ... ... .. ... ... . e F sin 8 — ) =

sinh a _sinh a
Final distribution ...... ... ... . ... v E 0
Maximum voltage. .. ...... ... ... +1.24 Eatt =40 +195 Fatt = 300
—1.73 katf = 250

Because of the high decrement factors of the harmonics and the
long time required for the maximum to occur in the case of the applied
damped oscillatory wave, only the fundamental with which it was in
resonance contributed to the maximum voltage to ground. The
second harmonic amounted to only 3 per cent by that time, but it
added less than 1 per cent to the maximum (because it was not in space
phase), and therefore was negligible. The maximum terminal voltage
is 0.862 E, so that the ratio of the crest ot the envelope of oscillation
to the crest of the highest loop of the applied wave i1s 203 per cent.
Thus for equal maximum terminal voltages the damped oscillatory
wave causes 64 per cent higher internal stresses than the infinite
rectangular wave. Moreover, since the oscillation reverses to full
negative value, the gradients along the winding are much more severe
and the insulation is subjected to over three times the range in stresses.
Considering typical lightning waves with falling tails, instead of infi-
nite rectangular waves, it may be stated that for equal terminal
voltages, a damped sinusoidal wave in resonance with the fundamental
natural frequency of the transformer will cause internal voltages
approximately twice as great as the lightning wave. Fortunately,
however, the oscillatory traveling waves which have so far been
recorded in the field {due to switching) do not exceed 5.5 times the
naormal line-to-neutral voltage of the transmission system.

Waves Applied Simultaneously at Line and Neutral Terminals.—
The previous analysis supposed the applied wave at the line end only,
and the neutral either solidly grounded or completely isolated. But
in practice the transformer may be one of a delta-connected three-
phase bank and therefore subject to incident waves at etther or both
terminals; or the neutral may be grounded through an impedance.
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A rigorous solution for arbitrary impedances in the neutral has not
been obtained, but it is shown in Chapter XV that the neutral transient
can be calculated with precision without solving the complicated
distnibuted network of the transformier. Once the neutral voltage
has been determined, according to the method of Chapter XV, it may
be regarded as an applied wave at the neutral terminal and the com-
plete solution for the internal oscillations found by the principle of
superposition; for if E(f) and E.({) are the line and neutral voltages
respectively, and

e1 (x, !) = Internal transient voltage corresponding to
E(t) with neutral end grounded (122)

¢2 (1 —x, /) = internal transient voltage corresponding to
E. () with line end grounded (123)

then the complete solution is
elx, ) = e1(x, ) + e2(1—x, ) (124)

where the {1 — x) implies that distance along the stack is measured
from the line end when the applied voltage is at the neutral.
As an example, let

E(t) = E (infinite rectangular wave)

(125)
E.)y=E(1 — €™

This neutral voltage corresponds to a resistance in the neutral. By
(44a) and (89), respectively

er(x, 1) = xE + EX A, cos wd-sin s 7 & (126)
1

e2ll—x, ) = (1 —x)E(1 — ™) + EXA,sinsm (1 — x)
) i

{ Rl ( t — tan~ “)] (127)
= Fﬂ- at i —
b+ @l VB Lo AT ’

and the complete solution is the sum of {126) and (127).

Fig. 121 illustrates the effect of similar exponential waves E ¢ ™™
striking both ends of a winding simultaneously. The calculation
applies to a transformer having a fundamental natural period of
10,000 cycles (grounded neutral) and a« = 10, subjected to the impact
of 40-ms. exponential waves. It i1s evident from Fig. 114 that the
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WAVES OF ARBITRARY SHAPE

principal harmonic amplitudes of oscillation are not much reduced
by the 40-ms. wave, but the decline of the axis of oscillation has con-
siderable effect on the crest of the envelope of oscillations. Thus by
the time the oscillatory components are making their greatest con-
tributions (approximately at { = 40 ms.) the axis of oscillations has
declined to half value and the crest of the envelope of oscillations is
therefore 0.5 E less than it would have been with infinite rectangular
applied waves. It will be seen that the even harmonics cancel and
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Fii. 121.—Exponential Waves Applied Simultaneously to Both Terminals

the odd harmonics double, for equal waves simultaneousty applied.
at both terminals.

SUMMARY OF CHAPTER XIV

The solutions given in Chapters XII and XII[ are for infinite rectangular waves.
The corresponding solutions for waves of arbitrary shape are given by Duhamel’s
theorem, which yields the general expressions of Equation (70}, As special cases
-thereof are the wave shapes of Fig. 112, The amplitudes of oscillation caused by
these waves are obtained from those carresponding to an infinite rectangular wave
upon multiplying by the proper reduction factor, as follows;
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Wave Shape Reduction Factor Curves
Triangularivonts, . i sty v ~...7.| Equation (84} Fig, 113.1
sinimsoidal feont - crprsenermmesserssaiine o Fig. 1138
Exponential front .. ... ................... .. Equation (90} Fig. 113C
Finite rectangular. . . .. LA BESTEIANS 1 Equation {73 Fig. 114
Trigngalav tail. .. s o wopEsss Fig. 114
Exponential tasl.. . .. ..... .. .. .o-.-..., Equation (92} Fig. 114
Exponential front and tail | Equation (88)
Damped oscillatory wave.. ... ... | Equation {102} Fig. 119

|

From the equations and curves it is evident that:

1. Lengthening the wave front decreases the amplitudes of oscillation, the reduc-
tion being greater for the higher harmonics, and if the wave front is long
enough to eliminate the fundamental all the higher harmonics become
negligible.

2. Shortening the wave tail other than by ‘‘chopping ™ decreases the amplitudes,
the reduction being greater for the lower harmonics, so that the fundamental
is the first to be eliminated. :

3. Chopping a wave on the tail, as by abrupt insulator flashover or hghtning-
arrester operation, may increase the amplitudes of a number of harmonics,
with the possibility of doubling the amplitude of any harmonics for which
the wave length is an odd multiple of 1ts natural period.

4. Damped oscillatory waves in resonance with a natural period of oscillation
develop cumulative oscillations, limited only by the losses in the trans-
former and the decrement in the applied] wave. In practical cases the
amplitudes are about twice as high as those caused by infinite rectangular
waves of equal crest voltage.

5. From the curves for reduction factors and the curves given in the previous
chapter for amplitudes, frequencies, and decrements of oscillations, the
transient oscillations may be quickly computed for waves of arbitrary shape.

When waves are applied simultaneously at both terminals of a transformer winding,
the internal transient may be found by superposition, that is, as the instantaneous
sum of the transients caused by each applied wave separately with the other ter-
minal grounded.



CHAPTER XV
TERMINAL TRANSIENTS

Synthesis of Egquivalent Circuits.—The general equations of
Chapter XII apply only to windings whose terminals are either
directly grounded or open-circuited, and consequently it is possible
to calculate from them only the two extreme limits of the terminal
transients. DMoreover, even the calculation for a grounded or isolated
terminal is a very laborious job. It becomes necessary, therefore, 1o
improvise approximate equivalent circuits for the ready calculation
of terminal transients, because these terminal transients are impressed
upon the connected apparatus and may be a source of danger to that
cquipment,

The building up of an appropriate equivalent circuit, in the absence
of a rigorous and comprehensive solution, is a matter of some intuition.
There are always certain limiting conditions which must be satisfied,
and experience usually suggests which factors are of major and which
are only of minor or subsidiary importance. Finally, it is essential
to fall back on test results and experimental evidence for verification.
In the present case the general equations of Chapter XII will furnish
the limiting condition that must be satished. A very general and
complex equivalent circuit will first be established, and then, from a
critical study of the importance and rdle of the different elements of
that circuit, very much simplified equivalent circuits applicable to
specific conditions will be obtained. It goes without saying that a
practical equivalent circuit must be simple enough so that it can be
solved analytically under the conditions to which it applies.

From the general distributed circuit of Fig. 101 it is evident that
there are a number of distinct paths connecting the terminals, and to
ground. Thus by inspection the following paths are evident:

a. From primary line terminal to primary neutral through the
inductance of the winding. If the secondary winding is
carrying current this path will be influenced by the mutual
inductance between windings.

b. Between the secondary terminals through the inductance of
the secondary winding, and influenced by the mutual induc-

tance between windings.
279
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c. Between primary terminals and between secondary terminals
through the series capacitances. The total series capacitances
K and A are not entirely replaceable by lumped capaci-
tances, except in the case of a non-resonating transformer.

d. Effective capacitances from terminals to ground.

e. Effective capacitance between primary and secondary windings.

f. Composite paths, partly through the inductances and partly
through the capacitances, giving rise to the natural oscilla-
tions. An isolated neutral oscillates at a definite funda-
mental natural period which may be calculated from the
general equations or determined experimentally.

Fig. 122 shows the simplest possible circuit having the necessary
degrees of freedom to conform to the above terminal effects. If the
neutrals are isolated (£, = Z2 = =), the fictitious capacitances C’
and C2' in the equivalent circuit cause the neutral voltages to oscillate
at their fundamental natural frequencies.

At the instant of impact of the traveling wave the voltages depend
only on the capacitance network and the terminal impedances. It
these impedances are infinite (open circuits), the circuit effective at
the first instant is that shown in Fig. 1226 with the switches 5y, 52,
and s3 open; and for grounded terminals the switches are closed.
Now the effective capacitance of a transformer with respect to the
line terminal is

Co= VK for an ordinary transformer

C .
= (E + R) for a non-resonating transformer

which must be equal to the effective capacitance of the equivalent
circuit, Fig. 1225, with the switches closed, that 1s

Cor = "+ K + G3' for the primary
Coz = Co” + Ko + C3' for the secondary

If Z, = Z»: =+ and an abrupt voltage is applied to a line terminal,
the initial voltage which appears at the corresponding neutral can be
calculated by the methods of Chapter XII; and from Fig. 1226
there is

(1)

B K ati =10
E, K"+ ¢ {
. | (2)
£ 2
— = - ti =20
E, Ko+ ) . J
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In an ordinary transformer with cither grounded or isolated neutral,
the imitial distributions are practically zero at the neutral, Fig. 104,
and in a non-resonating transformer of conventional design this is also
true. Therefore, ey E, is small in (2) arrd so K’ is small compared
with €y’ and likewise K2 is small compared with C.'.

Purpose l Approximate Equivalent Circuits
= .
Complete ‘ I :
- E.i L L
Termina! ;
Transients JJ

T’E: it Srage

f:T A | . !
B General
Line Terminal A ] RS
Rasction
and ‘ ¥ I 4-

Reflections :
Gernerg/ [E) /‘ritizl Stege B infermediate Stage | Finel Stage
e | T 3e N ‘? ==
Neutral
& Fald

Transients I +

benera/ (Tiiow Meutral impedance (D Hegh Mevtral Impedance \Kyoasolicfelee Neurtra!

