present in the environment. This partial list illustrates the great variety of known bioelectromagnetic
phenomena.
The reported biological effects involve basic functions of living material that are under
remarkably precise control by mechanisms which have, to date, escaped description in terms of
solution biochemistry. This suggests that bioelectromagnetic phenomena are fundamental attributes of
living things ones that must have been present in the first living things. The traditional approach to
biogenesis postulates that life began in an aqueous environment, with the development of complex
molecules and their subsequent sequestration from the environment by membranous structures. The
solid-state approach proposes an origin in complex crystalline structures that possess such properties as
semiconductivity, photoconductivity, and piezoelectricity. All of the reported effects of
electromagnetic forces seem to lend support to the latter hypothesis.
It is not difficult to conceive of a crystal with self-organizing and self-repairing properties based
upon semiconductivity. Signals that indicated trauma would be transmitted by electron flow within the
lattice, accompanied by perturbations in the electric field of the crystal. Cyclic patterns of various
physical properties would be manifested because of the interaction between lattice electrons and cyclic
variations in the external electromagnetic field. Structures of this nature could have been the basis for
subsequent organization of complex organic molecules and the gradual acquisition of aqueous-based
energenic reactions. Despite the evolved complexity of the solution-based chemical reactions, there
would have been no requirement that the solid-state system be discarded, and it could have continued
to function into the metazoan state.
Accepting this premise, what characteristics would such a system have today? It would be
manifested by an organized pattern of electrical potentials that would alter in a predictable fashion with
trauma and subsequent repair processes. It would also be revealed by various types of solid-state
properties associated with cells, cellular subunits, and cellular products. It would demonstrate
characteristics of a control system, with identifiable input-output and transducer mechanisms. Finally,
exposure of the organism to electromagnetic energy would produce alterations in the functions
controlled by the system.
In succeeding chapters we present the evidence for this solid-state control system. We begin
with the history of our subject because, more than in most areas, it has shaped present attitudes. Against
the historical back-drop, one can see the reasons for the delay until the I970's in the recognition of the
true role of electromagnetism in biology.
In chapter 2 we develop the evidence for the existence of a primitive (from an evolutionary
standpoint) electrical analog-type data transmission and control system in living organisms. We show
that this system resides in the perineural tissue, and that its operation complements the neural control
achieved via the action potential.
The value of a new idea lies not only in its ability to explain and coordinate observations, but in
the validity of predictions of phenomena based upon it. The concept of living things having intrinsic
electromagnetic properties led to the prediction that living things would also respond to external
electromagnetic energy-both natural and artificial. This prediction is so at variance with long-accepted
concepts that positive confirmation from carefully executed experiments would constitute strong
support or the parent concept. The work described in chapter 3 demonstrates that organisms can receive
information about their environment in the form of natural electromagnetic signals, and that this can
lead to physiological and behavioral changes.
In the following chapters we review evidence of the biological effects of artificial
ELECTROMAGNETISM & LIFE - 6