{L,M] (Ly-mt} Lafi iy 2m) ran,
[ - = iR

Secondary 8 e i I Bt e A i '?
ik ; G
Transients 4 3 L

General (1) Pegliced 1 1 Turn Ratig () Aperonsmafe 14 Turn BB

Fic. 122,—Equivalent Circuits for Terminal Transients

If Zz = 0 and Z3 = = and an abrupt voltage is applied to the
primary line terminal, the corresponding initial voltage which appears
at Zz can be calculated by the methods of Chapter XII, and hence in
Fig. 1225

% — CHI {-;)
E G+ Ko+

If Z), = and Z; = Z3 = 0, the natural frequency of oscillation
of the primary neutral can be calculated from the general equations
of Chapter XII. Under these conditions the effective inductance of
the primary becomes the leakage inductance

LIH — Llr . (JIIE_-ILEFJ (-l-:]
and the neutral voltage is

e [ f H .
e, = E [1 — — - COS (3)
1 1 Cl + Kl ‘\/LI” (Clr of: Kl’:’
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or since K’ is small compared with Cy’

!
e, = Fy 11 — cos ___} (6)
l 1 Llff le -

and thus the neutral voltage oscillates to double the terminal voltage
E: (as is substantially the case in the actual circuit) and at a frequency

(1/2xV L C)’). This is the same as the natural frequency of oscil-
lation of an isolated neutral if

Cif = (2= f1)P LY” (7)

Likewisc Col = (2 fa)? La”
Hence by (2)

't i E "
R e
, ' (8)
bl LR p L AR
Ky = @nfe)* L ( =— E)
and by (3) and (1)
Es
f 5 oy - 9
Cy E Coe (9)
and by (1)
C” = Cnn — (Ki" 4+ C3')
Eo 3 T
= (o — :E.; Loz — (2 '-‘Tfl)" L (Ef—_l_e)
1 1 | (10)

Cy'' = Coz — (K" + (3')
Es

v¥ rr EE
— Cﬂg =5 PTJ_ Cljg i (2 ‘H"f}_:} Lg (E—g — Eg) |

It is thus possible to assign raticnal values to all the constants of the
general cquivalent circuit. But this circuit is too complicated to be
of any use for actual numerical calculations. The next logical step is
to simplify it to meet the more restricted requirements of specific
applications.

Since the capacitances K’ and K’ are intended merely to yield
the slight initial voltages at the neutral, and since they do not mate-
rially affect either the amplitude or frequency of the neutral oscillation,
it is permissible to delete them. This move is validated by cathode-
ray oscillograms of the neutral transients.

The capacitance C3’ accounts for the initial voltage at the secondary
line terminal. If the secondary is grounded, C3’ loses its sigmficance
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and may then be deleted, provided that €, and C»" are correspond-
ingly increased to satisfy (1). But if the line terminal is connected
to an impedance, then by (3%9¢) of Chapter XII,

22 0.103 0¥ (11)
E,

which shows that, although this electrostatic transient has an appreci-
able crest value, 1t 1s over with 1n a small fraction of a microsecond,
and long before the electromagnetic transient has made any headway.
In a non-resonating * transformer this electrostatic transient 1s of
longer duration, having a time constant of the order of one micro-
second. Of course the time constant is greater if the impedance Zs
exceeds the 500 ohms assumed, but in any practical case i1t 1s too short
to exercise much influence on the character of the secondary terminal
transient. It may therefore be deleted in all cases where the secondary
line terminal is connected to an underground cable, overhead line, or
generator. The equivalent circuit now simplifies to that of Fig. 122¢,
in which the effective capacitance of the transformer now appears
lumped between line and ground.

It 1s pertinent at this point to investigate the possibilities of the
high-frequency internal oscillations being refracted to the terminal
impedances. The oscillatory components of current transmitted to a
terminal impedance must be less than those which would exist if the
impedance were zero. Referring to the numerical example at the end
of Chapter X1I and Equation (79), the maximum oscillatory current
for grounded terminals is

' LY
(ir2 + tx2) =Z[EA (r Ca + r Cs — C3) sin wt — —LA"

(r" Co + 1" Uy — Cg) sin & f] (12)
~ 30 X 1076 K,

If this current were to flow in a terminal impedance of 500 ochms it
would cause a voltage of only

Fs = 0.015 F, (13)

from which it is evident that the oscillatory components do not find
their way appreciably into terminal impedances of the usual values.
An unexpected similarity between the equivalent circuit of Fig. 122

* See Chapter XV
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and the complete circuit of Fig. 101 is brought to light by putting
Z, =2Z: =x and Z3 = (. Then the solution of the circuit gives

E, [ 1 1 — w? Lo’

— " 1 £
€1 (Ll" L;g—’ — ‘IJE) (Clr C:!F} w? Q2 w2 ({-I'-TE _ EE) COS W
1 = @ Ly Cy 0% ) 14
L (w? — 2) cos £ (14)
E, A\l
= 1 lcos w! — cos 2] (15)

(Ly' Ly — M%) (w0 — @7) &

W' | LG+ L Y +V (L' C' — Ly C/)2 + 4 M2/ ¢
28 2 (Ly Ly = ') G G

(16)

which shows that there are two separate frequencies in the equivalent
circuit, just as there are in the general solution, and of these two
frequencies, one predominates in the primary (as it does in the general
solution), and both frequencies are of practically the same importance
in the secondary (as they are in the general solution).

REACTION AT LINE TERMINAL

The effective capacitance of a transformer, with respect to the line
terminal, is quite small, of the order of 0.0002 microfarad to 0.001
microfarad for ordinary transformers, and from 10 to 20 or more
times as much for non-resonating transformers. This effective
capacitance controls the initial stage of the reflections from the line
terminal, but wvery soon becomes fully charged. Ewventually the
transformer (if grounded neutral) acts as a pure inductance. These
considerations suggest the equivalent circuit of Fig. 122D for calcu-
lating the terminal reaction, the switch in the inductive branch being
open for an isolated neutral and closed for a grounded neutral. The
solution for this circuit—inductance L and capacitance C in parallel
at the end of a transmission line of surge impedance Z—is

(ZE) 1 — mif — i
= — 17
¢ 20 n—m (e <) (14
where
LA R R
"=2zcNGzZo:E T o T Ze
oo (18)
e I
2EC (2:.40)= (L) L
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Hence, approximately
A ¢
e = (2 E)(E‘E’ - .E':E*) (19)
For example, if € = 0.001 X 10-% L = 0.05, and Z = 500
- {2 E) {E—ﬂ.ﬂlf _ EHE.{]I)

Thus the transient consists of a steep front determined by Z and C,
and a long tail determined by Z and L. Since the electrostatic
transient subsides long before sufficient current to exert any appreci-
able influence flows through the inductance, it follows that the two
stages of the transient may be considered separately; that is, the
initial reflection calculated as from a pure capacitance Fig. 122E,
and the final reflection as from a pure inductance, Fig. 122G.

If the applied wave is short compared with the time constant of
the electromagnetic transient, or if the natural period of internal
oscillations is short in comparison therewith, it is a permissible approx-
imation to regard the transformer simply as an open circuit at the end
of the line, so that incident waves double upon impact.

It there 1s a choke coil or reactor in series with the transformer,
violent oscillations may occur between the series inductance and the
effective capacitance of the transformer. The frequency of these
oscillations is too high to penctrate the inductance of the transformer,
and the transformer then behaves substantially as a capacitance.
Representative calculations ot the effect of choke coils and reactors
in series with a transformer were given in Figs. 39 to 49 inclusive,

NEUTRAL TRANSIENTS

The simplified equivalent circuit (Fig. 12277) for the calculation
of transformer neutral transients * was deduced from the general
cquivalent circuit of Fig, 1224. As practical special cases thercof
are the circuits of Fig. 123, The equations for the neutral voltage
are given in the table, with the exception of Circuit JI, which will be
solved by the step-by-step method. These transients are either expo-
nential or oscillatory, depending upon the relative values of the circuit
constants. The maximum neutral voltage in the aperiodic cases, or
the axis of neutral voltage oscillation in the oscillatory cases, is plotted
in Fig. 124. The equations apply for an infinite rectangular wave,
or for a finite rectangular wave during its duration. Circuit C is
fictitious, since the neutral is bound to oscillate by virtue of the capaci-

* First used by K. K. Palueff and J. H. Hagenguth. ** Effect of Transient Volt-
age on Power Transformer Design. 11, by K. K, Palueff, 4.I.E.E. Truns., Vol. 19.
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tance of the equivalent circuit. Therefore, Circuit F is the one which
really defines the neutral transient when grounded through an
inductance.

-

Neutral Transients
Z %a’. z f Z / Z i
If,, Rn Ln Rn in
2 B 10 M ) i
Z L £ L ’4
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Fig. 123,—Neutral Transients

If the neutral is to be held below a specified voltage Ey, it is suffi-
cient to meet the following conditions:

L./L from Fig. 124

Oscillatory circuit {
using En = Et}

No damping

R,'Z from Fig. 124, using E. = Ep

Oscillatory circuit
a® = wy*

Arbitrary damping

Aperiodic circuit | R./Z from Fig. 124, E, = Ey
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For example, if a transformer bank has a leakage inductance of
0.0476 henry, and the neutrals are grounded through a common
reactor of 0.573 henry, the neutral may oscillate to a value of 1.85 (2 E).
Suppose that it is required to limit the neutral voltage to 0.50 (2 E)
by substituting a resistor, as in Circuit B. From Fig. 124, correspond-
ing to £, 2 E = 0.5 there 1s

R s
— =1 or R, = 500 ohms
pist
1D T
8 1 R
] ! l-"'f
E ] ’,-i""' |
En /'/ L1 !-
2F 4 7 | i -l | !
: | :
2 7/ l | I
{
0
0 ! ? 3 4 g

Ra/Z or Lp/i

Fic. 124.—Maximum Neutral Voltage or Axis of Oscillation

Step-by-Step Method of Calculation.—From traveling-wave theory,
the differential equations of the equivalent circuit, Fig. 12371, are

di .
2e = Lr&—;+£,_+5:-
g
g = L tr
d! : (20)
de,
v G
" dt
ig = fie,) from the Thyrite characteristic, Fig. 36 |

Unfortunately, however, these differential equations can not be
solved, on account of the non-linear relationship between 75 and e,.
[t 1s therefore necessary to resort to a step-by-step method of succes-
sive approximations. This is accomplished by replacing the differ-

¢entials with increments and rearranging the equations in their order of
calculation.
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_ 2e —e, — 51 g ;
Al = Af = 1increment in transformer current

Lr

{ =2 Ai = transformer current

2 €n g :
At = E Al = Increment 1n reactor current

ip = 2AiL = reactor current L (21)

tg = f (en) = resistor current

ic =1 —1iL — in = capacitor current

te ; ;

Ae, = 5 Al = increment in neutral voltage

en = 2Ae, = neutral voltage

In the above equations the increments corresponding to the
increment Af are based on the grerage values of the variables over that
interval. But since the wvariables are not known, except at the
beginning of the particular interval Af, it is necessary to make trial
assumptions as to their average values over Af. These assumptions
are greatly expedited by plotting curves of ¢, and z7 as the calculation
progresses, not only to avoid gross errors, but also because, by extra-
polation of the curves by inspection, fairly accurate guesses can be
made as to the average values of e, and 27 to use over the subsequent
interval. For instance, referring to Fig. 123, suppose that the cal-
culations have progressed to the point P. By extrapolation of the
curves of ¢, and 2z, trial average values of e, and zZ over the interval
At may be obtained for use in the equations, and there corresponds an
approximate value de, of the increment. But the next to the last
item computed in the sequence of calculations is Ae, = (i¢c C) Af
If this calculated value of the increment does not check the value
estimated by the free-hand extrapolation.of the curve for e,, then it
means that the trial was in error and that it should be corrected. It
1s worth while to plot Ae, against 8e, as shown in Fig. 125. The point
where this curve crosses the 45° line defines the true value of Ae,.
Ordinarily the average between Ae, and e, will prove sufficiently
accurate, unless ¢, has reached its ** knee,” where several trials may
have to be made to realize precision.  Of course, the accuracy depends
upon how small the arbitrary intervals Af are taken. Sometimes
spurious oscillations are introduced when the increments are taken
too large, Fig. 126, If such oscillations are suspected they can be
detected by taking smaller increments. They are liable to occur
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at abrupt changes in curvature, that is, at the “knee’ of the

curve.

Perhaps the most efficient arrangement of the tabular schedule of

T
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Fi1G. 125.—Tral Extrapolations and Their Check

calculations is that given below, in which the numerals in the body
of the table indicate the order of calculation.

A f

2

A
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RE
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(7}
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In starting the table, there is, of course, no curve which can be
extrapolated by inspection, but the initial flow of current over the
first time Increment is very small, and the neutral voltage will stay at
practically zero potential, so that for that first increment

2 e
.'.—--—'IN-! 22
Al = T_*'.—tr_ (22)

As a matter of fact, the influence of the reactor L is quite insignif-
cant, and may be ignored in the calculations. Moreover, if the calcu-

En If
a¢lat|at|aelae|aelat ;
400 AR ;
300 f
00 !
100 ;
Gﬂ' 50 100 150 200 250

Microseconds

F1G. 126.—Spurious Oscillations Caused by Taking the Increments too Large.

lation is carried out merely to determine the maximum ncutral voltage,
and the rate of rise of the neutral voltage is of no concern, then it is
permissible to ignore the capacitance C as well as L, and the equations

L ?L

i = A

e, = f (2)

(23)
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The corresponding tabular schedule is:

|
3¢ f ' e A I zf J £n

[2) RY (&1 Y | [
4

Even the surge impedance drop zi mav be neglected without
affecting the result by more than a few per cent, provided that the
applied wave reaches its crest within a few microseconds and has a
rapidly falling tail.

Of course, for very long waves the inductance Ly comes to act as a
short circuit, and the voltage across the Thyrite is determined by its
own resistance and the surge impedance of the transmission line.
In that case

2e=2z14 ¢, (24)

The value of e, at any instant of time is readily found by plotting
a curve of (e, + z1) against 7, and the point at which this curve reaches
a value equal to the value of 2 e at that instant defines the current ¢
and the corresponding neutral voltage e, from the Thyrite character-
istic.  However, such a calculation should be employed only to deter-
mine an upper limit to the neutral voltage, which will not actually
be reached—in other words, it provides a conservative estimate.

Separate Effect of the Neutral Impedor Elements.—In Fig. 127
are shown calculated curves of the neutral voltage for L and C only

|3ﬂﬂ | T 14 T —— T—— -
[ .
P200 - - ‘ - | . r d tneicient Wave =
L L=200 ohms

Moo - Fie] [ye 0476 i Lr

1000 ! e | LT 573
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e an‘%ﬁr" N |’ |
300 [—7hite"] \ |

AL |
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F1G. 127.—Effect of the Neutral Impedance Elements
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L and Thynte only, and L, C, and Thyrite in combination, for an
infinite rectangular applied wave. When only the capacitance and
the reactor are used, the neutral voltage is a slightly damped sinusoidal
oscillation, or, neglecting the damping ‘due to the surge impedance,
it 1s

_ EL [1 \jL+L?-r] o BE o TR
€n A COS _—LL?-C | = Lm—l— - cos w!)  (23)

Now since L 1s large compared 1o L+ 1t 1s evident that £, reaches a
value nearly double the line terminal voltage E. The larger C the
lower the frequency of oscillation and the slower the rate of rise of the
neutral voltage. The time required for the neutral voltage to reach a
particular value ¢, is

L LsC _][ L-f-LT-:E_E]
t—\/L+chns .1 2 3 (26)

Had the applied wave been of finite length r, then

EL

=m([—~ﬂ}5wf} fort <« (27) -

€n

2 EL wT T
— — e o —_— . — — E )
I+ L. sin —= sin o (I 2) fort = r (27a)

Thus, for finite waves whose equivalent length r (finite rectangular
wave) is less than half the period of oscillation of the neutral, the
ncutral voltage will not reach the upper limit of twice the terminal
voltage.

When only Thyrite and L are present in the neutral impedor, the
voltage, Fig. 127, rises rather abruptly at first and thereafter at a
more gradual rate. The " Thyrite only 7’ curve was calculated
ignoring the presence of the transtormer equivalent circuit capacitance
(which is quite distinct from the auxiliary neutral impedor capaci-
tance), and therefore the actual rise of the neutral wvoltage with
Thyrite only would be slower than shown.

Now when all three elements are combined in the impedor, the
neutral voltage first follows the C-L curve, but as the voltage across
the Thyrite increases 1t takes a larger and larger proportion of the
total current, so that the neutral voltage curve finally leaves the
C-L curve and merges into the Thyrite curve. It is therefore seen
that the rafe of rise of the neutral voltage 1s controlled principally by
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the capacitor, but the magnitude of the neutral voltage is determined
by the Thyrite,

400 T T T 1
Number of Thyrite Disks ~
1= 136 N=
.-——""""—-_-——
-y
300 T 112N =
W ] f—-—-""" — e mma fﬂ-——::—-—-—ﬂ"' =it i
by 1"/ "] el
o o
=
100 ¥ /4
0 —
0 10 20 30 40 50 60 70

Microseconds
F1G. 128, —Effect of the Number of Thyrite Disks in the Neutral Impedor

The larger the number of Thyrite disks, the higher the rise of the
neutral voltage. This point is illustrated by Fig. 128.
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F1G. 129.—Efiect of Applied Wave on the Neutral Transient

Effect of the Amplitude and Length of the Applied Wave.—
Fig. 129 shows the shape and magnitude of the neutral voltage cor-
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responding to different applied waves. The corresponding values are

|
Applied Wave - Neutral Voltage
1400 kv.  5-ms. exponential 233 kv, 86G-ms. |
11040 kv. 20-ms. exponential 273 kv.
670 kv. 1000-ms. exponential 416 kv, 1000-ms
670 kv. Infinite rectangular 483 kv, Infinite

Thus, in this particular case, a 1000-ms. wave half the amplitude
of the 5-ms. wave causes nearly double the neutral voltage. In
general, it is the longer, relatively low-voltage waves which cause the
greatest distress at the neutral, not only because the magnitude of
the neutral voltage is greater for these long waves, but also because it
persists for a much longer time. It is interesting to note that the
neutral voltage may be maintained for a long time after the applied
wave has vanished. For instance, the 5-ms. wave gives rise to a
neutral voltage which does not reach its maximum until 80 ms., and
it is 107 ms. until it passes through zero. where it reverses polarity
and commences the second loop of its oscillation.

SECONDARY TERMINAL TRANSIENT

It has been shown that the general equivalent circuit reduces to
that of Fig. 122L when the terminals are connected to overhead lines,
cables, or generators. This is the circuit corresponding to Equations
(49) and (50) of Chapter XII. It was first employed for a compre-
hensive study of the transfer of waves from the primary to the
secondary circuit by K. K. Palueff and J. H. Hagenguth.* The review
given here is taken, with minor changes, from their paper.

The equations of the circuit of Fig. 122L when connected to a
primary surge impedance Z," and a secondary surge impedance £y are

2E=(Z)+pL) 1 + p M
0= (Z" 4+ pLaY s+ p M1

Solving these two simultaneous equations, there results
2 E .1..'.” Zz.f {E—mt . E—nf)

(28)

ga = Zg’f;:r = e
V(L Zs + L'Z))2 = 1207y (Ly'Ly’ — M%)
= ‘__.1 {E—ma‘ o E—m‘) - ;:1 E—h-er [1 ure, E—{u—m}:] (29}
« = Effeet of Transient Voltages on Power Transformer Design, N A Ll E

Trans., Vol. 531, 1932,
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where
{ (L2'Z)' 4+ L)' Z9")
7 ] A EV(L' 2y + L1'Zy")2 — 4 217y (Li'Ly’ — M”72

m ) (L st = B (30)

where the plus sign belongs to # and the minus sign to .
Reducing Fig. 1225 10 a 1 : 1 turn ratio by the usual substitutions

VAR er r = n; H: Ly = r- sz
Ll = .t]:,l'r M =r L-_g- = ¥ Lgf
there results the equivalent circuit (Fig. 1224} in which

_LiL, - M
T

L

= L, + L2 — 2 M = leakage inductance

Moreover, without appreciable error,
Ly =l =\

Hereby, rearranging and expanding (30) by the binomial theorem

—

LiZ, 0.2 : ;"1 $ 721 7: 10 L ]
m = ] e
5L L Y  (I:2: F LuZsp
_LEZI‘FL]Zf‘I_ { — 22y 2 Lo L 4
2L L _ (Lo 2, + Ly Z2)2
N ZiZa " ZiZ 31)
CleZy+ L2 L (2 + Zs)
_LeZi+ L2 | 1Z1Z3 Lo L
oM Lo L N (Lo Z)\ + Ly £2)°
ey InZy I+ 2o
o - e (32)
1E  Z,
A = T (33)

Thus (29) may be considered as the froduct of two transients—the
comparatively slow transient ¢~™ in which m is the ratio of Z; and Z-
in parallel, to the self-inductance L;; and the much faster transient
[1 — ¢ ™9 in which (# — m) is the ratio of Z; and Zs in series, to
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the leakage inductance L. The relative period of these two transients
is defined by the ratio of their time constants

Time of L, transient Ly (2 + Z,)2
Time of L transient LiZ s

(34)

which is of the order of several hundred. Therefore, the crest and
front of the secondary transient are practically independent of the L,
transient, and for ordinary purposes the L) transient may be ignored
entirely, so that successive approximations are

ey = A E-Hﬂ [I . E—fﬂ—m”}

: _ FARA _T_ __.'F:|+£z
oy 2 E Z.] . ——'31_1_22 Ll[l — % -—-L :]
r Zy 4+ Z;

. AR A
':‘"..EE £z [I"'E_ | f]

L 3:..
r Ly + Za (35)

This latter approximation is the equivalent circuit (Fig. 122\),
The maximum is

2E Z. 2 F r< er
s T — =2 (36)
roLy + Za ¥y + 2 2,
and the front of the wave (to 95 per cent of crest) is
3L 3L
Ts = R P 3 P (3?)
Zy+ 22 Zy 4+ 22,
It is evident, then, that, if r2 Z,' is large compared with Z,,
2 E -2
Eo — = (2F)= (38)
y ”)
3L
1o o= g
2 = rg ZEJ (3 }

The larger L and the smaller » and Z2', the slower the front, If there
is a neutral resistance R, it may be included with Z;’ in (36) and (37)
and is thus seen to decrease E; and T2, If there is a neutral reactor
L, it may be included in L and is thus seen to increase the front.
The above equations hold for infinite rectangular waves. For
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waves of any other shape Duhamel’s theorem is available. In particu-
lar, if the incident wave is

E(e™ — ™) (40)
Equation {29) becomes

E2=2EA[( . g )E—m_( L b )E-m
m—a m— b n— n— b

a a -t b b -8 .
+(ﬂ—ﬂ_m—a)f _(n—f}_m—b)ﬁ ] (41

Repeated Reflections.—If the transformer secondary is connected
to the surge impedance Z3 of the generator through a short length of
cable of surge impedance Zs, then

23 o Zg

R, = = reflection operator at generator
g Z:j + .Zg p g

L+ Zi =2 p+ (Zi—Zn) L

R — =
TPl L+ 2Z: p+ L+ 2oL
= b+ h = reflection operator at transformer
T a

e2 = A (1 — e *) = initial transmitted wave

and if 7 1s the time of transit of a wave on the cable, the resultant
voltage is

E:=e:+ (Ro+R,Rr)e2(t —2T) + (R2 Rr + R2Re?) ea{t ~ 4 T)
+ (RARPF+RAR) et —6T) + ... (42)

The general term (see appendix to this chapter) is

e T Za—zzy(ﬁ'i‘ﬂ)" -
Rg Rr EE_A(Z;;-f—Zg pm+a (1 € )

B |
Zs + Z2 pt+a P

_ (2:3 — zg)" {ﬁj e [(ﬁ — )"t"
L3 + 23 z Ii

Cx
# k n—-k n'ﬁ_ﬂn-ttn—t
+Z{(§) ot (2B

s \Na/ [n -k Blﬂ—k}lﬂ—k

n B¢ ‘B =1 (=) T }“
_kn——kzrjlk—r n —r )
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A slightly different form for the above equation can be obtained by

substituting

(1= =Pia
whereupon the operator evaluates to
rerra=ed (G52 B
- GERIO - 20
+k_|%‘_ﬁ;£2f:{_1:)i:tli:j,+1\r— 1”} (44)

If the applied wave is E ¢ ™ instead of infinite rectangular, the

operator becomes

o Zs = Z\ (048" _a
SR -€E=“A(ZZ+ZZ)( i

P _l_ D."}u—r-l
. —ufZ3 — Zi‘)ﬂ (p +8— a)f
- gl e (Za + Z2) (p+ a— a)'™! ]
“ in which «

The solution is then the same as (44) multiplied by €~
is replaced by {a — @) and 8 is replaced by (8 — a).

The first two reflections in {43) are:
Ifn =1

" ZE T, Z..':) {ﬁ i — ot i (-B - ) —ﬂ!l}
RHRTEE—A(ZE_!_ZE S = - ]ate
Ifn =2 ]

2 B = LR el s ao

v 2]
o ol

Three-Phase Banks.—The foregoing analysis may be adapted to
the calculation of three-phase banks of transformers subjected to the
impact of traveling waves on one, two, or three line conductors.
Consider the delta-delta bank of Fig. 130 with a wave E arriving on
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primary phase A. From conditions of symmetry the division of
current is known, and therefrom

I I I
2E=21I+?LE+ZIE+ZEE+ZEI

=[(Z1+ Z£2)154+03pL) 1 (46)
BANK CONNECTION RELATIVE CREST TIME
Primary Secondary | Crest | Front | FACTOR | CONSTANT
/ / 28 &p Lt
rF Zyv 22 2,443
2 r 282 22 £
J r 3 Z.**ZE f,.r 1"22
2 |, |222 22 L
k. r 3 Z;2, FARE .
2 / 2F 2 Zp L
3 r 3 22| Z,vZ»
Zi+Zs Z+2; | 2E _Z2 L
;#3225 | 2,432, | r Z4+32; 2/ +32,
Zi+Zp |Zi+22 | 26 _22 i
2,432 | Z; +3Z2| r 2,432, Z;+32p
2 | 1+ (262 2 L
3 3 i | Z}*Ez 3(3‘,1-2’3}
Z+dp | Lyrdp | 26 22 /i
52, *Za 32;*22 r 3z, "'Zg jz‘, +Z
Lty | Zyvdp | 26 2o L
3Z,¢Zp 32,022 | ©r 32,*25 | 32,42
m J iy e L

Fic. 130.—Three-Phase Bank Connections
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Therefore
ZE 2k 2 ZE 1
EE _—— I — - .
g r L [p+3(Z2+ 2Z1) L]
2 .E 2 Z*J _ 3Z + 2o
— o te - __L 4H
r 34, + Zo [1 ‘ ] (47)

As a second example take the grounded neutral wye-delta bank
shown in Fig. 130. In this case the division of current 1s not evident,
so assume that a fraction ¢ flows in the two phases not struck, and
write the equation

2E=[Z+pL —aZ —apl+ {1 —a)2Z:+ (1 — a) Zs]I

=(1—a)(plL+2Z1+32)1 (48)
Therefore
E_ZEI{I—{:}_—ZEZE {
" " r Lip+ 32 + 2y Ll
2 E. 23 i kil I
B h = : 19
r Ly + 324 [ & ] ( )

The fraction ¢ may be found by writing the drop in phase B,

—aZ)—pLa+ (1 —a)Zs: =10
Therefore
e

-

s & plL

(50)

In Fig. 130 the amplitude factors and time constants for a number
of three-phase bank connections have been tabulated. If two phases
are simultaneously struck by lightning the secondary voltage will be
the same as when one phase is struck. If a delta winding 1s present
in either the primary or secondary or both, and all three phases are
struck by equal lightning waves, no voltage will appear in the second-
ary circuit (ignoring the electrostatic transient).

APPENDIX TO CHAPTER XV

In Equation {43) appear two operational expressions which may be evaluated as
follows

(p +J3)” e+ p o+ 8" (r"-‘ rﬂ’)

(1)
p+a p (p+a® b 1:1—1.

b
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and expanding by the binominal theorem

_ ﬂ fﬂmﬂﬂ—kﬁ;‘:"l =1 —at
F[fh +i2.1|_k ?I—kr][ u—l:l )

By Leibnitz's theorem, where £ = 1

Eﬂ--l f—ﬂl
-1f %

By integral calculus
8 (f”_l_‘_"'f X frf" -1 —at gy
2 Iﬂ -1 |-"I — 1.y

B N gEgnnk
_*mZE " (4)

n —
1

k

2“1 E— 1 (=g -7
E—cﬂ — a) (3}
r—1\|&—=r |.FI—:-"

ram |

I
J

Hence, substituting (3) and {4} in (2}, there results

pro\" _ 8 ., iﬁ_"fﬁi}"‘*
p+ o o ﬂitlnhk

kwm]

_Iﬂ gn—* ilk-l{_“jk_rtﬂ_r]
r=10

E n—k ]r—lrﬁz—r]u—r (3)
The other expression appearing in (43) is
b
(ﬂ+ﬁ —a)"_ 2 n (3 —a) % 1
- _ n—k
P - | £ |ln — %k p
_ i n (g —a)* "kt (6)
- - kln —k |r: -k

SUMMARY OF CHAPTER XV

An approximate equivalent circuit (Fig., 1224) for terminal transients has been
set up by synthesis, and its elements identified quantitatively through the agency of
the general solutions given in Chapter XII. This circuit, though too complex for
actual computation purposes, nevertheless reduces to very simple equivalent circnits
for the individual calculation of line reaction, neutral transient, and secondary termi-
nal transients.

The reaction of a transformer at its primary line terminal is essentially that of a
capacitance and inductance in parallel, the former being the effective terminal
capacitance of the winding, and the latter its leakage inductance. The line terminal
transient may therefore be divided into three principal stages: (1) the initial stage
during which the capacitance elements are being charged, (2) an intermediate stage
during which the capacitance elements are fully charged but the inductance has not
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yet allowed an appreciable increase in the current flowing through it, and (3} a final
stage during which an influential current is flowing through the inductance. Thus,
depending upen the time interval, a transformer may be said to act like a capacitance,
an open circuit, an inductance and capacitance in parallel, and an inductance. If
there is a choke coil or reactor in series with the transformer, the transformer may
act essentially as a capacitance throughout the transient, by virtue of a high-frequency
oscillation between that capacitance and the inductance of the series reactor or
choke coil.

The equivalent circuit for calculating neutral transients consists of the leakage
inductance of the transformer in series with a capacitance of such value that the
frequency of oscillation of this L—C circuit is that of an isolated neutral transformer,
and connected in shunt with this capacitance is the neutral impedance. This equiva-
lent circuit can be easily solved for practical neutral impedances with constant
parameters, but if the impedance contains some element such as Thyrite, then the
neutral voltage is solved by a step-by-step process,

The equivalent circuit for calculating the transfer of waves through the trans-
{former to the external secondary circuit consists simply of two mutually coupled
inductances (assuming the neutral grounded and a closed secondary circuit, and
ignoring the electrostatic component which is over with 1n a fraction of a micro-
second). This becomes a “T" circuit when expressed on a 1:1 turn ratio basis;
and since the staff thereof exercises but little influence on the character of the tran-
sient, for most practical purposes the circuit reduces to a series inductance equal to
the leakage inductance between primary and secondary. Herefrom the transfer
of waves, including repeated reflections, may be readily calculated. The concept is
easily extended to include three-phase banks of transformers subjected to impulses
on one, two, or three lines simultaneously. The further extension of the concept to
multiple-winding transformers, although not carried out in the text, 15 cbvious,

%‘?




CHAPTER XVI

SUPPRESSION OF INTERNAL OSCILLATIONS BY ELECTRO-
STATIC SHIELDING

It is clear from the previous chapters that the internal transient
oscillations caused by the impact of a traveling wave are responsible
for two detrimental effects:

a. The envelope of oscillations everywhere exceeds the line of
equilibrium corresponding to steady-state conditions, and
therefore the major insulation from winding to ground can
not be graded even approximately proportional to the steady-
state voltage distribution. In the case of a grounded neutral
transformer the internal voltage may exceed the line voltage
by as much as 40 per cent, and in the case of an isolated
neutral the excess may be greater than 125 per cent. Even
these figures may be doubled if the applied wave is oscillatory
and nearly in resonance with the fundamental natural peried
of the transformer.

b. The voltage gradients along the winding, the turn-to-turn and
coil-to-coil stresses, are from 10 to 30 or more times the normal
gradient corresponding to a uniform voltage distribution.

It is obvious, then, that considerable practical advantages would

ensue if the harmonic oscillations could be suppressed.
The fundamental principle on which the constitutional remedy is

based was first postulated by James Murry Weed.* He showed that a
necessary condition for the absence of transient oscillations is:

initial distribution = final distribution (1)

In practical cases this is also a sufficieni condition.
Referring to Equation (39) of Chapter XIII it is seen that the

amplitudes of oscillation vanish if

@ — 8 =0 (2)

* * Prevention of Transient Voltage in Windings," A.J.E. E. Trans., Vol. 41, 1922,
303
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But by (18) and (29) of Chapter XIII this is the condition for coinci-
dent initial and final distributions, as stated above. Rewriting o
and 8% in terms of their definitions

C r('}'
= B (3)

K 1+rg
which shows that, theoretically, five circuit constants are available
for control of the identity.

In a normal transformer, » and G are so small that 8 = 0, and any
attempt to increase them artificially within the duration of the applied
impulse must be discontinued at the cessation thereof, for otherwise
they will cause excessive normal-frequency losses and seriously inter-
fere with the functioning of the transformer. Of course it 1s a com-
paratively simple thing to substitute for g a Thyrite resistor which is
effective at abnormal voltages, but does not influence the normal
operating characteristics. However, a shunt resistor employed in
this fashion destroys the oscillations by introducing excessive decre-
ment factors, and not by insuring the identity called for by (1). Its
utility is therefore in control of the envelope of oscillations, and it
does not greatly reduce the gradients.

A much more profitable effort has been made with the capacitances
Cand K. If 820, then control of the transient requires

s

as = X — () (4)
and this condition may be realized either by decreasing  or increasing
K. But C, the capacitance from the winding to ground, can not be
reduced sufficiently to be of any advantage. Weed has pointed out,
however, that it is not necessary to delete C, for its effects can be
nullified by the addition of auxiliary electrostatic shields. At the
present time there are installed several million kilovolt-amperes of
transformers and auto-transformers employing electrostatic shielding.
A transformer so protected is called a non-resonating transformer,*
because it can not resonate with an applied wave of any shape, and
the transient distribution is always constrained to be a straight line
connecting the line and neutral voltages. In such a transformer it is
obviously permissible to grade the major insulation in accordance
with a linear distribution, thus realizing all the advantages incident
thereto. The remainder of this chapter is devoted to an analysis of
the different methods of shielding indicated in Fig. 131.

*  Effect of Transient Voltages on Power Transformer Design. I, II, ITI, IV,”
by K. K. Palueff, 4. I.E.E. Trans., Vols. 18, 49, 30, 31.
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Circuit 1 18 an ordinary, or unshielded, grounded-neutral trans-
former. Since the initial (lowest curve} and final (straight line)
distributions are different, a transient oscillation will take place, and
these oscillations overshoot the final distribution so that abnormal
voltages and gradients occur all along the stack.

Circutt 2 shows a tied-in shunt resistor, of such value that the
oscillations are practically damped out and the envelope of oscillations
definitely limited. (See Fig. 50 and Chapter V.) But the initial
gradient at the line end is unchanged; and during the transient,
steep gradients—but not so steep as in Circuit 1—occur progressively
along the winding. For this reason a tied-in shunt resistor is not an
ideal remedy.

Circutt 3 represents a tapered capacitance in shunt with the wind-
ing and assumed to be tied-in therewith at infinitesimal intervals so
that no local oscillations between tied-in points are permitted. Sup-
pose that the winding has been divided into n equal sections, and let
the junctions be numbered 1,2, ..., 2+ 1 from the neutral, and call
the auxiliary capacitances Ky, K', ..., K',. Then for a linear
distribution of voltage the conditions at junction x are

e=En - = volts per section.

xE n

(-9

By Kirchhoff’'s law, if € is the total capacitance of the winding to
ground

€x voltage to ground.

E — e,

voltage to line terminal.

ex = K + KS)e — nK + K';_\)e (5)

&, =

¢
”
Theretore

T K.*; — IC + [ Kj_t._.]

=%C.+ (—11C K.,
xCH+x-1DCH+Hx-2DCH+nK';_;

=+ x—-D+@x=-2D4+...+1]C+0

xx—10
> ( (6)
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The total energy storage of the shield as # — = therefore is

1 x _
Wi:lfxr’ﬁdx:lf%(x I)C.Ezdx
2.0, 2.0 2

- 2—‘1 C E? (1)

If, however, the shielding capacitances are tied-in at finite rather
than infinitesimal intervals, this method of shielding gives rise to
local oscillations of the same nature as discussed in the next case.

Circuit 4 employs a number of very large auxihary capacitances
K’, and in effect simply increases the net series capacitance X + K’
of the transformer until C (K + K’) —» 0. These large capacitances
may take the form of standard oil-filled capacitor units, such as used
for power factor correction, and the number of tied-in points then
would necessarily be limited. In that event the only points main-
tained on the linear distribution line at the initial instant would be
these tied-in points, and intermediate points would be on a distorted
initial distribution curve and therefore give rise to local oscillations.
Let the fraction of the winding bridged by one capacitor unit be «,
distance from the end of the section as fraction of the length of section
be 3, and a =+/C/K be the characteristic constant for the entire
winding. Then at the »zth section, counting from the neutral, the

end voltages are
Eﬂ—l =ﬂ'E(H— 1}

E, =¢fEn

and by the principle of superposition the initial distribution over the
section due to these two voltages 1s

e=,—ﬂr-E—-[nsinhcraj-+(n—l)sinh-:ro:(l-y}] (8)
sinh e ¢

Thus the smaller « or the greater the number of sections, the better
the distribution, and the distortion decreases as the neutral 1s
approached, that is, as # — 1, as is seen from Fig. 131-4. If the lowest
natural frequency of a short section of a winding is very high—which
may be the case, since the frequency increases almost as the square
of the space harmonic—then a few microseconds’ depression of the
applied wave front would eliminate these very high-frequency local
oscillations. The effective capacitance of a transformer shielded in
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this fashion should be made sufficiently high to accomplish the desired
depression of wave front for all waves arriving over the surge impedance
of a transmission line. In Fig. 132 the reduction factor corresponding
to the effective capacitance and the natural frequency of oscillations
has been plotted. For example, suppose that a transformer {(a = 1)
having a fundamental natural frequency of 5000 ~ is to be shielded
by five capacitor units of 0.10 microfarad each. By Fig. 107 the

10 —0 ffth harmonic will oscillate at

g [\RLY G’;mlﬂl JT- a frequency of

' e Z:=500 %C

dmaiakAm. 13 X 5000 = 65,000 ~
.:‘:-‘__ 4 _% = ,__hh"x!
o \ t and the effective capacitance of
& 5 By :'\‘\ - the transformer will be approxi-
'T; a d \{ N mately
8 3 LN H"“"--i.... 0.10
En - "‘:'1-...;; e 0.02

s e g = 2

| “:u..“___ --.._.___
i e e ; .
5 By Fig. 132 the reduction factor

0 20 40 60 B0 100 120 M0 160 180 200 is .24, which means that the

Kilocycles amplitude of the local oscillations

F16. 132.—Reduction Factor for Oscillations Will be less thana quarter of those
shown in Fig, 1314,

This method of shielding is also applicable to delta-connected and
isolated neutral transformers.

Cireutt § represents the conventional method of shielding as
employed on non-resonating transformers. Assume that the capaci-
tances of the winding are not uniformly distributed (as would actually
be the case in a transformer with graded insulation), and let

X1, Xz, X3 = fraction of winding from the neutral for any adjacert
coils 1, 2, 3 respectively,

1, C2, C3 = capacitances from coils to ground.

K2, Koy = capacitances between adjacent coils.

€1, €1, €3 = voltages above ground of adjacent coils.

i, Co', C3' = capacitance from shield to coils.
Now the currents entering and leaving Coil 2 must balance, so that
Kiz ey —es) + Co' (E — e3) = Koz (e2 — e3) + C2 €2 (9)
_ Crea + Koz (e2 — e3) — K12 (&1 — 2)

Cs' = 7 (10)
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from which the necessary shield capacitance for any distribution of
capacitances and voltage may be determined. If the distribution is
linear, then

£1 - xlE‘ =
ez = xa K |
e3 = x3 I
and (10} reduces to
X0 Xa — X o — X
Co' = Cz = K5 ? Kos
1 — x2 1 — a2 1 — x2
1‘.
~_"2 ¢, (11)
1 — X

This same result follows from differential equation (17) upon sub-
stituting ¢ = x E. The energv storage of the shield 1s

A C E?
W = —f CAH g iy, mos 12)
2), | 2

The advantages of this method of shielding are that it eliminates local
oscillations, and it can be designed as an integral part of the coil and
insulation structure of the transformer.

Circutt 6 15 a combination of Circuits 4 and 3, in which the local
oscillations have been eliminated by the addition of conventional
shields for each section. These auxiliary shields do not require to be
insulated from the winding for more than the voltage between tied-in
points. In view of the discussion covering Circuit 4 it is doubtful
if this combination is justifiable, except possibly on the line end
sections.

Circuit 7 represents pariial or incomplete conventional shielding,
in which the shielding has been carried only part wav down the stack,
The distributions can be calculated (assuming a uniform winding)
as follows '

| PR

. d- e : : ;
=K = current In series capacitance. (13}
axd!

: de

7, = C&_:t = current to ground, (14)

+ 0 . .

¢ = C'(x) Y (E — ¢) = current from shield. (15)
. d1

iy = ' + — (16)

ax
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Therefore, after canceling the operator (9,6 {)
e C+ C(x) C'(x)

—

E (17)

dx? K - K
which is the differential equation that must be satisfied for any dis-
tribution of shielding C'(x). If the shielding is discontinued at
point ¥ = gitis convenient to divide the circuit in two parts as follows:
Region 1 fromx =g tox =1
: (18)
Region 2 fromx = 0 tox = g

and the corresponding differential equations and boundary conditions

”E e _ CH+Cw ') |, (19)
- S
dx* K K
ffz £ C
——e = 0
dx? KE v (20)
e =E atx =1]
ez =0 atx =10
&1 = £9 Ett:t:=g' (21)
dx  dx rTé
Now for linear shielding
Cilayr g (22)
1 - x%
and (19) then becomes (o> = C/K),
d* e; o’ e aZ x
— - = — 23
dx*® 1 = % 1 — IE 29
Let
_a_
’ T E
which reduces (23) to Riccati's equation
dz y a” y
— =0
dx> 1 — x (24)

Changing the independent variable to
x =1+ 40 (25)
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there is

d*y 1dy
dez ¢t dt +y,—ﬂ (26)

and now changing the dependent variable to

y= (27)
there results Bessel's equation of the first order
:Edﬂf'+:d—”+z1 (2 —=1) =0 (28)
dt* dt
the solution to which is
v =A N {#) + BK;({¥ (29)

where A, B are integration constants, and J, and K, are Bessel func-
tions of the first order and first and second kind respectively. Chang-
ing the variables in {29) back to the originals

e =Elx+ QaVa—1)4J,(2aVr—1)

+B2avVx—1)K;(2aVx—1)] (30)
Atx =1, = E. But J;(0) =0 and (0) K, (0) = 1. Therefore

B =0 and
er=Ex+A42aVx—1J12 aVx—1)] (31)

For large values of the argument the Bessel functions may be expanded
as an asymptotic series, and since the argument is purely imaginary

2aVx — 1 =j2a:'\/_lT:c =jz|

Ja(j 2) = j" 1.(2) | (32)

G 2) J1(j3) = — 2 i(2)
A suitable asymptotic expansion is *

I[.(z)

€ (=) (402 —12) (4n2-32) ... (4 n2=F7—1%
v’ﬁ.‘a[l_l_ Z [r 272 ] )

also
fz"[z" I.(z)) =5 I,_, (2) (34)

* “ Modern Analysis,” by Whittaker and Watson, Cambridge University Press.
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The solution to (20) 1s

ez = Assinh ax + Bacosh ax {35)

and by the boundary conditions B: = '[], and at x = g

Elg—A2aV1—gI,2aV1l—g)=Assinhag (36)

El+ 42 h(2aVv1 — g) a Az cosh g (37)

Herefrom

. (e g — tanh a g) (38)

2o fpf2aV1l—g)tanhagd+a(2aV l—g) [(2 aV'1 —g)
By = 2a?g Ini2aV1—-g)+(2aV1—gL{2aV 1—g)]sech ag (30)

T 28 Iy(2aV1—g) tanh a g+ a(2 -:r\/l-gJ 11(2 an/1 —g)
e1r=E[x —AQaV1l —x) IH1{2aV 1 — x)] (40}
o5 = iy (@41)

sinh o g
As an example take g = 0.5, « = 10. Then
2aVl —g=1414, ag=3, tanhag=1

pld14 § 1 0 ]

loilldld) = e | V ") T s aa e T |
i S 1 i42)
E.,I-i.H 3 15 + -

h (A = et T Bs1a)  TesQaade ot

E[ Vi—xl 20VI1 — x)]
Al Y I (14.14)
E*:ffl —x T
~ e (2041 -Z-14.14) (43
> x E 5 08 € (43)
inh 10 x
& = 033 B (44)
sinh 5

Circuit 8 shows another possibility in the direction of partial
shielding in which the shield is the full length of the winding but of
reduced capacitance, so that the compensation is not complete.

Static Plates.—A static plate at the end of the coil stack was first
used as a mechanical support to the stack and as a convenient means
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of providing insulation to ground. It was later discovered to be of
considerable benefit in equalizing the distribution over the turns of
the first few sections. In long stacks with narrow coils a static plate
does not exercise any appreciable influence on the characteristics of
the transient oscillations. In short stacks with wide coils a static
plate is effective in reducing the fundamental and first few harmonics,
but it increases the harmonics contained by the individual sections
and therefore exaggerates the local oscillations.

; 'jn;" :‘ﬁ “,.H:' ful bir : I ==
of T T LI - WEIEA
- e E | Sy | i
S o r - i ;
ST TT Slesalil, |
= —t ,E”E K "J"'J i
wl ¢ ; L r— Iy s

233N *
Ci ;

L0 . g ) Short Stack
£oa -1 H:é i & Wide Goils
3 ] .!.6:""' 8 2! _|=~-1Long Stack
‘ 1 : U:.% & Narrow Coils
.
X £ \-EL\ 6 o
h“h‘%bq w =
4 4 - oy
5 — |
2 — 2 H
0 0 T
2 4 & 8 10D 12 14 i 8 © 4 2 0
il
Os=swh/al

Fi1c. 133.—Effect of Static Plate

Fig. 133 shows the capacitance network of a coil stack equipped
with a static plate, in which K and ( are respectively the axial and
radial turn-to-turn capacitances, and €, is the capacitance to ground.
This network is replaced by the solid dielectric of Fig. 133, assumed to
have the crystalline property of different specific capacitances in two
orthogonal directions of flow. For the element dx dy the divergence
(excess of outward to inward current) is zero, therefore

di, 0,
R : = {) 45
Vi dy * ax (45)
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and the two current components are
. de
1, = —
dy
de
1, = K —
0x
s0 that (435) becomes
d%e d°e
C— K —=A)
dy* Li ax*
subject to the boundary conditions
e=0atx=90

gri=mfrgpapv=y

ai: 1
1
ox .
01, .
— =1
ox Y

=t aty =20

¥Daty=I:

Substituting (46) and (47) in (50) and writing

az

_32

the differential equation and its boundary conditions become

d%e , 9%
— 4+ ar— =0
dx* dy?
e=0 atx =10
e=FE atx =1
d%e oe
B L T 23 at =
dx? T dy 8 4
a°e de
— —a-— =0 aty=
ax- day

Assume as a tentative solution

e=Ado+ Box+ Coy + Doxy + 2 (A4 sin ax + B cos ax)
(C sinh by + D cosh by)

L

(46)

(47)

(48)

(49)

(50)

(31)

(52)

(33)
(54)

(35)

(36)

(37)
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which substituted in {(52) vields
b= "=
L4 4

According to (53) Aig=Cy =B =10
0 =Lo=DL =

According to (54)

E=Bg£+yDUI+EA5in at (C sinh by 4+ D cosh by)

hence

E
Bo ==, Do =0, a=£r,A==l

and the solution takes the form

X ok ; STy STV I | gl
=TE+D ,
e ; (C sinh —7 + I cosh — )sm .E

Substituting 1n (56)

C it tanh 8, + Hs]
_— — = = 7,
D @, tanh 4, + &

where
sTh

g, =

e f

Now expressing (x. 1) as a half-range sine series

x 2 —-2E 5 TX
- B = 2 — 1% si
{ ll =1 sin !

substituting (38) in (33) and making use of (61) there results

,2E g

N

Solving (39) and (62) as simultaneous equations

—C=r.D=(—l)'2E[ I;_r-;-';"-h }
5

| , . s°x* o
=+ — + I

and hereby the solution becomes

ﬁ:z

52 '.-1'2 + x 5 Tr‘l
Fﬂ

[e /

8% +

: s STy I T o
(— r, sinh 2 + cosh }) S1N

!

ol ol

315

(38)

(59)

(60)

(61)

(62)

(63)

(64)
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In particular, the upper and lower boundaries of the axial distribution
are of interest

E

x 2E i ; |
e =TE+ > — (—1) - sin =~ (65
Y — 5 , S5 5T !
pe
b I I .
X 2 E | ° S | P
e:EE‘FZ_‘(‘U* *}#B-Jf 5”"'“‘-1 (66)
y=h L ST 3 95 W cas i f
1 _ﬂ"—{w—T—I—.ﬂ,
¢ /2 {
where fo = (— rssinh 8, + cosh §,) (67)

The functions r, and f, from {39) and (67} respectively have been
plotted in Fig. 133 as functions of 6.

The foregoing analysis of the effect of a static plate assumed
ground adjacent to the coil stack only on the neutral end and opposite
the inner cross-overs. It was further tacitly assumed, in the interests
of mathematical simplicity, that the distance of the last coil section
(pancake) from the ground plate was the same as the interval between
adjacent sections. Nevertheless, the solutions obtained may be
easily interpreted for the case of ground on both sides of the stack,
and the last coil any distance from the ground plate. For suppose
that ground is equal distance either side of the coil, as i1s the case in a
normal shell-type design. Then obviously, by symmetry, there will
be no radial component of dielectric flux at half the radial depth of the
coil, and therefore each half of the coil is independent, and its distri-
bution may be computed as in Fig. 134. Thus, with iron on both sides
of the coil, the inside and outside distributions coincide, and it is the
midpoint of the section which is at highest potential. The maximum
difference of potential between any two points of the section is between
the midpoint and either the inside or outside cross-over, and this differ-
ence is the same as for a coil of half the radial build and with iron on
one side only.

In order to account approximately for a variable distance from the
last section to the ground plate, it is only necessary to appreciate the
fact that the x and y distances in the ' flow sheet ™’ of Fig. 133 are in
reality axial and radial thickness of insulation, that is, do not include
the width and thickness of the copper conductors. On this basis, if
the capacitance of the last section to the ground plate is K, then its
equivalent distance from the ground plate in the “ flow sheet ” dia-
gram may be taken as w K

1K,
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where K is the axial capacitance from static plate to ground plate.
This, of course, is a rough approximation, but will serve to show the
effect of increasing the axial distance to ground. It 1s thus evident
that an increase in the axial distance from the last section to the ground
plate is equivalent to a longer coil stack, and if (xo /) is about equal to
1/2, the greatest potential difference will occur in the last section. If
the last section is actually grounded, then this potential difference
becomes very excessive indeed. Test data, and solutions from both
dielectric field plots and a d-c. calculating board, have been given by
K. K. Palueff,* and they show how the irregularities become greater
for the wider and shorter coil stacks,

It may be of interest to point out that the effect of a static plate
has been investigated by at least five different methods:

1. Tests on actual coil stacks, both with sphere gaps and the
cathode-ray oscillograph.

2. Solution of the capacitance network by successive trials.

3. Solution of the capacitance network by substituting the cor-
responding resistance network on the d-c. calculating board.

4. Dielectric flux plots.

5. Analytic solution given in this book.

Effective Capacitance of Shielded Windings.—It was shown in
Chapter XIII that the effective capacitance of an ordinary trans.
former without a shield is

C.. =V C K tanh « for isolated neutral
_ (68)
=V/C K coth a for grounded neutral
and since « is of the order of five or more
g
Coy =V CK = = (69)

If a transformer is shielded by the method of Fig. 131-4, the effec-
tive capacitance is

Cuw =V C (K +K) (70)
and
e - Ill +£ (71)
Cen‘ \r K
* Soc References 5, 7, 11, 17 in the Bibhography and the discussions of these

papers in the A.I.E.E. Trans.
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If a transformer is shielded by the method of Fig. 131-5 the effec-
tive capacitance (from shield through winding to ground) is

1 -
E?”E,,=K+fxﬂ'dx=fi+£"—_‘='£ (73)
/ 27 2
and
C”,p." K—I_CZ (4 4 L
= R 74
B Cra e W

However, the capacitance from the shield to the tank practically
doubles this walue. Therefore, the shield increases the effective
capacitance « times, which means that a non-resonating trans-
former may have from 10 to 20 times or more the capacitance of an
ordinary transformer of the same rating.

SUMMARY OF CHAPTER XVI

I the initial distribution 15 made equal to the final disiribution for an mfnite
rectangular applied wave, then no oscillations can cccur. This may be brought
about by means of electrostatic shields, and, as illustrated in Fig. 131, these shields
may be applied in several different ways. In general, there are two classes of shields:

1. Those which furnish the charging currents of the capacitance € from winding
to ground, thereby relieving the series capacitance K of these currents,
and so permitting it to establish a linear distrnibution of veltage.

2. Those which reinforce the capacitance X to such an extent that the ground
capacitance C can exert no appreciable influence on the distribution, and it
therefore remains substantially linear.

The advantages and disadvantages of the different methods of shielding were dis-
cussed briefly in the text; and the formulas applying to each case were derived.
In the case of partial shielding, Fig. 131-7, a great deal of space was devoted to
mathematical derivations, which may inadvertently have given an eatirely erroneous
idea of the relative importance of this practice as compared with the other methods
of shielding which were described.

The chief advantage of the static plale is in helping to equalize the voltage distri-
bution on the turns of the first few sections. It is ineffective in exercising any
appreciable influence on the characteristics of the oscillations in long, narrow coil
stacks, but in short, wide coil stacks it improves the average distribution at the expense
of exaggerated local oscillations.

The eftective capacitance of a non-resonating transformer may be from 10 to 20
or more times that of an ordinary transformer of the same rating,
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APPENDIX

The following table of operational calculus and other useful formulas has been
compiled, with the kind perrmssion of the authors and publishers, {rom similar tables
given in:

“Heaviside's Operational Calculus as Applied to Engineering and Physics,” by
E. J. BErg, McGraw-Hill Book Co.

“Operational Circuit Analysis,’”” by VANNEVAR BusH, John Wiley & Sons.

A knowledge of operational calculus to the extent covere in these fine books will
be found well-migh indispensable in the study of traveling waves.

HYPERBOLIC AND ALLIED FUNCTIONS

2 -3
(1) £==l+x+%+il—q+,.. = cosh x 4 sinh x

T . “""-? .J'l'la i
(2) & 1—L-|-h,-r.1'—~—?—;ﬁ+...=ca5x+js1nx
B —I 1-3 X3 i 2
(S)Einhx=%=a‘+|—i+-—__;+_..=x |(1+i=;)
X : wls
€ + e F £ xd = 3 xt
yecoshyx=—-——=1l4+—+—4+..., = 1
@) 2 +}3+!4+ W( +1r3(25-1}i)
T |
JE _ _—jr -3 5 o 7 g
(S}Einx=-f-—l—ji—=x—%+lE—...=x -|-(1— ::2)
i ‘ L
_ !
T 4 a? x4 = 4 x?
6) cosx = =] - — e R g = 1 —
(6) cos 2 L%+|j “( rr?{}.'s—ljz)
[

(7} sinh jx = jsin ¥

(8) cosh jx = cos x

(?) sinjx = jsinh x
(10} cos ix = cosh x
(11} sinh (=x) = — sinh x

(12) cosh {—=x)} = cosh x
321
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(13} cosh?! x — sinh?x = 1

d

(14) — sinhax = acoshax
dx

{15) —coshax = asinhax
dx

(16} fsinh gxdx = lc{lshﬂr

I

1
(17) J cosha xdx = —sinhax
a

(18) sinh (x &= ¥) = sinh x cosh ¥ = cosh x sinh ¥
(19} cosh (x £ ») = cosh x cosh ¥ & sinh x sinh ¥

(20) sinh (x £ j ) = sinh x cos ¥ & j cosh x sin y

=V sinhtx + sin? y | ¢

(21) cosh {x 4 jy) = cosh xcos ¥y £ jsinh xsin ¥y

=V coshzx — sin? y | ¢

(22) sin (x & j ¥) = sin xcosh ¥ £ jcos x sinh ¥
=V sin?x + sinh?y | b3

(23) cos (x + j¥) = cosx cosh y F jsin xsinh ¥

=vVcos? x + sinh?® y li:-:_
where tan ¢1 = =t coth x. tan y
tan ¢¢ = tanh x. tan ¥
tan ¢a = = tanh ¥. cot x

tan ¢4 =T tanh ¥. tan x

FACTORIALS
(24) M(x) =T{14x) =1 l L 23 ags (nesid) nf]
X = Xl = X)= 1
il G+ . et —1)
: 1-3-5- ... (2n —1)
(25) {EH—I},.I=V{:212_2‘ IS
9.2.2. ... 2 =
— 112 =V — Ot TR, .
(zm| (2n — 1).2 flisis_mlh_”sm{ n 1}2

L3

= sin (27 — 1) =
|(2n — 3)/2 2
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X 5 a =k g - % =il 0
(27) = : : : :
2 Vi Vri|vE| Vel -2V H AV | = |
EXPANSIONS

Fourier series

(28) F (v) = — + Z(b m%m . @)

8

where | by = f fiv)-cos Ed}'

'l &
a, = —f Fiy)esin = dy
A ¢

Taylor’s series _
2 "
(29) f (¢ + ) = £ (5) +af’ (x) +‘;Ef ) +~”Ef*fx+aa}

30 f{x+a, vy+b z4+e¢, ..., w+n=cf{x,v2...,%

4 d
f—(ﬂﬂ_'r‘f‘b_;r-l-f.‘:g;%- .+u£)

Maclaurin’s series

where

% r x? ry IHHL
B1) f(x) =flo} + 7 f (a]+—Ef 0 + .o+

Binomial theorem

i n-k Kk

HX y 1) 4B =240
(31} {x+}']n=ZI|H_ =_1;ﬂ+uxﬂ—1},+ﬂfﬂ ] Y
0 I

Leibnitz's theorem

d* (u v) : iﬂ"'*uﬂkﬂ
(33) Z T

—_—

a a dx a* dx* g dx

& 1dX 14X | d%°X
{34}ffﬂx¢fx——x--—+-_ 7 ]
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OPERATIONAL CALCULUS

Expansion theorem

V 16 ) FI:I -
Y (p) {tﬂ+ Z Pk €

) 7~ Z ) B Z ()

£1.

1 Z pi1s
(py H {m e nm}

Duhamel’s theorem

¢ d
(36) f() = El(o) ¢ (1) + .£ ¢ (1 — 1) EE {r) dr

=E{ﬂ]¢m—{—f T”J—Et'.!-—-r} dr

u

. a
= Efl} ¢ (0) + f Elir)— ¢t — 1) dr
i ot

f . a
= E(tt ¢ (o) + f E(t — 1) =g () dr
0 ar

‘4
=ELE{Tj¢f£—T}ﬁT

[f £
= d_f.fu.E“ — 1) ¢ (r) dr

Shifting theorem

an fip et et ] = fop+a)- [ ]

rn r:l".l—:l':l'l
{‘;H‘J pm —
|l no—m
f=m :
(39) p™ 1 = except for mr a positive integer
1" {1 — =)

Cin+11747™
I'in —m 4+ 11

I:*]:EI:I #m R 1 —

ot on
; - T4+ 134"
(41) PO f ] = 2 @y = — i f{f) = @t
x rin —m + 1) 3

(42) H“;;1 1 d (" fmds
o Vedtd Vi—,

3 p \/
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35 : = (@e~™ — ge~™
L TR Pe

: P / 1
(30) =
(pt+a)ip+ a — 3

wp oA
ﬁ‘l_’_w'_'.'
p*

I:'.E—ﬂt — E_ﬂl_,.l

= 51 wl

(37)

/

= 05 w!

[38)

P+ w

(59) —— 1
p?+w2

1 — cos wi

w

P -

(60) 1 = sinh wi

2
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PI
(61) prampr = cosh w!
(62) ir 1 = £ P gin w!
(p + B)% + of
pip+8 | -
(63) ? T 0 + ot = £~ B cos
w P o .
(64) BT B — wt/‘ = £ P sinh w!
g
ey o Re e T $ g Gt g
p! _|_W,i
2 + o b sl
66) % :1 = mf 0 ) o et e )
L wpeoso £ ppF Bsine) g
= +
{67) > T8¢ T ot £~ % sin (w )
(68) plp+Rcosp FTwpsing) _ . ——

(p + 8+ °

In the following three equations, let w? = we? — a3, tan ¢ = w/a, and (=~ m) and
(— n) be the two roots of p? + 2a p + we? = 0. Then

# _

—
—

F —
Wl p*+2ap+mu=1 B

who

— =g~ gin {wl — @)
1)
(ne~™ —me~™)
no—m
=g (1 — al)
— ot
s wl
Ll
! -mi —nt
(e - g~ %)
n— m
8 it

1

Vi PrP+2ap + -:un“1

. Pt A g
=g % ({
(72) P+ o £ 1
? — et
13 =1E
( }'{P+n3l*

L1~ e (1 + o)

«wh

— ot}

if WQ-E > el

if ﬂ!! ::9" r...'rn=

if a? = we?

if we? > at

if a? > wey?

if od = gl

if wp? > a?

if a? > Hnﬂ

if a? = wp?



APPENDIX 327

el L 1 —axl
(74) {Hm,1 — 1 - e +ay)]

i P oy ! ol = z-
(¥3) Pt 7+ 1 = o — & sin @ + sin (wf — #)]

iz £ FL ;ﬁ

(e — w?) — —a{a? — ) + — (0* — a®? w?® + af)
NENRER I_“ E E

(78 ———— | =& %

(79)

{80) 4 1 = Jyle )

(81) == 1

|

Jo ".r..?.ﬂ”

(82)

t‘vfpz + a? - p;"" = Ju (i)
ﬂﬂv".ﬂz + a?

w3}e_ﬁ1 w Tty

=g~ Jaljal)

| o P 1
{341\#+la—L- o

(85} 2 1 =g T, (jat
Vip +a)p — g -
-*E\,J"'{p+q]2-ﬂ3 - el - — o — ol H I _1;'_2
(80) £ £ ..r’n(j.ﬂf}1 =E Jn(jﬁ ! = 1:.1?’}“}
(87) e-avitpi___ ¥ p = J, Vi — a21
'V’r 1 +p { o)
28 ‘\J UE E_a:!' + flai.ﬁ2+
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(89) —== Ly
] -

I
(90) v,:; s,-—a'v’z'j = L gmat (1= ap
[ 4

(91} ﬁﬂ'“'1 = — u:a:“"" + g,:-"I

(92) ﬁff”1 = f t-'.11 +ff.ﬂL'PJ

(93} P{_~D:§wf1 =f-w5inwf1 —|—p1

}:" fl'_“! il 1 _a_r)fﬂ—{ﬂ
Pt o 2

03 e o1 | =7ip+area]

(9]

(9G) f{ H:'“‘J S —-:rJJ
Iip P

[f (p —ju)  fip +_;m”
:'J" P — juw £+ jw

E[.ﬁp—jm FEAL. +.fm|H
2] p— e p + jw

(97 sin wit f fp:-i

(98) cos w! f 1 p)

(99) ﬂ'“”" =1
Lx}

(100 e=9% f m’l =fil — a) 1

o
(101) pe~ Vav =--\/--

(o)

! 2at  (2af)?
{ 1+v 1 ’ r[ i3t 15T
s 1 1 1
(103) E_""”/‘ i /".‘[l_.l_-i_l_jé+_.

=1—frf(

A/ 1 1 I3
4 {p— /' pl— g% = L
(104) e= 1 1+T+{IEE+(E+W?ﬂE)3

L LT
4 o 1 41'*..

where T = a 83 1/2
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(105) eate— Vor=pi___~F 1=1+T+(—1E+ I—l)
T

Tt v 42
(106) & °F ’ 1 g I-l + (l—ﬁ“ 1‘—::-) (: e TT)
! T v
ey Ydta oe? ry2 1
WETT TS ) G R

] — —

12 1 1+ 1-3+1-3-5+
Ft+a a¥ rf el (2 at)® (2 at)?

asymptotically

= |

(107)

asymptotically

(110) : 1 . oo (J)é'__‘_
14+ Viapp | 3Vela/ |31
1

1 .ﬂ‘.";':l: aa
=1 _—-) 1 —1-3.-5.71 =
i) [-esr )

Y
+1-3-3-7.9.-11-13 (Ef) o ]

asymptotically



INDEX

A

Alternating current solution for multi-
conductor systems, 105
Amplitudes, arcing grounds, 189
direct hghtning strokes, 171
induced lightning waves, 144, 146, 147,
148, 149
switching surges, 191, 193
transformer oscillations, 227, 231, 244,
248, 253, 265, 293
Arcing grounds, 178, 202
maximum voltages, 1589
normal-frequency arc extinction, sin-
gle-phase, 178 '
three-phase, 179
oscillatory-frequency
single- phase, 181
three-phase, 182
suppression of, Petersen coil, 190
transients, 183
isolated neutral, 186
one line grounded, 187
Attenuation, 49-56
comparison of formulas, 53
effect of corona, 50
effect on charging a line, 39
Foust and Menger formula, 53
ideal line, 52
influence of ground wires, 51, 33
Quadratic formula, 53
Skilling formula, 52

arc extinction,

B

Bound charges on transmission lines,
136, 152
due to point or spherical clouds, 146
equivalent rectangular, 142, 145

influence on shape of traveling wave,
141, 142, 143

C
Cable, capacitance, 11
inductance, 11
reflections, 66, 67
velocity in, 11

33l

Capacitance, 10
cable, 11
coefficients, 20, 91, 136, 153, 153
overhead line, 10
transformer, 212, 233, 246
transformer shields, 317
transition points with, 41, 42, 48

Choke coil, 47, 75

Classification, hightning rescarch, 4
transformer protection, 210
transformer transients, 207
traveling waves, 5

Cloud discharge, influence on shape of

traveling wave, 140, 141, 142, 143
law of, 135, 140, 146, 137, 148, 152
theeories, 134
Component kinds of waves, 123
double-circuit line, 129
gencral relationships, 125, 126, 127
surge impedance, 127
three-phase line, 128
velocity of propagation, 127
Convertible networks, 30
Coordination of insulation, 74, 204
Corona, effect on attenuatien, 50
effect on protective ratio, 1353

Counterpoises (carth wires), 174, 175,
176
Current, hghtning stroke, 135, 148, 149,
169
transformer oscillations, 222, 223, 228,
236, 237, 240, 247, 251
transformer terminal transients, 283,

294
traveling waves, 9, 11, 97, 98, 99

1)

Damped oscillatory wave, 22, 266
Decrement factors,
transformer oscillations, 210, 243, 245,
266
traveling waves, 11, 52
Differential equations, arcing ground
transients, 184, 187
multi-conductor theory, 93
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Differential  equations,
theory, 8
transformer oscillations, 215, 233
Direct strokes, 162
ground wire clearance, 143, 170, 171
potentials caused by, 167, 169
prevention of flashover to line wire,
170, 171
successive reflections on ground wires,
163, 167, 168
susceptible zone, 164
tower currents, 169
tower footing resistance, 167
Distortionless line, 9, 12
[istributions, final, 207, 221, 223, 224
239
initial, 207, 217, 236
transient, 249, 252, 274, 277

single-circnit

E
LEffective capacitance, see Capacitance
Electrostatic shields, 303
Energy, at junctions, 17, 114
storage by electrostatic shields,
309
to cause gap sparkover, 70
transformer’ oscillations, 250
traveling waves, 13, 51, 102
electromagnetic, 13, 102
electrostatic, 13, 102
Envelopes of oscillation, 249, 232, 268,
274, 277, 305
Equivalent circuits, 31
ideal two-winding transformer,
215
neutral transients, 279
Petersen coil, 190
primary winding of transformer, 234,
248
reactors, current Limiting, 79, 80, 84
rotating apparatus, 76
shielded transformers, 305
static plates, 313
switching surges, 194, 195
terminal transients, 279
three-phase transformer banks, 299
lixpansion theorems, 324

307,

212,

F‘
Factorials, 322
Final distributions, single-winding the-
orv, 239 249, 252 274, 305
two-winding theory, 221, 223, 224
clectromagnetic component of, 223
electrostatic component of, 224
Finite rectangular wave, 258

INDEX

Freguencies of oscillation, transformer
oscillations, 231, 245, 248, 253

. L
Laps, characteristics, 70, 71, 72, 73
Graphical solutions, lightning arresters,
i)
sparkover characteristics, 71
Grounding rods, 173, 174
Ground wires, 151, 202
corona, effect on, 51, 155
direct stroke protection, 162
extra, introduction of, 172
induced surges, 151
protective ratio of, 154
resistance grounding, 158, 160

H
Hyperbolic and applied functions, 321

Impulse ratio, 71
Induced surges due to lightning, 136
analytical solution, 137
effect of time of discharge, 140, 144,
147
formation ot traveling waves, 141, 142
graphical solution, 138, 139
ground wires, effect on, 151
length of bound charge, 142
reduction factors, 144, 147
tabular solution, 139
Inductance, 10, 11
cable, 11
coefficients, 02
overhead line, 10, 97
transformer, 213, 216, 233, 235
transition point, 40, 41, 42, 46, 48
[nitial distribution, single-winding the-
ory, 236, 249, 252, 274, 308
two-winding theory, 217

]
Junctions, 31, 32

encrgy relationships at, 17, 114
N lines, 45
series inductance, 46
series resistance, 46
shunt capacitance, 48
shunt inductance, 48
single-circuit theory, 31, 32
solutions for, 32
two lines, 45



INDEX

L

Lattice for computing successive reflec-
tions, charging a line from a d-¢
source, 59, of)

charging a line from an impulse gen-
erator, G1, 62, 64

general, 57, 58

ground wires, 162, 167, 168

reflections  between o resistor  ane
capacitor, 65
short length of cable, 66, 67
Lightning, arresters, i1, 75, 76, 204
artificial, 202
classification, 4
field studies, 203
oscillograms of, 18
traveling waves, due to, 134
Linear front waves, 262
hY |
Maxwell's coefticients, electromagnetic,

92
clectrostatic, 90, 91, 136, 153, 135
Mutual inductance, effect of, 42, 249

N\
Neutral transients, 283
effect of applied wave, 293
effect of neutral impecor eleinents.
286, 291
No-loss line, multi-conductar theory, 96
single-circuit theory, 9

0

Operational calculus, 324
Oscillations, arcing grounds, 179
choke coils, caused by, 78
cumulative, 266
current limiting reactors, 83
switching surges, 193
transformers, 228, 233, 213, 245, 238-
277
local, 307
suppression of, 303
Oscillograms, current Umiting reactor
circuits, 84, 85, 26, 87
impulse gencrator charging a line, 62,
(4
natural lightning wavces, 18§
successive reflections between a resis-
tor and capacitor, 635
transformer oscillations, 261, 263, 268

P

Partial shielding, 309, 312
Petersen coil, 100

333

Potential, at towers struck by lightning,
169, 170
difference between points of the winel-
ing, 230
due to induced waves, 163
Proteetion, 69
rotating apparatus, 76
transformers, 210
Protective ratio of ground wires, 154
cffect of corona, 155, 156, 157

R
Reactors, current limiting, 79, 88
Reduction factors, induyce ghtning
surges, 144, 147
transformer oscillations, 260, 265, 278,
308
Reflections, 57-68
charging a line, 60—64
ground wires, 159, 160, 105, 166, 167,
168
lattice, 57, 58
reflection operator, 14, 15
secondary transients of transformers,
297
short lengths of cable, 66
Refraction operator, 14, 15
Resistance, and capacitance in parallel,
41
and inductance in parallel, 41
at end of line, 33
coefficients, 93
Rotating apparatus, protection of, 76

S

Secondary terminal transients, 204
repeated reflections, 297
three-phase ban ks, 208

Shape and specification

waves, chart {or, 23
compounding of simple waves, 21
crest, length and tail, defined, 19, 22

23
equation for, 19, 2l 2% oy
oscillograms, 18
rectangular components, 20

Shielding, conventional, 300
clectrostatic, 303
local oscillations, 307
partial, 300, 31>
tapered shuynt capacitances, 306

Shunt resistors for reactors, 80
prevention of external oscillations, &3,

84, 85, 86
prevention of interngl oscillations, 86,

87

of traveling



